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Abstract— This paper studies the complex task of simultane-
ous multi-object 3D reconstruction, 6D pose and size estimation
from a single-view RGB-D observation. In contrast to instance-
level pose estimation, we focus on a more challenging problem
where CAD models are not available at inference time. Existing
approaches mainly follow a complex multi-stage pipeline which
first localizes and detects each object instance in the image
and then regresses to either their 3D meshes or 6D poses.
These approaches suffer from high-computational cost and
low performance in complex multi-object scenarios, where
occlusions can be present. Hence, we present a simple one-
stage approach to predict both the 3D shape and estimate
the 6D pose and size jointly in a bounding-box free manner.
In particular, our method treats object instances as spatial
centers where each center denotes the complete shape of an
object along with its 6D pose and size. Through this per-
pixel representation, our approach can reconstruct in real-
time (40 FPS) multiple novel object instances and predict their
6D pose and sizes in a single-forward pass. Through extensive
experiments, we demonstrate that our approach significantly
outperforms all shape completion and categorical 6D pose and
size estimation baselines on multi-object ShapeNet and NOCS
datasets respectively with a 12.6% absolute improvement in
mAP for 6D pose for novel real-world object instances.

I. INTRODUCTION

Multi-object 3D shape reconstruction and 6D pose (i.e. 3D
orientation and position) and size estimation from raw visual
observations is crucial for robotics manipulation [1, 2, 3],
navigation [4, 5] and scene understanding [6, 7]. The ability
to perform pose estimation in real-time leads to fast feedback
control [8] and the capability to reconstruct complete 3D
shapes [9, 10, 11] results in fine-grained understanding of
local geometry, often helpful in robotic grasping [2, 12].
Recent advances in deep learning have enabled great progress
in instance-level 6D pose estimation [13, 14, 15] where
the exact 3D models of objects and their sizes are known
a-priori. Unfortunately, these methods [16, 17, 18] do not
generalize well to realistic-settings on novel object instances
with unknown 3D models in the same category, often referred
to as category-level settings. Despite progress in category-
level pose estimation, this problem remains challenging even
when similar object instances are provided as priors during
training, due to a high variance of objects within a category.

Recent works on shape reconstruction [19, 20] and
category-level 6D pose and size estimation [21, 22, 23] use
complex multi-stage pipelines. As shown in Figure 1, these
approaches independently employ two stages, one for per-
forming 2D detection [24, 25, 26] and another for performing
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Fig. 1: Overview: (1) Multi-stage pipelines in comparison to (2)
our single-stage approach. The single-stage approach uses object
instances as centers to jointly optimize 3D shape, 6D pose and
size.

object reconstruction or 6D pose and size estimation. This
pipeline is computationally expensive, not scalable, and has
low performance on real-world novel object instances, due
to the inability to express explicit representation of shape
variations within a category. Motivated by above, we propose
to reconstruct complete 3D shapes and estimate 6D pose and
sizes of novel object instances within a specific category,
from a single-view RGB-D in a single-shot manner.

To address these challenges, we introduce Center-based
Shape reconstruction and 6D pose and size estimation (Cen-
terSnap), a single-shot approach to output complete 3D in-
formation (3D shape, 6D pose and sizes of multiple objects)
in a bounding-box proposal-free and per-pixel manner. Our
approach is inspired by recent success in anchor-free, single-
shot 2D key-point estimation and object detection [27, 28,
29, 30]. As shown in Figure 1, we propose to learn a
spatial per-pixel representation of multiple objects at their
center locations using a feature pyramid backbone [3, 24].
Our technique directly regresses multiple shape, pose, and
size codes, which we denote as object-centric 3D parameter
maps. At each object’s center point in these spatial object-
centric 3D parameter maps, we predict vectors denoting the
complete 3D information (i.e. encoding 3D shape, 6D pose
and sizes codes). A 3D auto-encoder [31, 32] is designed to
learn canonical shape codes from a large database of shapes.
A joint optimization for detection, reconstruction and 6D
pose and sizes for each object’s spatial center is then carried
out using learnt shape priors. Hence, we perform complete
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3D scene-reconstruction and predict 6D pose and sizes of
novel object instances in a single-forward pass, foregoing
the need for complex multi-stage pipelines [19, 22, 24].

