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Abstract—The advancement of deep learning technology has
enabled us to develop systems that outperform any other clas-
sification technique. However, success of any empirical system
depends on the quality and diversity of the data available to
train the proposed system. In this research, we have carefully
accumulated a relatively challenging dataset that contains images
collected from various sources for three different disasters: fire,
water and land. Besides this, we have also collected images for
various damaged infrastructure due to natural or man made
calamities and damaged human due to war or accidents. We
have also accumulated image data for a class named non-damage
that contains images with no such disaster or sign of damage
in them. There are 13,720 manually annotated images in this
dataset, each image is annotated by three individuals. We are
also providing discriminating image class information annotated
manually with bounding box for a set of 200 test images. Images
are collected from different news portals, social media, and
standard datasets made available by other researchers. A three
layer attention model (TLAM) is trained and average five fold
validation accuracy of 95.88% is achieved. Moreover, on the 200
unseen test images this accuracy is 96.48%. We also generate
and compare attention maps for these test images to determine
the characteristics of the trained attention model. Our dataset is
available at https://niloy193.github.io/Disaster-Dataset
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tion Map, Three Layer Attention Module.

I. INTRODUCTION

In recent days, natural disasters, i.e., floods, cyclones,
droughts, and earthquakes are becoming more common due
to climate change, world-wide temperature rise, and pollution.
Moreover, population density and socio-economic environ-
ments cause human-made disasters that include fire, building
collapse, infrastructural damage, road accident, and armed war
etc. Situations are getting worse in the developing countries
that have very high density populations along with weak
socio-economic structures. Generally, thousands are affected
by these disasters. Therefore, it is crucial in times of crisis that
emergency response workers reach at the affected premises
promptly to save human lives and prevent loss. It would
be great to have a system that would raise an alert and
quantify the degree of damage of any disaster and inform the
appropriate authorities based on an automated analysis of the
images that are almost available in real-time on various social
media. However, the state-of-the art deep learning techniques
are not able to classify disaster types from images due to lack
of standard disaster datasets. Existing disaster datasets have

Fig. 1: (a) Fire Disaster, (b) Water Disaster, (c) Infrastructure
Damage, (d) Human Damage, (e) Land Disaster and (f) Non-
Damage

many limitations such as insufficient categories, imbalanced
classes, wrong annotations etc. Therefore, in this paper, we
propose an elaborated and standard dataset that has disaster
images collected from google, twitter, facebook and other
social media sites, online news portals and other standard
datasets. Moreover, the proposed dataset also contains images
of recent disasters: wild fires in Australia, flood in India, forest
fire in Amazon, and many more. We have performed a number
of experiments to show that the dataset can help build effective
classifier models. Examples of different disaster images are
shown in figure [T}

A number of research has been conducted into classifying
different kinds of disasters, both from deep learning and image
processing domains in recent years. Different datasets have
also been proposed for making learning process effective.
Arif et al. [1]] have collected and experimented with South
Asian Disaster (SAD) images that include disaster images
from Bangladesh and other south asian countries. The authors
here have observed that the appearance of disaster images of
south asia differ in various ways from western disaster images.
However, the main limitation of SAD dataset is that the images
per class are too limited to be used to train deep learning
models.


https://niloy193.github.io/Disaster-Dataset

TABLE I: Comparison of Several Existing Datasets

Number of

Names of Number of

Authors Dataset Comments
Classes the classes Images
Rizk et al. [2] Home-grown + Sun dataset 2 l;f;?jrt:fc]t)ﬁzsfgf 2344 Comalc?zs(s):sly two
Giannakeris et al. [3] 3F-emergency dataset 2 FlreDzilzlsgtl; erOd 12000 Contallrigntlﬁfvte\;vs(i)t;lasses,
. ) . Ko et al. [S] + Verstock et al. [6] + Fire Disaster and Contains only two
Muhammad et al. 4] Chino et al. [7] + Foggia et al. [8] 2 Non-Damage 68457 classes
Nepal Earthquake, Ecuador Natural disasters only,
Alam et al. [9] Image4act 4 Earthquake, Typhoon Ruby, 34562 Limited to narrow
and Hurricane Matthew geographical regions
Fire Disaster, Flood Disaster, The imaces per class are
Arif et al. [1] South Asia dataset (SAD) 6 Infrastructure, Nature Disaster, 493 8¢ p .

