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Abstract— In robotic actuation a well identified and modeled
friction behavior of the actuator components helps to signifi-
cantly improve friction compensation, output torque estimation,
and dynamic simulations. The friction of two components,
i.e. a brush-less DC motor and a harmonic drive gear (HD)
is investigated in order to build an accurate dynamic model
of the main actuator of the arms of the humanoid David
namely the DLR Floating Spring Joint (FSJ). A dedicated
testbed is built to precisely identify input and output torques,
temperatures, positions, and elasticities of the investigated
components at a controlled environment temperature. Extensive
test series are performed in the full velocity operating range in a
temperature interval from 24 to 50 °C. The nonlinear influences
of velocity and temperature are identified to be dominant
effects. It is proposed how to include these nonlinear velocity
and temperature dependencies into a static and a dynamic
friction model, e.g. LuGre. Dynamic models of the motor and
HD are built with the proposed method and experimentally
evaluated. The new models are compared to friction models
with linear dependencies and show a significant improvement
of correspondence with reality.

I. INTRODUCTION

An accurate friction model can improve robotic systems
in many ways. It is commonly used for energy efficiency
calculation [1], a more reliable dynamic simulation, or to
improve the control performance of the overall system. The
latter is typically introduced with an additional term in the
feed-forward part of the control structure to eliminate the
unwanted frictional effects by model based friction compen-
sation [2]. This model is used widely in different research
areas such as fault detection and condition monitoring [3],
[4]. Furthermore, it can improve the quality of an output
torque estimation.

The presented work aims to dynamically model the DLR
Floating Spring Joint (FSJ) which is the main arm actuator
unit of the German Aerospace Centers (DLR’s) Humanoid
robot David, see Fig [I] In order to have a complete under-
standing and an efficient control over the FSJ, an accurate dy-
namical model is required. The model has to be suitable for
a discrete time step real-time model, that is implemented in
Matlab/Simulink. In the development a close correspondence
with the real system rivals with reasonable computational
costs.

All friction contacts in our system are lubricated friction
contacts in gears and roller bearings, which are also the
most common friction contacts in robotic actuation. As a
consequence the focus of this work is on mechanical losses
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Fig. 1: Dynamic friction models are developed to model
the FSJ, which is the main actuator unit of the arms of
DLR David.

that are mostly caused by the friction in the main drive
train, i.e. the main motor and the main harmonic drive gear
(HD). The HD is considered as an essential element in the
FSJ and is also extensively employed in most other robotic
applications with space and weight constraints.

Nevertheless, the HD exhibits nonlinear behavior and fric-
tional dissipation limiting its performance. As reported in the
manufacturers catalogs [5] typical friction losses are greater
than twenty percent from the transmitted power. Moreover,
the nonlinearity of the viscous behavior of the friction is one
of the most important attributes when modeling the losses
of the robot joints with a harmonic drive gear. Furthermore,
it showed an improvement in the model integrity when the
nonlinear frictional losses were added [6].

Introducing a Coulomb friction model for the the zero
crossing causes inaccuracies, oscillations and model insta-
bility with discrete time step solvers, caused by its jump
discontinuity. Continuous and varying time step solvers,
which could handle discontinuous behavior better, can not
be used for real-time robot control. For sake of simplicity
most of the current dynamic robotic actuator models consider
modeling the friction with linear viscous part, which neither
matches roller bearing friction nor harmonic drive gear
friction closely. Roller bearing friction was investigated in
[7]1, [8] and found to have a strongly nonlinear viscous
friction dependency. They modeled the viscous part with an
exponential function and approximated it with a first and



third order polynomial expression.

The harmonic drive gear is already extensively studied
and various effects identified. Seyfferth et al. as well as
Tuttle et al. observed and modeled nonlinear transmission
friction, compliance, and kinematic error [9], [10]. Seyfferth
and Tuttle modeled friction as a second and third order poly-
nomial velocity dependency, respectively. Both used a static
friction model which will cause serious stability problems
when integrated into a fixed step real-time model. Taghirad
et al. proposed a transmission model of harmonic drive gear
with compliance, position hysteresis, and a Dahl model as
a dynamic friction model [11]. However, the friction was
identified for only two velocities and the rather old Dahl
model has some serious drawbacks, including drift at low
velocities, compared to more recent dynamic friction models,
e.g. Lund Grenoble model (LuGre) [12], [13]. None of the
aforementioned studies on the HD investigated temperature
effects. Only Bittencourt et al. [14] investigated temperature
dependency in a lumped robot joint of an ABB robot.