Our proposed method leverages a simpler and computa-
tionally efficient pipeline for a complete object-centric 3D
understanding of multiple objects from a single-view RGB-
D observation. We make the following contributions:
• Present the first work to formulate object-centric holistic

scene-understanding (i.e. 3D shape reconstruction and
6D pose and size estimation) for multiple objects from
a single-view RGB-D in a single-shot manner.

• Propose a fast (real-time) joint reconstruction and pose
estimation system. Our network runs at 40 FPS on a
NVIDIA Quadro RTX 5000 GPU.

• Our method significantly outperforms all baselines for
6D pose and size estimation on NOCS benchmark, with
over 12% absolute improvement in mAP for 6D pose.

II. RELATED WORK

3D shape prediction and completion: 3D reconstruction
from a single-view observation has seen great progress
with various input modalities studied. RGB-based shape
reconstruction [31, 33, 34] has been studied to output ei-
ther pointclouds, voxels or meshes [11, 32, 35]. Contrarily,
learning-based 3D shape completion [36, 37, 38] studies
the problem of completing partial pointclouds obtained from
masked depth maps. However, all these works focus on
reconstructing a single object. In contrast, our work focuses
on multi-object reconstruction from a single RGB-D. Re-
cently, multi-object reconstruction from RGB-D has been
studied [19, 39, 40]. However, these approaches employ
complex multi-stage pipelines employing 2D detections and
then predicting canonical shapes. Our approach is a simple,
bounding-box proposal-free method which jointly optimizes
for detection, shape reconstruction and 6D pose and size.

Instance-Level and Category-Level 6D Pose and Size
Estimation: Works on Instance-level pose estimation use
classical techniques such as template matching [41, 42, 43],
direct pose estimation [13, 15, 18] or point correspon-
dences [14, 16]. Contrarily, our work closely follows the
paradigm of category-level pose and size estimation where
CAD models are not available during inference. Previous
work has employed complex multi-stage pipelines [21, 22,
44] for category-level pose estimation. Our work optimizes
for shape, pose, and sizes jointly, while leveraging the shape
priors obtained by training a large dataset of CAD models.
CenterSnap is a simpler, more effective, and faster solution.
Per-pixel point-based representation has been effective
for anchor-free object detection and segmentation. These
approaches [28, 30, 45] represent instances as their centers in
a spatial 2D grid. This representation has been further studied
for key-point detection [27], segmentation [46, 47] and body-
mesh recovery [48, 49]. Our approach falls in a similar
paradigm and further adds a novelty to reconstruct object-
centric holistic 3D information in an anchor-free manner.
Different from [39, 48], our approach 1) considers pre-
trained shape priors on a large collection of CAD models 2)

jointly optimizes categorical shape 6D pose and size, instead
of 3D-bounding boxes and 3) considers more complicated
scenarios (such as occlusions, a large variety of objects and
sim2real transfer with limited real-world supervision).

III. CENTERSNAP: SINGLE-SHOT OBJECT-CENTRIC
SCENE UNDERSTANDING OF MULTIPLE-OBJECTS

Given an RGB-D image as input, our goal is to simulta-
neously detect, reconstruct and localize all unknown object
instances in the 3D space. In essence, we regard shape
reconstruction and pose and size estimation as a point-based
representation problem where each object’s complete 3D in-
formation is represented by its center point in the 2D spatial
image. Formally, given an RGB-D single-view observation (I
∈ Rho×wo×3, D ∈ Rho×wo ) of width wo and height ho,
our aim is to reconstruct the complete pointclouds (P ∈
RK×N×3) coupled with 6D pose and scales (P̃ ∈ SE(3), ŝ
∈ R3) of all object instances in the 3D scene, where K is the
number of arbitrary objects in the scene and N denotes the
number of points in the pointcloud. The pose (P̃ ∈ SE(3))
of each object is denoted by a 3D rotation R̂ ∈ SO(3) and
a translation t̂ ∈ R3. The 6D pose P̃ , 3D size (spatial extent
obtained from canonical pointclouds P ) and 1D scales ŝ
completely defines the unknown object instances in 3D space
with respect to the camera coordinate frame. To achieve the
above goal, we employ an end-to-end trainable method as
illustrated in Figure 2. First, objects instances are detected
as heatmaps in a per-pixel manner (Section III-A) using a
CenterSnap detection backbone based on feature pyramid
networks [3, 50]. Second, a joint shape, pose, and size code
denoted by object-centric 3D parameter maps is predicted for
detected object centers using specialized heads (Section III-
C). Our pre-training of shape codes is described in Sec-
tion III-B. Lastly, 2D heatmaps and our novel object-centric
3D parameter maps are jointly optimized to predict shapes,
pose and sizes in a single-forward pass (Section III-D).