Human Damage and Non Damage

very few

Fire Disaster, Flood Disaster,

Non-damage class
contains irrelevant images,

Mouzannar et al. [10] UCI dataset 6 Infrastructure, Nature Disaster, 5880 .
Small number of images per class,
Human Damage and Non Damage R . .
Low diversity, Dataset-bias
Several subcategories,
Fire Disaster, Flood Disaster, High diversity,
Niloy et al. Proposed dataset [L1] 6 Infrastructure, Land Disaster, 13720 |Covers broad geographical regions,

Human Damage and Non Damage

Natural and man-made disasters,
Reduced bias

In the paper [4], the authors extracted a total of 68457
images from dataset [6] and Chino dataset [7]. From Foggia
dataset [8]], they collected video frames. They used an archi-
tecture similar to Alexnet [12] and achieved state-of-the-art
results.

In the work [3]], the authors classified, localized, and esti-
mated severity of different disasters. They used MediaEval
[13]] dataset for classification and Bow fire dataset [7] for
localization. They developed their own dataset named 3F
emergency dataset that consisted of flood and fire pictures
taken from flicker. Their classification algorithm surpassed
other participants in accuracy metric of MediaEval challenge.
However, their datasets suffer from inadequate disaster events.
They have performed experiments with only flood and fire
classes. Rizk et al. [2] proposed a multi-modal two-stage
framework that relies on computationally inexpensive visual
and semantic features to analyze Twitter data. In this paper,
two datasets were used: Home-grown and Sun dataset. Home-
grown dataset comprises of Twitter images which only covers
damaged infrastructure and natural disaster. Sun dataset was
made from several search engines and it also contains infras-
tructure and natural disaster. So, these datasets contain two
categories only. Moreover, the size of their dataset is very
small: only 2344 images.

In [13], the researchers present the algorithms that the team
deployed to tackle disaster recognition tasks. They made two
flood disaster dataset: one of them was made from social media
image and the other one from satellite images. GoogleNet
architecture was used to train on the images. A major lim-
itation of their dataset is that it only contains flood disaster
category. Alam et al. [9] proposed an image filtering module
that employs deep neural networks and perceptual hashing
techniques to determine whether a newly-arrived image is
relevant for a given disaster response context. To train the
relevancy filter, 3,518 images were randomly selected from

the severe and mild categories. The authors have collected
four types of natural disasters: Nepal Earthquake, Ecuador
Earthquake, Typhoon Ruby, and Hurricane Matthew. No other
regional disaster images are present in the dataset.

Mouzannar et al. [10] proposed a multimodal deep learning
framework to identify damage related information from social
media posts. This framework combines multiple pretrained
unimodal convolutional neural networks that extract features
from raw texts and images separately. The framework was
evaluated on a homegrown labeled dataset that contains im-
ages collected from social media posts. Their dataset (UCI
dataset) contains six categories: fire, flood, natural disaster,
infrastructure damage, and non-disaster. Though this dataset
contains images for various disaster events, their non-disaster
class contains lots of irrelevant images, e.g, images of foods,
products, jewelries etc. Keeping these images into non-disaster
class might result in good overall classification performance
but learned models would not distinguish between damaged
and undamaged infrastructures. Another limitation is, the deep
models trained on UCI dataset do not show well attention
localization capability, because the dataset is not much diverse.
For example, we observed that the models trained on UCI
dataset use fire-trucks in the disaster image as a proxy to
classify fire disaster event, which is not expected. Some
examples of misplaced attentions are shown in figure [2]

In the paper [14], images posted on social media platforms
during natural disasters are analyzed to determine the severity
of damage caused by the disasters. The authors collected im-
ages of different disasters: Typhoon Ruby, Hurricane Matthew,
Nepal Earthquake from internet. The authors also used google
search to collect images like damaged building, damaged
bridge, damaged road etc. The limitation of the dataset is that
it only contains damaged infrastructure images.