In this work we take two typical components of a robotic
actuator, i.e. a motor and a HD, and show the effect of
nonlinear viscous friction and the nonlinear temperature
dependency. An extension to a static and a state of the
art dynamic friction model is proposed. Typical humanoid
robotic movements with resting, slow, and fast movements
should be well modeled. As a result we aim at a good
coverage of the zero velocity crossing behavior, at slow
velocities, and near maximum velocity. Furthermore, the
effect of varying temperature is investigated and will be
integrated in the same friction model extension. Finally, we
want to show the improved behavior compared to commonly
used implementations.

The paper is organized as follows. Section [II| gives an
overview on the FSJ and the underlying standard methods
for this work. Section [[II] contains the proposed method. The
testbed setup is described in Section [IV]| and the results are
presented in Section The conclusions can be found in
Section [Vl

II. BACKGROUND
A. Dynamic Model of the DLR FSJ
Building an accurate dynamic model of a robotic actu-
ator includes an investigation of the friction. Fig. [2| shows
simplified schematic representation for the inertia of the sys-
tem with the associated velocities and the different friction
contacts, which are illustrated in Table [[] (see also [1]).
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Fig. 2: The FSJ drive train with numbered friction contacts.
Inertia J,, are lumped and depicted with their velocities wy,.

TABLE I: Contact areas with friction in the FSJ

Number  Symbol  Description of friction contact area
1 Trl roller bearing of rotor
2 Tr2  roller bearing of wave generator
3 7r3  roller bearing of flex spline
4 Tra  tooth meshing of HD gear
5 7r5  bearing and roller friction of cam roller
6 Tr6  linear guide of spring mechanism
7 Tr7  roller bearing of output
8 Trg  friction contacts of stiffness adjuster unit
9 7r9  tooth meshing of hypoid gear

In order to model each friction contact, a detailed
component-wise experimental identification would be neces-
sary. This would lead to many complex test-beds with mul-
tiple test runs. The identification process can be simplified
by grouping the friction contacts with the same movements,
load, and temperature. In this case the friction of the different
friction contacts can be combined as follows:

Tr,Main = Tr1 + T2 + Te3 + Tra

Tr,Spring = Tr5 + Tr6

)
Tr,Out = Tr7
Tr,Adj — Tx8 + Tro.
With combined friction torques, the spring torque Tspring,
and the HD gear ratio 7;, the dynamic motion equations can
be expressed for the main drive train as

9 ..
(Jl 11° + J2) HJ + Tr,Main + Tr,Spring + TSpring = Tm
N————’

Jmain (2)
J6 §; + Tr,0ut — Tr,Spring — TSpring = Tj -
The motion equation of the stiffness adjuster unit is
(J3(i2i3)? + Jyiz?® + J5) Gadj+Tr.Adj = —TSpring — Tal1 92 ,
Jadj
3)

with the stiffness adjuster motor torque 7, and the transmis-
sion ratios 49 and i3 of the two staged gear.

B. Cross-correlation Method

The cross-correlation method is used as a tool for elim-
inating the non-relevant parts of the signal to identify the
motor inertia J; separately. Furthermore, for extracting the
part that corresponds to the inertial torque without friction
effects, the correlation between the acceleration 6 (t) and the
motor current 4y, is provided for the interval ¢ € [0,7)] as

n n n
/ ke im(t) 6(t) dt = / 7 (0(t) 6(t) dt + J, / 0%(t) dt .

