
Domain Generalization for Vision-based Driving
Trajectory Generation

Yunkai Wang1, Dongkun Zhang1,2, Yuxiang Cui1, Zexi Chen1,
Wei Jing2, Junbo Chen2, Rong Xiong1, Yue Wang1†

Abstract— One of the challenges in vision-based driving tra-
jectory generation is dealing with out-of-distribution scenarios.
In this paper, we propose a domain generalization method for
vision-based driving trajectory generation for autonomous ve-
hicles in urban environments, which can be seen as a solution to
extend the Invariant Risk Minimization (IRM) method in com-
plex problems. We leverage an adversarial learning approach
to train a trajectory generator as the decoder. Based on the pre-
trained decoder, we infer the latent variables corresponding to
the trajectories, and pre-train the encoder by regressing the
inferred latent variable. Finally, we fix the decoder but fine-
tune the encoder with the final trajectory loss. We compare our
proposed method with the state-of-the-art trajectory generation
method and some recent domain generalization methods on
both datasets and simulation, demonstrating that our method
has better generalization ability. Our project is available at
https://sites.google.com/view/dg-traj-gen.

I. INTRODUCTION

Vision-based navigation is an appealing research topic
in recent years. One of the approaches in vision-based
navigation is learning-based trajectory generation from RGB
images. Most of the works are only validated on data from
the same domain for training and testing, as shown in
Fig. 1(a). However, as a common challenge in learning-
based algorithms, out-of-distribution (OOD) scenarios can
lead these trajectory generation approaches to have poor
generalization results and make dangerous decisions.

To allow the model to be trained on a specific dataset
and transferred to a new scenario, a straightforward solution
to deal with the OOD problem is domain adaptation (DA)
approach, which collects some data from the target domain
to fine-tune the model, shown in Fig. 1(b). However, in the
autonomous driving application scenario, a more realistic set-
ting is that the target domain is unknown, so it is impossible
to obtain the target domain data in advance. The problem
dealing with such OOD scenario is introduced as domain
generalization (DG) [1], which aims to learn a model from
source domains and generalize to any OOD target domain,
shown in Fig. 1(c).

To realize domain generalization, one approach is to use
labels of multi-domain training data [2] [3] to build an

This work was supported by Alibaba Group through Alibaba Innovative
Research (AIR) Program.

1Yunkai Wang, Dongkun Zhang, Yuxiang Cui, Zexi Chen, Rong Xiong,
and Yue Wang are with the State Key Laboratory of Industrial Control
Technology and Institute of Cyber-Systems and Control, Zhejiang Univer-
sity, Hangzhou, China.

2Dongkun Zhang, Wei Jing and Junbo Chen are with the Department of
Autonomous Driving Lab, Alibaba DAMO Academy, Hangzhou, China

† Corresponding author, wangyue@iipc.zju.edu.cn

Testing

Domain
Adaption

Domain
Generalization

Deployment Training Data

Our Method

(a)

(b)

(c)

Training Testing

Source Domain Target Domain

Source Domain Target DomainModel

Model

Model

Source Domain Target Domain

Pre-train Decoder by GAN (Sec. Ⅲ-C)

Latent Variable Regression + Pre-train Encoder (Sec. Ⅲ-D)

Encoder Fine-tune (Sec. Ⅲ-E)

Fig. 1: Different frameworks for testing, domain adaption,
and domain generalization method are shown in (a), (b), and
(c) respectively. We propose a three-stage training approach
to realize real domain generalized trajectory generation
method for autonomous vehicles.

auxiliary task, trying to learn domain invariant data repre-
sentations. However, domain labels are difficult to clearly
define on most current driving datasets. One approach to
relax this problem is using ensemble learning [4] to train a
certain number of models with different training data and
obtain a more robust planning result according to outputs
of all models, while this approach needs a longer training
time and inference time, making it resource-consuming.
One appealing approach proposed recently is Invariant Risk
Minimization (IRM) [5], which assumes the invariance of
the feature-conditioned label distribution and aims to re-
move spurious correlations (i.e. dataset-specific biases) in a
representation. However, most of the works using IRM are
restricted to classification problems with simple datasets and
linear classifiers.