A. Object instances as center points

We represent each object instance by its 2D location
in the spatial RGB image following [28, 30]. Given a
RGB-D observation (I ∈ Rho×wo×3, D ∈ Rho×wo ), we
generate a low-resolution spatial feature representations fr
∈ Rho/4×wo/4×Cs and fd ∈ Rho/4×wo/4×Cs by using
Resnet [51] stems, where Cs = 32. We concatenate com-
puted features fr and fd along the channel dimension be-
fore feeding it to Resnet18-FPN backbone [52] to compute
a pyramid of features (frd) with scales ranging from 1/8
to 1/2 resolution, where each pyramid level has the same
channel dimension (i.e. 64). We use these combined features
with a specialized heatmap head to predict object-based
heatmaps Ŷ ∈ [0, 1]

ho
R ×

wo
R ×1 where R = 8 denotes the

heat-map down-sampling factor. Our specialized heatmap
head design merges the semantic information from all FPN
levels into one output (Ŷ ). We use three upsampling stages
followed by element-wise sum and softmax to achieve
this. This design allows our network to 1) capture multi-
scale information and 2) encode features at higher resolution
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Fig. 2: CenterSnap Method: Given a single-view RGB-D observation, our proposed approach jointly optimizes for shape, pose, and sizes
of each object in a single-shot manner. Our method comprises a joint FPN backbone for feature extraction (Section III-A), a pointcloud
auto-encoder to extract shape codes from a large collection of CAD models (Section III-B), CenterSnap model which constitutes multiple
specialized heads for heatmap and object-centric 3D parameter map prediction (Section III-C) and joint optimization for shape, pose, and
sizes for each object’s spatial center (Section III-D).

for effective reasoning at the per-pixel level. We train the
network to predict ground-truth heatmaps (Y ) by minimizing

MSE loss, Linst =
∑
xyg

(
Ŷ − Y

)2
. The Gaussian ker-

nel Yxyg = exp
(
− (x−cx)2+(y−cy)2

2σ2

)
of each center in the

ground truth heat-maps (Y ) is relative to the scale-based
standard deviation σ of each object, following [3, 28, 30, 53].

B. Shape, Pose, and Size Codes
To jointly optimize the object-based heatmaps, 3D shapes

and 6D pose and sizes, the complete object-based 3D in-
formation (i.e. Pointclouds P , 6D pose P̃ and scale ŝ) are
represented as as object-centric 3D parameter maps (O3d

∈ Rho×wo×141). O3d constitutes two parts, shape latent-
code and 6D Pose and scales. The pointcloud representation
for each object is stored in the object-centric 3D parameter
maps as a latent-shape code (zi ∈ R128). The ground-truth
Pose (P̃) represented by a 3 × 3 rotation R̂ ∈ SO(3) and
translation t̂ ∈ R3 coupled with 1D scale ŝ are vectorized
to store in the O3d as 13-D vectors. To learn a shape-
code (zi) for each object, we design an auto-encoder trained
on all 3D shapes from a set of CAD models. Our auto-
encoder is representation-invariant and can work with any
shape representation. Specifically, we design an encoder-
decoder network (Figure 3), where we utilize a Point-Net en-
coder (gφ) similar to [54]. The decoder network (dθ), which
comprises three fully-connected layers, takes the encoded
low-dimensional feature vector i.e. the latent shape-code (zi)
and reconstructs the input pointcloud P̂i = dθ(gφ(Pi)).
To train the auto-encoder, we sample 2048 points from
the ShapeNet [55] CAD model repository and use them as
ground-truth shapes. Furthermore, we unit-canonicalize the
input pointclouds by applying a scaling transform to each
shape such that the shape is centered at origin and unit
normalized. We optimize the encoder and decoder networks
jointly using the reconstruction-error, denoted by Chamfer-
distance, as shown below:

Dcd(Pi, P̂i) =
1

|Pi|
∑
x∈Pi

min
y∈P̂i

‖x− y‖22 +
1

|P̂i|

∑
y∈P̂i

min
x∈Pi

‖x− y‖22

Sample decoder outputs and t-SNE embeddings [56] for
the latent shape-code (zi) are shown in Figure 3 and our
complete 3D reconstructions on novel real-world object
instances are visualizes in Figure 4 as pointclouds, meshes
and textures. Our shape-code space provides a compact way
to encode 3D shape information from a large number of CAD
models. As shown by the t-SNE embeddings (Figure 3), our
shape-code space finds a distinctive 3D space for semanti-
cally similar objects and provides an effective way to scale
shape prediction to a large number (i.e. 50+) of categories.