0 0 0 @

The above equation describes the principle of inertia
identification method that has been used in [15]. The left
hand side term of the equation represents the correlation
between the motor current and the acceleration. With the
Newton-Euler formalism we get the right hand side, which
includes the correlation between given friction torque and the
acceleration in ¢ € [0,7n]. We can eliminate the influence of
the friction torque by obtaining the angular velocity equal



to zero at the beginning and the end of the experiment
6(0) = 6(n) = 0, such that

no. i 6m .. o .
/ n(0) 2 at :/ (6) b :/ n(0)d6 = 0.
0 dt 6(0) 0) )

In Equations @) and (3) the common component of the
current and acceleration is emphasized, while the uncommon
component is suppressed. With the friction torque tending to
zero, Equation (@) can be rewritten as:

Jo ke i (t) 6(2) dt
[rexydt

Ji = (6)

C. Static Friction Model

Many empirical and physically-motivated friction models
have been proposed with different grades of detail in order
to describe the nonlinearity of the interaction between two
surfaces. Usually they are referred to as a classical, or static
friction model. They represent the basic friction phenomena
in the sliding regime. The typical description of the friction
torque is a combination of certain aspects of the friction
force, such as static friction, Coulomb friction, viscous fric-
tion and Stribeck effect [16]. For the rotating parts of the FSJ,
the static friction models can be composed differently among
the previously mentioned friction phenomena. A common
form of the static friction model is expressed as

7es(0) = g(6) + s(6)

g(G) = szgn(@) (FC + (Fy — Fc)e_|é/”slés) , ™

but generally static friction can be modeled as an arbitrary
function. The function 3(9) expresses the velocity strength-
ening that is well known as viscous friction, and typically it is
linear proportional to the relative velocity as 5(0) = f,0 with
linear viscous coefficient f,. The function g(é) contributes
as the velocity weakening of the friction torque. The function
g(0) is alternatively called the Stribeck curve because it
captures the Stribeck effect, where F; is Coulomb friction,
Fy is static or stiction friction, vs is Stribeck velocity, and
ds is the exponent parameter of the Stribeck nonlinearity.
In the Gaussian parametrization as used in [16] and [17]
the exponent parameter is 6 = 2. Parameters of the total
friction torque 7, can be identified easily using the static

map between the friction torque and the relative velocity.

D. Dynamic Friction Model (LuGre)

Particularly while crossing zero velocity a smooth and bet-
ter description of the friction than in the static friction model
is important. Following this demand, the static friction model
can be extended to a dynamic friction model. The LuGre
model was selected among the generalized empirical friction
models as it is widely used in the robotics community and
promises accurate results. The LuGre model exhibits a good
representation of the friction phenomena referring to the
experimental observations. It can capture phenomena such
as pre-sliding, varying break-away force, stick-slip, and the
friction lag. The model uses the bristles concept to reproduce

the spring like behavior within a small displacement. It can
be described as the dynamic friction torque

Tr,d = 00% + 0'12:“ + 8(9) y
161 8)

2=0—09p——z2
Cg(0)”

where z is the internal friction state and can be interpreted as
the average deflection of the micro bristles, og is the bristle
stiffness, and o is the micro-damping coefficient. The steady
state friction torque is given by Equation (7). The structure
of LuGre model gives the ability to model arbitrary steady
state friction behavior in the sliding regime. In fact we use
this property to use a nonlinear function to describe the gross
sliding regime [18]. The identification of the parameters of
LuGre model are carried out in two different regimes, the
pre-sliding and the gross sliding phases.

III. PROPOSED METHODS
A. Friction Model Refinement

The proposed refinement for the friction models addresses
the gross sliding regime. Both effects, the nonlinear viscous
friction as well as the nonlinear temperature dependency
mainly affect the gross sliding regime. As a result, additional
parameters need to be experimentally identified only for the
gross sliding regime. Furthermore, it makes it easy to inte-
grate them into state of the art dynamic friction models, such
as the LuGre or Generalized-Maxwell-Slip [19]. However,
we want to focus in this publication on the LuGre model.
As mentioned before, we modify s(#) of Equation (7) with
an according nonlinear term.

B. Nonlinear Viscous Friction

The choice of an expression that accurately describes the
viscous part of a static friction model could be arbitrarily
formulated depending on the system behavior, e.g. [16].