In this paper, we proposed a trajectory generation method
to real domain generalized visual navigation for autonomous
vehicles by extending the IRM approach. We construct an
encoder-decoder network structure, where the decoder uses
the method in [6] to represent continuous trajectories. In
order to satisfy the constraint in the IRM problem, we
use a Lagrangian form, which is the squared norm of the
gradient of the trajectory generator. It is difficult to solve this

ar
X

iv
:2

10
9.

13
85

8v
1

 [
cs

.C
V

]
 2

2
Se

p
20

21

https://sites.google.com/view/dg-traj-gen

problem directly because the gradient norm term can hinder
the optimization. To solve this problem, we propose a three-
stage training approach, which is shown in the lower part of
Fig. 1(c): 1) We leverage an adversarial learning approach
to train a trajectory generator as the decoder. 2) Based
on the pre-trained decoder, we infer the latent variables
corresponding to the trajectories, and pre-train the encoder by
regressing the inferred latent variable. 3) We fix the decoder
but fine-tune the encoder with the final trajectory loss.

We compare our proposed method with the state-of-the-
art trajectory generation method and some recent domain
generalization methods on both datasets and simulation,
demonstrating that our method has better generalization
ability. To the best of our knowledge, this is the first work
to train driving trajectory generation models in one domain
and directly transfer them to other domains. To summarize,
the main contributions of this paper include the following:
• We formulate the domain generalization for driving

trajectory generation problem as a non-linear IRM prob-
lem. And we propose a set of network training strategies
for optimizing the non-linear IRM problem.

• We implement a trajectory generator with good domain
generalization ability. We test our method on both
datasets and simulation, showing that our method has a
stronger generalization ability than others in both open-
loop and closed-loop experiments.

II. RELATED WORKS

A. Domain Generalization

The goal of the domain generalization (DG) problem [1]
is to learn a model using data from the source domain and
generalize to any out-of-distribution (OOD) target domain.
Existing domain generalization approaches generally fall into
the following groups:

Domain-Adversarial Learning. The goal of domain-
adversarial learning [2], [7], [8] is to align the distributions
among different domains, and it formulates the distribution
minimization problem through a minimax two-player game,
without explicitly measuring the divergence between two
probability distributions.

Learning Disentangled Representations. These ap-
proaches learn to represent the data as multiple features
instead of a single domain-invariant feature and separate out
the domain-specific parts [3], [9].

Ensemble Learning. It uses different splits of training
data to learn multiple models with the same structure but dif-
ferent weights, which can boost the performance of a single
model [10] [11]. Ensemble learning is effective to cope with
OOD data with fewer constraints. However, these approaches
require more computational resources, the training time and
inference time of these approaches grow linearly with the
number of models.

Invariant Risk Minimization. It was first proposed by
Arjovsky et al. [5], which aims to remove spurious cor-
relations in a representation and ensure that the learned
representation can lead to a minimal classification error over

all source domains. Recent new works inspired from IRM
to address the OOD generalization problem include [12]–
[15]. However, most of these approaches are validated only
by doing classification tasks on toy datasets. We extend the
IRM method by using non-linear models to do the trajectory
generation task. And compared to other domain general-
ization methods, our proposed method does not rely on
domain knowledge, pixel-reconstruction, or multiple models
ensembling, making it easy to train and apply.

B. OOD Generalization in Driving Policy Learning

Recently, several works have investigated the problem
of OOD generalization problem in driving policy learning.
Zhang et al. [16] proposed to use bisimulation metrics to
learn robust latent representations which encode only the
task-relevant information from observations in reinforcement
learning. Unfortunately, there are still challenges in applying
reinforcement learning methods to real-world driving tasks.
Filos et al. [4] proposed an epistemic uncertainty-aware tra-
jectory planning method by training an ensemble of density
estimators and online optimizing the trajectory concerning
the most pessimistic model. This approach achieves good
results for OOD scenarios. However, model ensembling
and online optimization will consume more computational
resources and have a longer inference time, while in this
paper, we only use one single model to implement OOD
generalization.