Summary statistics of the datasets are shown in table
From the datasets mentioned above, it is easy to notice that



a benchmark dataset for disaster classification is yet to be
published. In most of the literature, a scarcity of benchmark
dataset is clearly seen. In summary, the limitations are:

o The datasets do not cover broad regions. A comprehen-
sive dataset should have disaster images from most major
regions of the world.

« After training deep learning architectures on several exist-
ing disaster datasets, we observe that the classifiers show
poor attention localization capability, because the datasets
are not diverse enough. That is why the classification
accuracy deteriorates.

« Most of the datasets do not contain images having enough
challenging scenarios. As a result, the algorithms are
prone to misclassification when exposed to semantically
similar images. For example, it is common for architec-
tures trained on fire disaster images to misclassify images
with high brightness and reddish hue to be a fire disaster
event.

o A diverse dataset having good volume of disaster images
with wide number of categories and subcategories is yet
absent.

To overcome the above limitations, we propose a novel
dataset where we have collected images for a number of disas-
ter events that include both natural and non-natural(man-made)
disasters from different geographical regions. Also we have
carefully hand-picked and annotated several test images which
are used in separate attention models to show the efficacy of
our proposed dataset. Most specifically our contributions are:

« A novel disaster dataset with 6 disaster categories and 10
subcategories, consisting of a total 13720 images. The
detailed statistics of our proposed dataset is shown in
table

« Bounding box annotated images for 200 test images.
These are used in attention verification to show improved
attention localization capability of classifiers trained on
our dataset.

o Detailed characteristics analysis using attention models.
We use CAM[15]], TLAM[16] to show deep learning
classifiers trained with our dataset yield better results
compared to existing datasets.

II. PROPOSED DATASET DESCRIPTION

A well described and diversified dataset is needed for deep
learning systems to perform well in classification. Therefore
the objective of this paper is to provide a well defined and
diversified dataset for disaster classification. As most of the
existing datasets do not contain disaster images from major
regions, our purpose is to create a dataset which contains
images from all major regions (i.e. western, asian, tropical
regions etc.). Existing datasets do not have well organized sub
categories. Therefore, another of our objective is to create a
dataset that contains well organized sub categories.

Moreoever, a good reason of deep learning networks’ poor
performance in classifying most existing disaster datasets is

(d)

Fig. 2: First row contains input images from different dis-
aster classes, second row contains corresponding attention
heatmaps; (a) Fire Disaster (b) Water Disaster (c) Infras-
tructure Damage (d) Misplaced attention (vehicle); attention
should be focused on fire region (e) Misplaced attention
(vehicle and human); attention should be focused on water
region (f) Misplaced attention (human, motorcycle); attention
should be provided to the damaged infrastructure region

that the networks do not focus their attention on disaster
related items (e.g. smoke, water etc.). Generally, disaster
images have many subjects involved. For example, a cat image
may have a cat which is the subject and simple background.
A dog image may also have the same scenario. So it is
easier to differentiate between a dog and a cat. However,
disaster images may have wide range of semantics involved,
i.e. there can be images with damaged buildings, crowd of
humans, cluttered backgrounds etc. Consequently, it becomes
tough for deep learning networks to focus on the correct
region of interest. While training with UCI images, we have
observed that the classifier learns the fire trucks as features
for fire disaster since large number of fire images contain
fire trucks. These types of misplaced attention might produce
inappropriate features that would result in poor classification
performance. For this reason, we have carefully collected
thousands of images having wide range of varieties so that the
network is forced to learn to focus it’s attention on disaster
related items. This also helps in improving classification
performance which is shown in the experiment section. Paying
attention to the appropriate regions also confirms the quality
of classifier models.