We investigate the following cases for the velocity
strengthening function to improve the representation of the
gross sliding (elasto-hydrodynamic lubrication) regime:

Case 1 : Linear velocity strengthening:
s(0) = £.0, ©)

with the relative velocity coefficient f,.
Case 2 : An exponential shaping factor d, in the nonlinearity
of viscous part of the static model:

s(0) = fy sign(0) 0] . (10)

Case 3 : A third order polynomial in order to cover a wider
operating range and map nonlinearity:

$(0) = fo10 + fua sign(0) 6% + fo360° . (11)

The three cases are depicted in Fig. 3]

Lubricated friction is mainly dependent on the amount of
lubricant, its type, and its viscosity, which is in most cases
strongly dependent on the temperature.
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Fig. 3: The representation for the velocity strengthening
function s(#). In case 1 the viscous part of the friction has
linear relationship with the relative velocity while in case 2

and 3 its approximated by nonlinear functions.

C. Nonlinear Temperature Dependency

Temperature affects the behavior of the friction due to
the change in the contact point properties as well as the
lubricant viscosity. The data sheets of the manufacturer of
the harmonic drive gear show that the efficiency is strongly
temperature dependent [5]. This correlates with the experi-
mental data of this work, as shown in Sec.

As a consequence, the friction modeling of the FSJ ac-
cording to Section [[II-B] is only valid at fixed temperature
values. In principal the steady state characteristics of the
friction is fully described by Equation (7)) assuming 3(9) can
be any function, e.g. one of cases 1 to 3. This expression can
be used to represent the friction at different fixed values of
temperature. For this reason an additional formulation with
extra parameters is needed in order to map the temperature
effect. However, there is no standard way of integration but
the temperature effect has to be observed experimentally and
possibly expressed by polynomial approximation. In case
of the HD it is more difficult to model the temperature
nonlinearity as it has different levels of nonlinearity over
the velocity range. Therefore, a configurable general approx-
imation method like neural network could be used as an
alternative to model different levels of static nonlinearity.
The total friction torque as a function of velocity and
temperature 1" can be written as a general function

7—r,s,T(é’ T) = f(97 T) + g(a) :

This function can be expressed by the neural network to
change the nominal behavior of the viscous part of the static

friction model Tr,s(ﬁ) within the temperature range, as it will
be seen in Section [V-C|

(12)

IV. TEST SETUP

The mechanical design of the test-bed setup was the
most important aspect to precisely identify the main axes
joint behavior. Special care has been taken to ensure that

Main Motor Coupling Mechanical

Coupling ‘

Motor
Encoder

Torque Sensor

Fig. 5: Special configuration of the experimental setup to
identify the motor constant by using a mechanical blocking
to have constrained movement.

the system would be valid to measure torques, positions,
elasticities, and temperature in different configurations, in
order to measure the internal states of the joint actuators. A
photo of the drive train experimental setup and its schematic
are illustrated in Fig. f] The main actuator of the experiment
setup is a RoboDrive ILM85 servo motor, which is a perma-
nent magnet synchronous motor (PMSM) developed at the
Robotics and Mechatronics Center of DLR with maximum
rated torque of 1.8 Nm. An Elmo Whistle digital servo
drive that supports up to 20 A of continuous current and
1.6 kW of continuous power, is used to drive the motor.
It has been configured and tuned to work in current mode
with EtherCAT communication that is connected directly
to the real time machine. Ideally the servo drive can be
considered as a current source when configured in current or
torque mode and the motor supply voltage is 48 VDC. The
motor is connected rigidly with an incremental encoder from
Heidenhain with resolution of 2048 pulses per revolution.
The harmonic drive gear in this setup is a CSD 25 of
Harmonic Drive AG with gear ratio 1:80 and rated torque
of 75Nm, which is also the main gear of the FSJ. The
efficiency of this type of harmonic drive gear is a function of
ambient temperature, speed, and lubrication conditions [5].
A metal bellows coupling is used for the connection between
the motor output shaft and a Lorenz Messtechnik GmbH DR-
2643 torque sensor with range of -5 Nm. In the low velocity
side another DR-2643 torque sensor is connected with range
of £200 Nm, which is attached rigidly to an absolute high
resolution encoder 25 bit, followed by metal bellow safety
coupling to avoid any overload at the output of the harmonic
drive gear, and a load inertia, which is used to simulate the
robot arm in free-motion. The circular spline of the harmonic
drive is fixed to the ground and the output is carried by the
flexspline, while the wave generator is the input. This setup
corresponds to the FSJ configuration, but please note that
for sake of simplicity an ILM85 motor is used instead of the
smaller ILMS50 of the FSJ. The ILMS8S5 is a bigger version
of the main motor of the FSJ, i.e. ILM50, and is the motor
of the elastic robot C-Runner [20]. For the final model the
same investigations will be performed on the ILM50 motors
of David. Considering the motor is free running then the
fundamental equation of motion for the DC motor can be
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Fig. 4: FSJ principal axes drive train test-bed setup (bottom) and the corresponding schematic diagram (top). The mechanical
construction of the test-bed allows to build multi-configuration setups, such as the example depicted in Fig. El