III. METHOD

A. Background

Most works in driving tasks use Empirical Risk Mini-
mization (ERM) principle, which assumes there is a joint
probability distribution P (x, y) over input data X and label
data Y , and the training data is drawn i.i.d. from P (x, y).
Given a loss function L(ŷ, y) which measures how different
the prediction ŷ is from the ground truth y, ERM aims to
find a hypothesis h∗ to minimize the empirical risk, which
can be formulated as the following optimization problem:

h∗ = arg min
h

1

N

N∑
i=1

L(h(xi), yi) (1)

However, when the joint probability distribution P (x, y)
varies in the testing data, ERM methods may yield poor
generalization results. To overcome the distribution shift
problem, as well as the absence of target domain data,
domain generalization is introduced.

One of the important approaches in domain generalization
is Invariant Risk Minimization [5], which assumes the invari-
ance of the feature-conditioned label distribution E[y|Φ(x)].
To find an approximate solution, a Lagrangian form is
introduced [17]:

min
Φ,G

∑
e∈E

[
Re(Φ,G) + λ‖∇GRe(Φ,G)‖22

]
(2)

where Φ is a data representation, G is a classifier, e is a
kind of environment from the set E , and λ is a regulariza-
tion parameter. The latter IRM penalty term constrains the

Random sampling 𝒛

Random sampling 𝒗

Query time 𝒕

Generated

Trajectory

Fake 𝒗

Real

Trajectory

Real 𝒗

Generator 𝓖 Discriminator 𝓓

Fake/Real

Encoder 𝚽
RGB Image 𝑽

Local Map M

Real 𝒗

Query time 𝒕

Generator 𝓖

Latent Vector 𝒛 Generated

Trajectory

Unsupervised Learning for Trajectory Generation Learning Domain Invariant Representations

Fully Connected Layer Convolutional Layer Query Time Learnable Model Input or Output Data

Fig. 2: Network structure diagram of our proposed method. The generator G is trained with the discriminator D by an
unsupervised adversarial learning approach as a decoder. Based on the pre-trained decoder, we infer the latent variables
corresponding to the trajectories, and pre-train the encoder by regressing the inferred latent variable. Finally, we fix the
decoder but fine-tune the encoder with the final trajectory loss. The inputs of the encoder Φ include the RGB image V
which is acquired from the front-view camera, the local routing planning map M which is cropped from an offline map
according to the current low-cost GPS and IMU data, and the current speed v.

classifier to be the optimal classifier and is not worse for
each sample, avoiding the situation in ERM methods where
some data errors may be very large. In the linear regression
case, the analytical solution of the problem can be directly
calculated, and the IRM problem can be simplified as IRMv1
[5]:

min
Φ

∑
e∈E

[
Re(Φ) + λ‖∇G|G=1.0R

e(Φ,G)‖22
]

(3)

where Φ becomes the entire invariant predictor, G = 1.0 is
a scalar and fixed “dummy” classifier.

B. Problem Setup

For the vision-based driving trajectory generation task,
we leverage three sensor data as input of our method: the
front-view RGB image V which contains environmental
information, the local route planning map M which contains
driving intention information as inputs, and the current speed
v of the vehicle. The local route planning map M is cropped
from an offline map based on the current pose from the low-
cost GPS and inertial measurement unit (IMU), which is
similar to [18] and [19]. Both images are resized to 400×200
and concatenated together as part of the encoder’s input.

We assume that in the driving trajectory generation task,
there is an encoder Φ which maps all the sensor data to
the latent variable z and a trajectory generator (decoder) G
which uses the latent variable z, current speed v, and the
query time t to generate trajectory points. The expression
for the encoder Φ can be written as:

z = Φ(V,M, v) (4)

and the expression for the trajectory generator G [6] can be
written as:

y(t) = G(t, z, v) (5)

The network structure is shown in the right part of Fig. 2.
The risk function used in this paper is:

R =
∑[

‖y‖ − ŷ‖‖22 + α‖y⊥ − ŷ⊥‖22
]

(6)

where y‖ and y⊥ are the generated longitudinal and lateral
displacement respectively, ŷ‖ and ŷ⊥ are the ground truth
longitudinal and lateral displacement respectively, α is a
regularizer balancing between longitudinal loss and lateral
loss, and we use α = 5 in our experiments.