We have collected images for three types of disasters: Fire
Disaster, Water Disaster, Land Disaster. Additionally, there are
two damage related classes: Damaged Infrastructure, Human
Damage. The sixth class is Non-Damage where normal images
with various infrastructure, natural scene, forest, beach are
grouped together. We have also added several sub categories:
Urban fire and Wild fire in Fire Disaster category, Landslide
and Drought in Land Disaster category etc. Figure [3] shows
example images from fire subcategory. Moreover, we have
created four subcategories for Non Damage class: Human,
Building and Street, Wildlife Forest and Sea. The Non-



Damage images are limited to four categories because we
wanted to put a 'negative set’ for each disaster category, e.g,
the non-damage human sub-category can be considered as a
negative set for “Human Damage” category. The same way,
non-damage buildings and streets sub category is negative for
“Damaged Infrastructure” or “Urban Fire”; non-damage sea is
negative for “Water disaster” and non-damage forest can be
considered a negative set for both ”Land Disaster” and “Wild
fire”. This is also the reason why the Non-Damage category
contains the most number of images. The proposed dataset is
made publicly available here [11].

TABLE II: Proposed Dataset Summary

Category Sub-Category | Train | Test | Total
Damaged Infrastructure 1418
Infrastructure Earthquake 36 34 1488
. L Urban Fire 419
Fire Disaster Wild Fire 377 33 966
Human Damage 240 32 272
Water Disaster 1035 33 1068
. Land Slide 420
Land Disaster Drought 301 33 654
Human 120
Building
Non Damage and Street 4572 35 9272
Wildlife 2271
Sea 2274
Total Images 13520 | 200 | 13720

A. Disaster Image Collection

We have collected disaster images from different number
of sources. Normal buildings, street, forest, and sea images
are collected from google and have been put in non disaster
category. A large number of different disaster images such
as fire, earthquake, tsunami, landslide and flood have been
collected from google and popular social media sites such
as facebook, twitter etc. We have focused on notable recent
disasters like Kerala floods from South India, Japan’s tsunami
for water disaster, Australian bushfires, California wildfires,
Brazil Amazon rain forest wildfires, Hong Kong protests
police violence, and so on for fire disaster. Moreover, we have
collected a number of disaster images by scrapping different
news portals. Some notable examples are: California wildfires
[17], Brazil wildfires [18] and many more. In Social media
platforms, hashtag categorizes similar type of posts or images.
We have used hashtags to collect image data for different
kind of disasters from facebook and twitter. To collect images
for human damage, we have focused on Syrian civil war,
Yemeni civil war etc. Additionally, we have gathered some
of the damaged infrastructure images from news portals [19],
facebook, twitter etc. We have taken several building fire,
forest fire, damaged infrastructure, tsunami etc. images from
SAD [1]. Also we have collected a lot of non disaster images
from [20]].

After collecting images with above mentioned process, we
gathered almost 16000 images in total. However, we had to
discard few number of images which were very low resolution,
had embedded texts etc. A wide number of images were later

(a) Urban Fire

(b) Wild Fire

Fig. 3: Subcategories of Fire Disaster

discarded in the course of annotation. We finally got a total of
13720 images. The image shapes of our dataset are diverse.
During training, the images were resized to 224 x 224. The
class statistics of the collected images are shown in table ??.

B. Annotation of Disaster Image Categories

After collecting and cleaning up, the category for each
image is determined by our well trained annotators. For this
purpose, three human annotators have been trained beforehand
on the image classification ideas and methodologies. They
learned about different disaster classes and sub-classes. Also,
they have gone through different video and image sources
to understand the impact of different disasters. Each image
from the collected set has been annotated by three annotators
separately without any knowledge about the annotation of
others.