written as
Jlé 4+ Ttm = U, (13)
where u is the input torque that can be calculated as
u = kyim - (14

Assuming the motor current is linearly dependent on the
output torque, a special modification as shown in Fig. [3] to
identify the motor constant k; has been made. A mechanical
block and the intermediate torque sensor with nominal torque
of £5Nm are used to measure the actual motor torque.

In order to be able to investigate the temperature depen-
dencies on the friction behavior, the temperature has to be
controlled. A test-bed cover is used to isolate the surrounding
ambient temperature. The ambient temperature of the drive
train within the test-bed cover was regulated by a simple
standalone on-off controller. Furthermore, additional sensors
of type Adafruit MCP9808 are placed on the housing surface
of the harmonic drive gear and the motor in order to acquire
the temperature.

V. RESULTS
A. Motor Constant and Inertia Identification

An excitation signal with increasing and decreasing si-
nusoidal was used to identify the torque constant of the
main motor of the test-bed in configuration of Fig. |5| The
signal was designed to be symmetric and contain different
amplitudes. Depicted in Fig. [f]is the actual torque signal that
was measured by torque sensor and the motor torque mea-
sured by the motor current. Assuming that the measurement
data has a Gaussian distribution with zero mean value, the
standard least square method is applied to identify the torque
constant k, = 0.1223Nm/A. The torque constant claimed
by manufacturer is 0.13 Nm/A.
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Fig. 6: Actual torque and the motor torque using increas-
ing and decreasing sinusoidal reference signal (a) and the
corresponding error plot (b).

The motor inertia is identified with the cross-correlation
method, see Sec. Experimental data is collected with the
maximum possible acceleration of ~ 29000 rad/s?, which
excites the maximum possible inertial torque. This leads to a
better estimation for the inertia parameter. The velocity is set
equal to zero at the start and the end. Using the measurement
of the motor current and acceleration, the calculation results
in J; = 7.7091910° kgm?. This is slightly less than the
motor inertia calculated by CAD, which is 8.0 107 kgm2.

B. Nonlinear Viscous Friction

For sake of brevity, the evaluation of nonlinear viscous
friction will be shown on the example of the ILM85 motor
in this section and the nonlinear temperature dependency on
the example of the harmonic drive gear in Sec. [V-C



In order to identify the velocity dependency with ded-
icated variables, it is important to separate the effect in
the measurement. A warm up phase is executed to achieve
more repeatable conditions and the friction is identified at
30 °C. The experimental data is collected at different constant
velocities. The average of the resultant torque is calculated
and depicted as circles in Fig. [3] At constant velocities the
acceleration is equal to zero, therefore the measured torque
is equal to the friction torque.