The most straightforward approach is to use the IRMv1
method to regress discrete trajectory points using a linear
predictor, as mentioned in [5]. We call this method as Traj
IRM. In our subsequent experiments, we find that Traj IRM
method does not perform well enough in the trajectory
generation task. Therefore, we introduce a non-linear decoder
to improve the model representation ability. Refer to Eq. 2,
we also consider using a Lagrangian form, and the non-linear
IRM optimization problem becomes:

min
θ,ω

∑
e∈E

[
Re(Φθ,Gw) + λ‖∇wRe(Φθ,Gw)‖22

]
(7)

where θ is the parameters of the encoder Φ, and w is the
parameters of the decoder G. The former term is the ERM
term and the latter term is the IRM penalty term. It is difficult
to solve this problem directly because the IRM penalty term
can hinder the optimization.

Hence, we propose to use a three-stage approach to learn
the IRM regularized trajectory generation: 1) We leverage an
adversarial learning approach to train a trajectory generator
as the decoder. 2) Based on the pre-trained decoder, we infer
the latent variables corresponding to the trajectories and pre-
train the encoder by regressing the inferred latent variable.
3) We fix the decoder but fine-tune the encoder with our
proposed trajectory loss in an end-to-end manner.

C. Unsupervised Learning for Trajectory Generation

Trajectory Representation. In this paper, we use a non-
linear decoder to generate continuous trajectories, which was
proposed in [6]. In that work, the trajectory generator G
takes three inputs: current speed v as a condition, the latent
variable z as a trajectory prior, and the query time t, and
it outputs the trajectory point corresponding to the time t,
which has the same expression as Eq. 5. High-order physical

quantities such as velocity and acceleration can be obtained
analytically by calculating the high-order partial derivatives
of the outputs with respect to time t:

v(t) =
∂y(t)

∂t
, a(t) =

∂2y(t)

∂t2
(8)

In this paper, we follow this method to represent trajectories.
Latent Action Space Learning. Since the linear classifier

of IRM can be solved analytically, the convergence of the
classifier is not a concern, while the non-linear classifier
has convergence problems. Therefore, it is important to
train a good decoder without relying on high-dimensional
inputs. We propose to use the unsupervised GAN to train
the decoder. After training, the generator can be seen as a
trained and converged decoder, which to some extent can be
analogous to the classifier in linear IRM case, and we then
can fix it in the process to optimize Eq. 7.

Specifically, inspired by the multi-modal experiment in
Conditional GAN [20], we sample the trajectory prior z
from a standard Gaussian distribution pz(z), and a one-
dimensional noise speed ṽ from a uniform distribution pṽ(ṽ)
between 0 and the maximum speed as a condition:

z ∼ pz(z), ṽ ∼ pṽ(ṽ) (9)

And the trajectory generator G takes these variables to
generate a fake trajectory:

ỹ(t) = G(t, z, ṽ) (10)

Then we use a time series with equal interval sampling and
input to the trajectory function to obtain the corresponding
discrete trajectory points. The discriminator network D takes
these generated trajectory points ỹ or ground truth trajectory
points y as input, and determines whether it is sampled from
the generator network or from the ground truth data. The
network structure is shown in the left part of Fig. 2. To
improve the stability of the training process and prevent
severe model collapse, we use WGAN-GP [21] as our
adversarial learning approach.

D. Encoder Pre-training

We view the encoder pre-training task as a regression
problem on the latent action space. However, the problem
is that there is no target latent variables ẑ to supervise the
encoder training. Therefore, we infer the latent variables for
each trajectory. Referring to the Eq. 13, we use the risk
function along with the IRM loss. Since the latent variables
are sampled from the standard Gaussian distribution in the
training process of the GAN model, we also add a constraint
on the norm of the latent variable z so that its distribution
is as close as possible to the standard Gaussian distribution.
The final loss function to obtain the target latent variable ẑ
is shown in Eq. 11.