For Water Disaster category, the defining characteristic
is excessive amount of water present in undesirable places
i.e, fields, roads, establishments that are fully or partially
submerged in water due to floods, tsunami etc. Thus, these
images are kept in a unified Water Disaster category. Similarly,
the images with landslides are kept under Land Slide sub-
category. The land images with drought are kept in the
Drought subcategory. The Urban Fire images tend to have
buildings, cars, traffic, and other types of infrastructures with
fire whereas the wildfire images normally have trees and other
types of greeneries, grasslands and often animals. Damaged
Infrastructure category has images where there are broken
remnants of buildings or concrete infrastructure, vehicles etc.
The structural damages caused by earthquakes are kept under
Earthquake subcategory. Human damage category consists of
bloody, wounded, burned, and gory pictures due to war or
accidents. Bandages and stretchers are also present in some of
the images in the human damage category.

During these class label annotation tasks, we have kept all
three annotators’ labels into account. If all three annotations
differ, the image is discarded. If two annotations coincide, the
image is put into that category. After this filtration process we
have ended up with 13720 images in total.

C. Creating the training and test sets

For our experiment, we have merged the sub classes of
each parent class. Therefore, our training classes are Fire
Disaster, Human Damage, Water Disaster, Land Disaster,



Damaged Infrastructure, and Non-Damage. We have carefully
handpicked two hundred challenging images and used that as
test set. We have tried our best to ensure that these test images
reflect the diversity of our dataset.

Our test set consists of images from each parent class.
Our primary focus is to keep as much variety as possible
in the selected test images. Hence, we have included aerial
images, landscapes, low light images, scenarios with many
subjects in our test set. We have also put images that would
be challenging for the network to classify, like non disaster
images with red hue which resemble fire disaster image, sea-
beach images which resemble water disaster etc. For each
parent class that has sub-classes, we pulled images from each
of the sub-classes. We didn’t use any random method to collect
the test images, rather the selection procedure was carefully
performed by human selectors following the above guidelines.

III. DATASET CHARACTERISTICS ANALYSIS
A. Diversity Analysis

One of the key characteristics of our proposed dataset is
diversity. But, it is difficult to devise a measure that quantifies
diversity. However, to tackle this problem we follow the
procedures mentioned in [21]. We compute the average image
of each class and measure lossless JPG file size which reflects
the amount of information in an image. A diverse image class
will result in a blurrier average image, consequently the JPG
file size wil be smaller. On the other hand, a less diverse image
class will result in a more structured, sharper average image
with a greater JPG file size.

B. Performance and Attention Analysis

We design our experiments to show the efficacy of our
dataset in training deep learning models. Moreover, the experi-
ments are performed to show how the classification models put
their attention on particular parts of the images for predicting
class label. Our experimental objectives are:

o To measure the quality of the training set for building
classifiers. For this purpose, we use five fold cross vali-
dation to show the generalization ability across different
folds of the dataset.

o To measure the performance of classifiers on unseen data.

« Our final objective is to quantify the attention localization
capability of classifiers trained on our dataset.

1) Classifier Model Description: We have used VGG-16
as our classification network. The weights of the network
are initialized with weights pre-trained on ImageNet data.
The input image size is 224 x 224. To depict the region of
input image where the network is focusing it’s attention, two
separate attention modules [15], [16] are used:

Class Activation Map (CAM): Upon the VGG-16 net-
work, Global Average Pooling (GAP) is used. The outputs
of the GAP layer goes to six class softmax layer. To get the
attention heatmap the weights of the dominant class is later
dot multiplied with the last convolutional layer of VGG-16,
which is then upsampled to the input image size.