C. CenterSnap Model

Given object center heatmaps (Section III-A), the goal
of the CenterSnap model is to infer object-centric 3D pa-
rameter maps which define each object instance completely
in the 3D-space. The CenterSnap model comprises a task-
specific head similar to the heatmap head (Section III-A)
with the input being pyramid of features (frd). During
training, the task-specific head outputs a 3D parameter
map Ô3d ∈ R

ho
R ×

wo
R ×141 where each pixel in the down-

sampled map (ho

R ×
wo

R ) contains the complete object-centric
3D information (i.e. shape-code zi, 6D pose P̃ and scale
ŝ) as 141-D vectors, where R = 8. Note that, during
training, we obtain the ground-truth shape-codes from the
pre-trained point-encoder ẑi = gφ(Pi). For Pose (P̃), our
choice of rotation representation R̂ ∈ SO(3) is determined
by stability during training [57]. Furthermore, we project
the predicted 3 × 3 rotation R̂ into SO(3), as follows:
SVD+(R̂) = UΣ′V T , where Σ′ = diag

(
1, 1,det

(
UV T

))
To handle ambiguities caused by rotational symmetries, we
also employ a rotation mapping function defined by [58]. The
mapping function, used only for symmetric objects (bottle,
bowl, and can), maps ambiguous ground-truth rotations to a
single canonical rotation by normalizing the pose rotation.
During training, we jointly optimize the predicted object-
centric 3D parameter map (Ô3d) using a masked Huber
loss (Eq. 1), where the Huber loss is enforced only where
the Gaussian heatmaps (Y ) have score greater than 0.3 to
prevent ambiguity in areas where no objects exist. Similar
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to the Gaussian distribution of heatmaps in Section III-A,
the ground-truth Object 3D-maps (O3d) are calculated using
the scale-based Gaussian kernel Yxyg of each object.

L3D(O3d, Ô3d) =

{
1
2
(O3d − Ô3d)

2 if |(O3d − Ô3d)| < δ

δ
(
(O3d − Ô3d)− 1

2
δ
)

otherwise
(1)

Auxiliary Depth-Loss: We additionally integrate an aux-
iliary depth reconstruction loss LD for effective sim2real
transfer, where LD(D, D̂) minimizes the Huber loss (Eq. 1)
between target depth (D) and the predicted depth (D̂) from
the output of task-specific head, similar to the one used in
Section III-A. The depth auxiliary loss (further investigated
empirically using ablation study in Section IV) forces the net-
work to learn geometric features by reconstructing artifact-
free depth. Since real depth sensors contain artifacts, we
enforce this loss by pre-processing the input synthetic depth
images to contain noise and random eclipse dropouts [3].

D. Joint Shape, Pose, and Size Optimization

We jointly optimize for detection, reconstruction and local-
ization. Specifically, we minimize a combination of heatmap
instance detection, object-centric 3D map prediction and
auxiliary depth losses as L = λlLinst + λO3d

LO3d
+ λdLD

where λ is a weighting co-efficient with values determined
empirically as 100, 1.0 and 1.0 respectively.

Inference: During inference, we perform peak detection
as in [28] on the heatmap output (Ŷ ) to get detected
centerpoints for each object, ci in R2 = (xi, yi) (as shown in
Figure 2 middle). These centerpoints are local maximum in
heatmap output (Ŷ ). We perform non-maximum suppression
on the detected heatmap maximas using a 3×3 max-pooling,
following [28]. Lastly, we directly sample the object-centric
3D parameter map of each object from Ô3d at the predicted
center location (ci) via Ô3d(xi, yi). We perform inference on
the extracted latent-codes using point-decoder to reconstruct
pointclouds (P̂i = dθ(z

p
i )). Finally, we extract 3× 3 rotation

R̂pi , 3D translation vector t̂pi and 1D scales ŝpi from Ô3d to
get transformed points in the 3D space P̂ reconi = [R̂pi |t̂

p
i ] ∗

ŝpi ∗ P̂i (as shown in Figure 2 right-bottom).
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Fig. 4: Sim2Real Reconstruction: Single-shot sim2real shape re-
constructions on NOCS showing pointclouds, meshes and textures.