ẑ = arg min
z

∑
e∈E

[
Re(z,Gw0

) + λ‖∇w|w=w0
Re(z,Gw)‖2

+ λ2‖z‖22
]

(11)

where w0 is the parameters pre-trained by GAN, λ2 is a
regularizer. In practice, we use Adam optimizer with 0.1
initial learning rate to optimize the latent variable ẑ as the
target label data for supervised learning. Then we pre-train
the encoder by regressing the latent variable z, and the loss
function is:

θ0 = arg min
θ

∑
‖Φθ(V,M, v)− ẑ‖22 (12)

After obtaining the latent variables ẑ from the multi-step
optimization, a simple way is to follow the IRM approach
to do linear regression on the latent space by using IRMv1
method [5]. However, we believe that it will introduce both
the error of the latent variables used for supervision and the
error of learning these latent variables, and our subsequent
experiments show that this method works, but not very well.
We call this method as Latent IRMv1.

E. End-to-End Training

After pre-training the encoder, we train our model in
an end-to-end manner. In order to guarantee the feature-
conditioned label distribution E[y|Φ(x)] remains invariant,
we propose to fix the parameters of the decoder G in the
training process, and just fine-tune the encoder. We use the
GAN pre-trained parameters as the fixed parameters for the
decoder, instead of random parameters, which can reduce
the difficulty of optimization in the latent space and speed
up training.

Therefore, the optimization problem in Eq. 7 is reduced
to only search the parameters of the encoder:

min
θ

∑
e∈E

[
Re(Φθ,Gw0

)+λ‖∇w|w=w0
Re(Φθ,Gw)‖22

]
(13)

We call the loss function in Eq. 13 as Non-linear IRM
(NIRM) loss.

In our experiments, we also discuss the use of a decoder
with random parameters, i.e., the decoder has not yet con-
verged well, but we use it to train the model in the same way.
We call this method Random NT+NIRM. And our subsequent
experiments demonstrate the poor performance of the model
trained by this method.

IV. EXPERIMENTS

In this paper, we use different ablated models to validate
the effectiveness of our proposed method on the open-source
driving datasets and compare our method with the state-
of-the-art trajectory generation method and recent domain
generalization methods on the open-source driving datasets
and the CARLA simulation.

A. Dataset and Metrics

We use three driving datasets to validate our method.
Oxford Radar RobotCar (RobotCar) [22] is a radar

extension to the Oxford RobotCar Dataset [23], providing
280km driving data around Oxford, UK. Since this dataset
has simpler and practical data collection conditions, with
limited geographic space and different collection times, we
use this dataset as a training dataset.

TABLE I: Ablation study results of generalization from
RobotCar Dataset to KITTI and CARLA Dataset. The three
columns on the right are the average displacement error (m)
on three different testing datasets. Lower metrics have better
results.

Algorithm DFX DPT IRM RobotCar* KITTI CARLA

E2E NT [6] 0.60 2.13 1.36
E2E NT+NIRM NIRM 0.68 2.06 1.25

Random NT+NIRM X NIRM 1.50 2.32 1.45
Traj IRM X IRMv1 0.67 2.16 1.31

Latent IRMv1 X X IRMv1 0.77 1.77 1.02
Ours X X NIRM 0.85 1.70 0.92

“DFX” means “Decoder Fixed”, “DPT” means “Decoder Pre-trained”, and
“IRM” means “With IRM”.

KITTI Raw Data (KITTI) [24] contains 6 hours of
traffic scenarios using a variety of sensor modalities. Since
this dataset has more diverse driving scenarios, we use this
dataset as a testing dataset.

CARLA Dataset is collected by a human driver for about
2 hours in the CARLA [25] simulation, with a speed limit of
30 km/h under different weather conditions. Since the cost
of changing weather conditions in the simulation is very low
and the driving trajectories are relatively simple, it is used
as a testing dataset in the experiments.

Metrics. In this paper, we use average displacement error
[26], which is the average Euclidean distance between the
ground truth trajectory points and the generated trajectory
points at the corresponding moment, to evaluate the perfor-
mance of different methods.

B. Ablation Study

We validate the advantages of our proposed method by
testing different ablated models from the original model as
below:
• E2E NT: We directly train the model end-to-end in an

ERM manner.
• E2E NT+NIRM: We train the model end-to-end with

NIRM loss.
• Random NT+NIRM: This method is proposed in

Sec. III-E. We use a fixed neural trajectory generation
model with random parameters instead of the parame-
ters of the pre-trained GAN model.