The three cases of [[II-B] are applied to the ILM85 motor
model. The identification of the parameters can be formu-
lated as least squares

N

p=min"(h(f,p) ~ me(0)?
=1

15)

where the parameter vector p € R™ depends on the con-
sidered case. The parameters were initialized heuristically
based on the experimental observations and then transferred
to a trust-region reflective algorithm available in optimization
toolbox of Matlab. The parameters were identified in both
directions of motion individually, the average value of each
parameter has been taken as the central estimate and the
direction dependent values assumed to be the parameters
uncertainties as illustrated in Table [ The result of the
predicted friction toque is shown in Fig. [3| for the three
cases. The previously identified parameters including the
torque constant and the motor inertia are integrated into the
dynamical friction model and are used to build a dynamical
model for ILM85 motor. A chirp signal with increasing
frequency and constant amplitude is used as a commanded
torque, the same signal is used as an input signal for the
model. The comparison between the commanded and the
applied torque is presented in Fig. [7(a), where the applied
torque is calculated as the product of measured current and
motor constant according to Equation (I4). Fig. [/(b) shows
the open loop velocity response of the models and the
measured data. Corresponding to the static friction model
presented in Fig. [3] the dependency of friction torque vs.
velocity in the dynamic friction of the four investigated
models is depicted in Fig. [7(c). It can be clearly seen that
the biggest deviations of the viscous friction model are at
low velocities, especially in the zero crossing, where stiction
is not part of this approach. This effect can also be seen in
the velocity behavior depicted in Fig. [§] where the viscous
friction model has big deviations from the real system in the
beginning and in each zero crossing. Clearly visible is the
good prediction of the stiction phases in the LuGre models.
The stiction phases behavior can be further improved with
individual stiction level parameters Fy for both directions.
However, in order to reduce computational effort and model
complexity, a symmetrical approach is used in the presented
models.

All LuGre models perform much better, but the mean
square error (MSE) of case 3 is the lowest, see Table |m
Case 3 has a MSE of 67% relative to the standard case 1 and
only 4% of the linear viscous friction model. Accordingly
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Fig. 7: The evaluation experiment of ILM85 motor using
chirp excitation signal. The commanded and actual torques
are shown in (a). The measured and modeled velocities as a
result of dynamic friction model (LuGre) with standard linear
and modified nonlinear viscous behavior in comparison with
a pure linear viscous friction are illustrated in (b). The
corresponding estimated friction torques are shown in (c).
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Fig. 8: Clipping of the initial period of the velocity function
of Fig. [7(b).

case 3 is selected as a modification to express a velocity
dependent function 5(9) instead of a linear coefficient.

As mentioned before the nonlinear viscous friction identi-
fication for the HD is not shown here, but the MSE evaluation

found case 2 to suit best.

C. Nonlinear Temperature Dependency

The temperature dependency in the FSJ has a big influence
on the friction model, as it relies on the harmonic drive gear
in the principle axis of movement. Please note that in the
following all friction torques are given with respect to the
motor/input side of the harmonic drive gear. It can be seen in



TABLE II: Identified parameters of static curve in case of different s(#) functions for the ILM85 motor

Viscous fv MSE
friction 0.00022 1434
Case 1 F5[1072] F.[1072) Vg fv MSE
3.2540.05  1.96+0.02 22404 0.0001 81
Case 2 Fy[1072 F.[1072) vs fv[1073) 5v[1071) MSE
3254005 1.4540.09 2893402  1.5404 5.5240.41 73
Case 3 Fy[1072] F.[1072) vs fv1[1074]  fy2[1077]  fy3[107°] MSE
3254005 1.7640.005 2734028 25405 92524075 1.7240.15 54

Fig. 0 that the presence of the harmonic drive gear is highly
influenced by the nonlinear static friction characteristics.
Therefore, the commonly used static friction models are
insufficient to accurately describe the friction behavior due
to the nonlinear viscous behavior over the velocity range
as well as the dominant temperature dependency. Dedicated
intensive experimental study has been carried out to properly
collect the data and separate the nonlinearities of both the
temperature and velocity.

Due to the nonlinearity of the friction and the rapid
change with temperature in case of the harmonic drive,
thirty individual experiments have been done for each static
friction curve around fixed temperature values. The data was
collected by imposing different desired constant velocities
and observing the average of the resultant torques and
velocities. Fig. O] shows the experimental data points with
the fitted static friction models expressed in Equation (7)
with case 2 in the positive directions of motion. The density
of measurements was chosen to be higher at low velocities,
because the expected nonlinearity of the viscous friction
was higher in this region. The accepted uncertainty for the
temperature measurements was +0.1°C.