IV. EXPERIMENTS & RESULTS

In this section, we aim to answer the following questions:
1) How well does CenterSnap reconstruct multiple objects
from a single-view RGB-D observation? 2) Does CenterSnap
perform fast pose-estimation in real-time for real-world ap-
plications? 3) How well does CenterSnap perform in terms
of 6D pose and size estimation?

Datasets: We utilize the NOCS [22] dataset to evaluate
both shape reconstruction and categorical 6D pose and size
estimation. We use the CAMERA dataset for training which
contains 300K synthetic images, where 25K are held out for
evaluation. Our training set comprises 1085 object instances
from 6 different categories - bottle, bowl, camera, can, laptop
and mug whereas the evaluation set contains 184 different
instances. The REAL dataset contains 4300 images from 7
different scenes for training, and 2750 real-world images
from 6 scenes for evaluation. Further, we evaluate multi-
object reconstruction and completion using Multi-Object
ShapeNet Dataset (MOS). We generate this dataset using the
SimNet [3] pipeline. Our datasets contains 640px × 480px
renderings of multiple (3-10) ShapeNet objects [55] in a
table-top scene. Following [3], we randomize over lighting
and textures using OpenGL shaders with PyRender [61].
Following [38], we utilize 30974 models from 8 different
categories for training (i.e. MOS-train): airplane, cabinet,
car, chair, lamp, sofa, table. We use the held out set (MOS-
test) of 150 models for testing from a novel set of categories
- bed, bench, bookshelf and bus.
Evaluation Metrics: Following [22], we independently eval-
uate the performance of 3D object detection and 6D pose
estimation using the following key metrics: 1) Average-
precision for various IOU-overlap thresholds (IOU25 and
IOU50). 2) Average precision of object instances for which
the error is less than n◦ for rotation and m cm for translation
(5°5 cm, 5°10 cm and 10°10 cm). For shape reconstruction
we use Chamfer distance (CD) following [38].
Implementation Details: CenterSnap is trained on the
CAMERA training dataset with fine-tuning on the REAL
training set. We use a batch-size of 32 and trained the
network for 40 epochs with early-stopping based on the
performance of the model on the held out validation set.
We found data-augmentation (i.e. color-jitter) on the real-



TABLE I: Quantitative comparison of 3D object detection and 6D pose estimation on NOCS [22]: Comparison with strong baselines.
Best results are highlighted in bold. ∗ denotes the method does not evaluate size and scale hence does not report IOU metric. For a fair
comparison with other approaches, we report the per-class metrics using nocs-level class predictions. Note that the comparison results are
either fair re-evaluations from the author’s provided best checkpoints or reported from the original paper.

CAMERA25 REAL275

Method IOU25 IOU50 5°5 cm 5°10 cm 10°5 cm 10°10 cm IOU25 IOU50 5°5 cm 5°10 cm 10°5 cm 10°10 cm

1 NOCS [22] 91.1 83.9 40.9 38.6 64.6 65.1 84.8 78.0 10.0 9.8 25.2 25.8
2 Synthesis∗ [59] - - - - - - - - 0.9 1.4 2.4 5.5
3 Metric Scale [60] 93.8 90.7 20.2 28.2 55.4 58.9 81.6 68.1 5.3 5.5 24.7 26.5
4 ShapePrior [21] 81.6 72.4 59.0 59.6 81.0 81.3 81.2 77.3 21.4 21.4 54.1 54.1
5 CASS [44] - - - - - - 84.2 77.7 23.5 23.8 58.0 58.3

6 CenterSnap (Ours) 93.2 92.3 63.0 69.5 79.5 87.9 83.5 80.2 27.2 29.2 58.8 64.4
7 CenterSnap-R (Ours) 93.2 92.5 66.2 71.7 81.3 87.9 83.5 80.2 29.1 31.6 64.3 70.9

TABLE II: Quantitative comparison of 3D shape reconstruction on NOCS [22]: Evaluated with CD metric (10−2). Lower is better.