• Traj IRM: This method was proposed in [5], and is
mentioned in Sec. III-B. We use this method to regress
the position coordinates of 16 discrete trajectory points.

• Latent IRMv1: This method is proposed in Sec. III-D,
which do linear regression on the latent space by using
IRMv1 method.

• Ours: The method proposed in this paper, which is
trained by our proposed three-stage training approach.

The ablation study results of transfer from RobotCar
Dataset to KITTI Dataset and CARLA Dataset are shown
in Tab. I. Comparing with the results of the E2E NT
method, using IRM can improve model generalization ability,
which illustrates the effectiveness of the IRM approach.
Comparing with the results of the E2E NT+NIRM method
and Random NT+NIRM method, our method has a stronger

generalization ability. Since the pre-trained decoder we use
is a converged decoder with fixed parameters, we believe it
is a correct analogy to the linear IRM case, so our method
has a better performance. Comparing the results of the Traj
IRM method, it shows that the decoder using a simple
“dummy” predictor does not have enough model capacity
for more complex problems such as trajectory generation
for autonomous vehicles. The second-best performing Latent
IRMv1 is also analogous to the linear IRM case, but it only
uses intermediate results as supervision, so there are fitting
errors introduced, resulting in slightly worse performance.

C. Comparative Study

We compare our proposed method with the recent trajec-
tory generation method which aims to overcome the OOD
challenge and other domain generalization methods. To be
fair, all methods use the same inputs as our proposed method.
For the discrete trajectory generation methods, we use linear
interpolation to get the trajectory points at the corresponding
moment. For methods that require domain labels, we divide
three datasets into 5 domains respectively, according to the
time of data collection. Note that our method does not require
domain labels.

End-to-End Neural Trajectory (E2E NT) is a variant
of [6], which has the same network structure and inputs as
our proposed method. All its parameters are trained end-to-
end with only L2 loss. This method is treated as a baseline
method in this paper.

Robust Imitative Planning (RIP) [4] is one of the state-
of-the-art methods for trajectory generation to overcome
distribution shifts. We use the Worst Case Model (WCM) over
5 models and Adam [27] optimizer for online optimization
with 50 steps and 0.1 initial learning rate. According to the
official code provided, the model output is 4 discrete trajec-
tory points, and the points at other moments are obtained
using linear interpolation.

MixStyle [28] is a method to make CNNs more domain-
generalizable by mixing instance-level feature statistics of
training samples across domains without using domain la-
bels. We use this plugin in our end-to-end model without
changing other settings for a fair comparison.

Domain Invariant Variational Autoencoders (DIVA) [3]
is a generative model that tackles the domain generalization
problem by learning three independent latent subspaces, one
for the domain, one for the class, and one for any residual
variations. We extend this method to turn the classification
task into a trajectory generation task, using the continuous
trajectory generation model proposed in [6]. This method
needs domain labels in the training process.

Domain-Adversarial Learning (DAL) [29] methods
leverage adversarial learning to allow the generator to extract
domain invariant features. We use this method in our end-to-
end model, and design a discriminator to determine whether
two features come from the same domain. This method also
needs domain labels in the training process.

RIP MixStyle DIVA DAL E2E NT Ours
0

1

2

3

A
D

E
/m

RobotCar* KITTI CARLA

RIP MixStyle DIVA DAL E2E NT Ours
0

1

2

3

A
D

E
/m

KITTI* RobotCar CARLA

Fig. 3: Generalization performance (average displacement
error in meters) on three different datasets. The models are
trained on the dataset labeled by “*”, and directly generalize
to the testing dataset and other two target datasets.

TABLE II: Closed-loop testing of success rate (%, the first
one of each item) and average speed (m/s, the second one
of each item) in CARLA. Higher metrics have better results.
Highest success rates are highlighted in bold font.