A neural network is an alternative to polynomial ap-
proaches. It is used to approximate the static nonlinearities
of the viscous function s(f) with respect to the thermal
dependency. The total friction torque of [12]is then expressed
as

Tes1(0,T) = f(6,T) + g(d) ,

7=3 =2
f((%T)Zf b+ZM bj—l—z.lﬁi’wij w; ,
1 i=1

(£161%) .

z1 = s(0) = sign(f)
T = T 3
(16)

where ¢ and 7' are the neural network function and the
temperature, respectively. Further, w and b are the network
weight and bias. The neural network function has two inputs
and one hidden layer M with 3 neurons. A linear function
is used for the output layer while a sigmoid function is used
in the neurons of the hidden layer.

We use a combined model to capture the nonlinearities
in both velocity and temperature. The model is identified in
two steps. At first the two parameters of x; (f, and d,) are
identified at seven different temperature values, see Fig. [0
Each static curve is made out of thirty individual experiments

over the velocity range that are indicated by markers. It
can be clearly seen that the temperature has a significant
influence in the static friction behavior. The friction torque
at maximum velocity of 275rad/s decreased to 42% within
a temperature range from 24 to 50 °C. The identified static
models are used to generate about 3000 points per curve to
be used as a training set for the neural network. In the second
step the universal approximation property of the neural
network is used to map the nonlinearity of the temperature
dependency. For the neural network the estimated friction
torque of the overall model is a function of velocity and
temperature.
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Fig. 9: The static friction curves at different values of
operating temperature and velocity. It can be seen easily
that the motor side friction torque has nonlinear decreasing
behavior with increasing temperature.

D. Evaluation of the Combined HD Friction Model

The experimental evaluation of the combined viscous and
temperature dependent model has been made to validate the
friction behavior with the continuous temperature change. An
experiment with constant velocity ~ 100rad/s is executed
for 23 minutes in order to serve as a data basis, which is
independent of the training data of the neural network. The
measured and simulated friction torques are presented in
Fig. [10] together with the corresponding temperature values.
This experiment corresponds to a vertical cross-section in
the plot of the training data depicted in Fig. 0] The re-
sults emphasize the importance of considering the nonlinear
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Fig. 10: The measured and simulated friction torques at mo-
tor side with continuously increasing temperature at constant
velocity of ~100rad/s.

temperature dependent friction behavior even at constant
velocity. The change in friction torque at ~100rad/s within
10°C is about 18% from the initial value, as can be seen in

Fig. [10]
VI. CONCLUSIONS

The friction of a brush-less DC motor and a Harmonic
Drive gear were experimentally investigated. A nonlinear
velocity dependency and a nonlinear temperature dependency
are identified as dominant influences on the friction. State
of the art friction models do not cover these effects. A
refinement of a standard LuGre friction model with the
aforementioned nonlinear effects in the gross sliding regime
is proposed.

Dynamic models of a RoboDrive ILM85 motor and a
HD CSD 25 were built including the refined LuGre friction
model. A dedicated testbed was developed and used to
identify precisely the parameters of the nonlinear dynamic
friction models. Three different cases of velocity dependency
are investigated. The new motor model was compared to
an unmodified LuGre model and a linear viscous friction
model and showed better accuracy as well as better zero
velocity crossing behavior. The new model has an MSE of
67% relative to the standard LuGre model and only 4% of
the linear viscous friction model for a chirp torque input
signal. A strong temperature dependency was identified in
the HD friction and intensively investigated. The friction
torque at maximum velocity decreased to 42% within a
temperature range from 24 to 50 °C. A neural network with
3 neurons was trained to model the space of friction torque
over nonlinear inverse temperature dependency and nonlinear
viscous friction.

The insights on strong nonlinear temperature dependency
lead to the conclusion that temperature sensors on the gear-
box can improve the friction modeling and with it the motion
control significantly. As a result the robot DLR David will
be augmented with temperature sensors on the motors and
the gearboxes.

Future work will be on an analytical description of the
nonlinearity of the temperature dependency. Investigations on
the dependency on external load, e.g. caused by gravitation,
will be done. Furthermore, it will include investigations on
applications of the new model in friction compensation and
output torque estimation.
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