CAMERA25 REAL275

Method Bottle Bowl Camera Can Laptop Mug Mean Bottle Bowl Camera Can Laptop Mug Mean

1 Reconstruction [21] 0.18 0.16 0.40 0.097 0.20 0.14 0.20 0.34 0.12 0.89 0.15 0.29 0.10 0.32
2 ShapePrior [21] 0.34 0.22 0.90 0.22 0.33 0.21 0.37 0.50 0.12 0.99 0.24 0.71 0.097 0.44

3 CenterSnap (Ours) 0.11 0.10 0.29 0.13 0.07 0.12 0.14 0.13 0.10 0.43 0.09 0.07 0.06 0.15

training set to be helpful for stability and training perfor-
mance. The auto-encoder network is comprised of a Point-
Net encoder [54] and three-layered fully-connected decoder
each with output dimension of 512, 1024 and 1024× 3. The
auto-encoder is frozen after initially training on CAMERA
CAD models for 50 epochs. We use Pytorch [62] for all
our models and training pipeline implementation. For shape-
completion experiments, we train only on MOS-train with
testing on MOS-test.

NOCS Baselines: We compare seven model variants to
show effectiveness of our method: (1) NOCS [22]: Extends
Mask-RCNN architecture to predict NOCS map and uses
similarity transform with depth to predict pose and size.
Our results are compared against the best pose-estimation
configuration in NOCS (i.e. 32-bin classification) (2) Shape
Prior [21]: Infers 2D bounding-box for each object and
predicts a shape-deformation. (3) CASS [44]: Employs a 2-
stage approach to first detect 2D bounding-boxes and second
regress the pose and size. (4) Metric-Scale [60]: Extends
NOCS to predict object center and metric shape separately
(5) CenterSnap: Our single-shot approach with direct pose
and shape regression. (6) CenterSnap-R: Our model with
a standard point-to-plane iterative pose refinement [63, 64]
between the projected canonical pointclouds in the 3D space
and the depth-map. Note that we do not include comparisons

Airplane Cabinet Car Chair Lamp Sofa Table Mean MOS-test
0.0000
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0.0075
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C
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Fig. 5: Shape Completion: Chamfer distance (CD reported on y-
axis) evaluation on Multi-object ShapeNet dataset.

to 6D pose tracking baselines such as [65, 66] which are not
detection-based (i.e. do not report mAP metrics) and require
pose initialization.
Comparison with NOCS baselines: The results of our

proposed CenterSnap method are reported in Table I and
Figure 6. Our proposed approach consistently outperforms
all the baseline methods on both 3D object detection and
6D pose estimation. Among our variants, CenterSnap-R
achieves the best performance. Our method (i.e. CenterSnap)
is able to outperform strong baselines (#1 - #5 in Table I)
even without iterative refinement. Specifically, CenterSnap-R
method shows superior performance on the REAL test-set by
achieving a mAP of 80.2% for 3D IOU at 0.5, 31.6% for 6D
pose at 5°10 cm and 70.9% for 6D pose at 10°10 cm, hence
demonstrating an absolute improvement of 2.7%, 10.8% and
12.6% over the best-performing baseline on the Real dataset.
Our method also achieves superior test-time performance on
CAMERA evaluation never seen during training. We achieve
a mAP of 92.5% for 3D IOU at 0.5, 71.7% for 6D pose at
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Precision on NOCS for various IOU and pose error thresholds.
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Fig. 7: Qualitative Results: We visualize the real-world 3D shape
prediction and 6D pose and size estimation of our method (Center-
Snap) from different viewpoints (green and red backgrounds).

5°10 cm and 87.9% for 6D pose at 10°10 cm, demonstrating
an absolute improvement of 1.8%, 12.1% and 6.6% over the
best-performing baseline.
NOCS Reconstruction: To quantitatively analyze the recon-
struction accuracy, we measure the Chamfer distance (CD) of
our reconstructed pointclouds with ground-truth CAD model
in NOCS. Our results are reported in Table II. Our results
show consistently lower CD metrics for all class categories
which shows superior reconstruction performance on novel
object instances. We report a lower mean Chamfer distance
of 0.14 on CAMERA25 and 0.15 on REAL275 compared to
0.20 and 0.32 reported by the competitive baseline [21].
Comparison with Shape Completion Baselines: We fur-
ther test our network’s ability to reconstruct complete 3D
shapes by comparing against depth-based shape-completion
baselines i.e. PCN [38] and Folding-Net [67]. The results of
our CenterSnap method are reported in Figure 5. Our con-
sistently lower Chamfer distance (CD) compared to strong
shape-completion baselines show our network’s ability to
reconstruct complete 3D shapes from partial 3D information
such as depth-maps. We report a lower mean CD of 0.089
on test-instances from categories not included during training
vs 0.0129 for PCN and 0.0124 for Folding-Net respectively.
Inference time: Given RGB-D images of size 640 × 480,
our method performs fast (real-time) joint reconstruction
and pose and size estimation. We achieve an interactive
rate of around 40 FPS for CenterSnap on a desktop with
an Intel Xeon W-10855M@2.80GHz CPU and NVIDIA
Quadro RTX 5000 GPU, which is fast enough for real-
time applications. Specifically, our networks takes 22 ms and
reconstruction takes around 3 ms. In comparison, on the same
machine, competitive multi-stage baselines [21, 22] achieve
an interactive rate of 4 FPS for pose estimation.
Ablation Study: An empirical study to validate the sig-
nificance of different design choices and modalities in our
proposed CenterSnap model was carried out. Our results are
summarized in Table III. We investigate the performance im-