Algorithm Clear Wet Cloudy Hard Rain Heavy Fog
Noon Sunset Sunset Morning

RIP [4] 86/3.6 78/3.8 82/3.7 76/3.7
MixStyle [28] 94/4.1 77/4.9 72/7.4 34/6.4
DIVA [3] 79/9.6 71/9.3 54/8.7 39/7.5
DAL [29] 79/4.0 31/4.9 27/4.7 38/3.8
E2E NT [6] 100/8.6 50/4.5 35/3.9 31/9.9
Ours 94/5.6 82/6.8 100/7.6 79/5.7

D. Comparison Results on Datasets

We implement our network by using PyTorch 1.6 with
CUDA 10.2 and cuDNN 7.6.5 libraries. We use a batch size
of 32 and Adam [27] optimizer with an initial learning rate
of 0.0003. All networks are trained on a PC with AMD
3700X CPU and NVIDIA RTX 2060 Super GPU. We train
all methods on training dataset until the models converge,
and evaluate them on the testing datasets from both the same
domain and other domians.

The generalization results of the different models are
shown in Fig 3. In terms of generalization performance,
our method outperforms other comparison methods on the
testing datasets under different domains, which validates
that our method has a stronger generalization ability. The
results show that MixStyle and DIVA these two domain
generalization methods also have a great performance im-
provement compared to the E2E NT baseline method. While
the RIP method and the DAL method do not always show a
stable generalization performance advantage. Under certain
conditions, the performance of these two methods may be
worse than that of the baseline method.

E. Closed-loop Experiments in Simulation

Since we want to train our driving model on the dataset
collected in one environment and transfer this model to a
new environment to implement driving tasks, evaluation on

Fig. 4: Model generalization results of our method under
four different weather conditions in CARLA. The model is
only trained on RobotCar dataset and directly generalize to
CARLA. The discrete red points are the generated trajectory
points.

open-loop datasets is not enough to prove the effectiveness of
our method. Therefore, we test our method with closed-loop
visual navigation tasks in the CARLA [25] 0.9.9.4 simulation
and compare it with other methods.

Experiments Setup. We train models on RobotCar
Dataset and transfer them in the CARLA simulator, testing
the driving success rates under different driving tasks of
different models. We use the same vehicle and set random
starting and target points in Town01 with four different
weather conditions: Clear Noon, Cloudy Sunset, Hard Rain
Sunset, and Heavy Fog Morning and two traffic condition:
Empty and with Dynamic Obstacles, where the setting of
obstacles is the same as its in the CARLA benchmark [25].

Closed-loop Experiment Result. The results are shown in
Tab. II and Fig. 4. Our method gets second place in success
rate under Clear Noon weather condition and has the highest
success rate under all other weather conditions. Compared
to the E2E NT method, our method has high success rates
in all weather conditions, while the success rates of E2E
NT method vary greatly under different weather conditions,
which means that our method has a stronger model transfer
ability to handle different weather conditions. Compared to
the RIP method, our method has higher success rates and
higher average speeds, while the RIP method using Worst
Case Model (WCM) generates more conservative trajectories
with low speed. Compared to MixStyle and DIVA, which have
high success rates under the former three weather conditions,
our method can also get a high success rate under Heavy Fog
Morning weather condition, where there is a close field of
view and severe visual disturbance, which also validate our
method has a stronger transfer ability.

V. CONCLUSION

In this paper, we propose a domain generalization
method for vision-based driving trajectory generation for
autonomous vehicles in urban environments, which can be
seen as a solution to extend the IRM method in non-linear
cases. We compare our proposed method with the state-of-
the-art trajectory generation method and some recent domain
generalization methods on both datasets and simulation,
demonstrating that our method has better generalization
ability.

REFERENCES

[1] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain
generalization: A survey,” arXiv preprint arXiv:2103.02503, 2021.

[2] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, “Deep
domain generalization via conditional invariant adversarial networks,”
in Proceedings of the European Conference on Computer Vision
(ECCV), pp. 624–639, 2018.

[3] M. Ilse, J. M. Tomczak, C. Louizos, and M. Welling, “Diva: Domain
invariant variational autoencoders,” in Medical Imaging with Deep
Learning, pp. 322–348, PMLR, 2020.

[4] A. Filos, P. Tigkas, R. McAllister, N. Rhinehart, S. Levine, and Y. Gal,
“Can autonomous vehicles identify, recover from, and adapt to dis-
tribution shifts?,” in International Conference on Machine Learning,
pp. 3145–3153, PMLR, 2020.

[5] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant
risk minimization,” arXiv preprint arXiv:1907.02893, 2019.