TABLE III: Ablation Study: Study of the Proposed CenterSnap
method on NOCS Real-test set to investigate the impact of different
components i.e. Input, Shape, Training Regime (TR) and Depth-
Auxiliary loss (D-Aux) on performance. C indicates Camera-train,
R indicates Real-train and RF indicates Real-train with finetuning.
3D shape reconstruction evaluated with CD (10−2). ∗ denotes the
method does not evaluate size and scale and so has no IOU metric.

Metrics

3D Shape 6D Pose

# Input Shape TR D-Aux CD ↓ IOU25 ↑ IOU50 ↑ 5°10 cm ↑ 10°10 cm ↑

1 RGB-D X C X 0.19 28.4 27.0 14.2 48.2
2 RGB-D X C+R X 0.19 41.5 40.1 27.1 58.2
3 RGB-D∗ C+RF X — — — 13.8 50.2
4 RGB X C+RF X 0.20 63.7 31.5 8.30 30.1
5 Depth X C+RF X 0.15 74.2 66.7 30.2 63.2
6 RGB-D X C+RF 0.17 82.3 78.3 30.8 68.3
7 RGB-D X C+RF X 0.15 83.5 80.2 31.6 70.9

pact of Input-modality (i.e. RGB, Depth or RGB-D), Shape,
Training-regime and Depth-Auxiliary loss on the held out
Real-275 set. Our ablations results show that our network
with just mono-RGB sensor performs the worst (31.5%
IOU50 and 30.1% 6D pose at 10°10 cm) likely because 2D-
3D is an ill-posed problem and the task is 3D in nature.
The networks with Depth-only (66.7% IOU50 and 63.2% 6D
pose at 10°10 cm) and RGB-D (80.2% IOU50 and 70.9%
6D pose at 10°10 cm) perform much better. Our model
without shape prediction under-performs the model with
shape (#3 vs #8 in Table III), indicating shape understanding
is needed to enable robust 6D pose estimation performance.
The result without depth auxiliary loss (0.17 CD, 78.3%
IOU50 and 68.3% 6D pose at 10°10 cm) indicates that adding
a depth prediction task improved the performance of our
model (1.9% absolute for IOU50 and 2.6% absolute for 6D
pose at 10°10 cm) on real-world novel object instances. Our
model trained on NOCS CAMERA-train with fine-tuning on
Real-train (80.2% IOU50 and 70.9% 6D pose at 10°10 cm)
outperforms all other training-regime ablations such as train-
ing only on CAMERA-train or combined CAMERA and
REAL train-sets (#1 and- #2 in Table III) which indicates
that sequential learning in this case leads to more robust
sim2real transfer.
Qualitative Results: We qualitatively analyze the perfor-
mance of CenterSnap on NOCS Real-275 test-set never
seen during training. As shown in Figure 7, our method
performs accurate 6D pose estimation and joint shape recon-
struction on 5 different real-world scenes containing novel
object instances. Our method also reconstructs complete 3D
shapes (visualized with two different camera viewpoints)
with accurate aspect ratios and fine-grained geometric details
such as mug-handle and can-head.

V. CONCLUSION

Despite recent progress, existing categorical 6D pose and
size estimation approaches suffer from high-computational
cost and low performance. In this work, we propose an
anchor-free and single-shot approach for holistic object-
centric 3D scene-understanding from a single-view RGB-
D. Our approach runs in real-time (40 FPS) and performs
accurate categorical pose and size estimation, achieving
significant improvements against strong baselines on the
NOCS REAL275 benchmark on novel object instances.
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