[6] Y. Wang, D. Zhang, J. Wang, Z. Chen, Y. Li, Y. Wang, and R. Xiong,
“Imitation learning of hierarchical driving model: from continuous
intention to continuous trajectory,” IEEE Robotics and Automation
Letters, 2021.

[7] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with
adversarial feature learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5400–5409, 2018.

[8] F. M. Carlucci, P. Russo, T. Tommasi, and B. Caputo, “Hallucinating
agnostic images to generalize across domains.,” in ICCV Workshops,
pp. 3227–3234, 2019.

[9] J. Xing, T. Nagata, K. Chen, X. Zou, E. Neftci, and J. L. Krichmar,
“Domain adaptation in reinforcement learning via latent unified state
representation,” arXiv preprint arXiv:2102.05714, 2021.

[10] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine, “Uncertainty-
aware reinforcement learning for collision avoidance,” arXiv preprint
arXiv:1702.01182, 2017.

[11] L. Tai, P. Yun, Y. Chen, C. Liu, H. Ye, and M. Liu, “Visual-based
autonomous driving deployment from a stochastic and uncertainty-
aware perspective,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2622–2628, IEEE, 2019.

[12] D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas,
D. Zhang, R. Le Priol, and A. Courville, “Out-of-distribution gen-
eralization via risk extrapolation (rex),” in International Conference
on Machine Learning, pp. 5815–5826, PMLR, 2021.

[13] W. Jin, R. Barzilay, and T. Jaakkola, “Domain extrapolation via regret
minimization,” arXiv preprint arXiv:2006.03908, 2020.

[14] E. Rosenfeld, P. Ravikumar, and A. Risteski, “The risks of invariant
risk minimization,” arXiv preprint arXiv:2010.05761, 2020.

[15] K. Ahuja, K. Shanmugam, K. Varshney, and A. Dhurandhar, “Invariant
risk minimization games,” in International Conference on Machine
Learning, pp. 145–155, PMLR, 2020.

[16] A. Zhang, R. T. McAllister, R. Calandra, Y. Gal, and S. Levine,
“Learning invariant representations for reinforcement learning without
reconstruction,” in International Conference on Learning Representa-
tions, 2021.

[17] E. Rosenfeld, P. K. Ravikumar, and A. Risteski, “The risks of
invariant risk minimization,” in International Conference on Learning
Representations, 2021.

[18] A. Amini, G. Rosman, S. Karaman, and D. Rus, “Variational end-to-
end navigation and localization,” in 2019 International Conference on
Robotics and Automation (ICRA), pp. 8958–8964, IEEE, 2019.

[19] H. Ma, Y. Wang, L. Tang, S. Kodagoda, and R. Xiong, “Towards
navigation without precise localization: Weakly supervised learning of
goal-directed navigation cost map,” arXiv preprint arXiv:1906.02468,
2019.

[20] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[21] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of wasserstein gans,” arXiv
preprint arXiv:1704.00028, 2017.

[22] D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner, “The
oxford radar robotcar dataset: A radar extension to the oxford robotcar
dataset,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6433–6438, IEEE, 2020.

[23] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km:
The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[24] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[25] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning,
pp. 1–16, PMLR, 2017.

[26] P. Cai, Y. Sun, H. Wang, and M. Liu, “Vtgnet: A vision-based
trajectory generation network for autonomous vehicles in urban en-
vironments,” IEEE Transactions on Intelligent Vehicles, 2020.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[28] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang, “Domain generalization with
mixstyle,” in International Conference on Learning Representations,
2021.

[29] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in International conference on machine learning,
pp. 1180–1189, PMLR, 2015.

	I Introduction
	II Related Works
	II-A Domain Generalization
	II-B OOD Generalization in Driving Policy Learning

	III Method
	III-A Background
	III-B Problem Setup
	III-C Unsupervised Learning for Trajectory Generation
	III-D Encoder Pre-training
	III-E End-to-End Training

	IV Experiments
	IV-A Dataset and Metrics
	IV-B Ablation Study
	IV-C Comparative Study
	IV-D Comparison Results on Datasets
	IV-E Closed-loop Experiments in Simulation

	V Conclusion
	References