Three Layer Attention Map (TLAM): The TLAM[16]
demonstrates how soft trainable attention can improve image
classification performance and highlight key parts of images.
We use a VGG-16 network where local feature maps L;(i =
1,2,3) are taken from the last three maxpool layers. Then
global feature map G is taken after the last conv layer. A
parameterized compatibility score is calculated from which
attention weights are found. Finally, all three attention maps
are concatenated and passed through a fully connected layer
to get the final prediction.

2) Five-fold Cross Validation: To evaluate the uniformity
of the distribution of our dataset, we have performed five fold
cross validation. In each validation process, we have selected
80% images from each class for training and rest 20% images
for testing. We make sure that no images from this 20% set are
selected for testing in other validation process. That means: the
training and testing sets are always non-overlapping in each
validation iteration.

3) Testing: We use both CAM and TLAM architectures
for training and then test on the 200 unseen test data that we
created. We have reported the classification result for both our
dataset and UCI dataset.

We have used a batchsize of 64 and 32 respectively for
CAM and TLAM. We use a small learning rate (0.0001) to
make sure effective fine tuning occurs. We have used Adam
optimizer and weighted cross entropy loss during the training.

4) Human assessment of visual attention: To quantify the
correctness of focusing attention by deep learning networks
trained on our dataset, the test images are annotated by six
human annotators. We do this to compare the human way
of paying attention with the neural network. The annotation
task has been performed following the standard annotations
guidelines from the PASCAL Visual Object Classes(VOC)
Challenge [22]. Each of our annotators has been trained
before the task. Then, they have been asked to draw bounding
boxes to the parts of the test images where their attention
is intuitively drawn to infer the disaster class. A bounding
box is drawn around the disaster region making sure that
all of the visible context of the disaster class are tightly
inside the bounding box. These bounding box images are
later compared with the attention-maps provided by CAM
and TLAM to calculate mean Intersection over Union (mIoU).
Figure [] shows the examples of bounding boxes for images
from Fire Disaster and Infrastructure Damage classes.

5) Visualizing Attention and verification: This experiment
is performed to quantify the attention localization capability
of classifiers trained on our dataset.

The CAM and TLAM output images are transformed to
binarized masks by making normalized attention values greater
than a threshold to have intensity value of one and rest of the
pixels to zero. The thresholds are 0.15 and 0.10 for CAM and
TLAM, respectively. We opted for a lower threshold in case of
TLAM because attention heatmap outputs of TLAM are very
fine and thin compared to CAM. The annotated test images
are also binarized by making pixels in the bounding box to
have intensity value of one and the rest to zero. After that, the



(a) Fire Disaster

(b) Damaged Infrastructure

Fig. 4: Bounding Box Annotations

amount of overlapping between the two masks are calculated
using Intersection Over Union (IOU) method. This procedure
is performed over all the test images. Then the mean IOU is
calculated, which is the quantified score.

6) Performance Measurement: We present our classifica-
tion result in terms of accuracy and macro F1-score. Moreover,
we have calculated the mIoU to show how well the classifier’s
attention overlaps with the human attention.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section we present the results of the experiments that
we have designed in last section. We compare our results with
UCT dataset to show the efficacy of our proposed dataset.

A. Diversity

Figure [5] shows the lossless JPG file size of average image
for each class of our dataset vs UCI dataset. It is observed
that the average images for four out of six classes of our
dataset have less byte size and thus contain more information.
Therefore, our dataset is more diverse than UCI dataset.

i

Human
Damage

3000
B Our Dataset mUCI Dataset

2500
2000

i

1000
500
Water

Disaster

=
wu
(=]
(=]

Lossless IPG size in Byte

Damage Land Disaster Fire Disaster

Infrastructure

MNon Da mage

Fig. 5: Lossless JPG size in byte of our dataset vs UCI dataset

B. Performance and Attention Analysis

1) Five-fold Cross Validation: Table [Tl shows the perfor-
mance of the CAM and TLAM for the 5-fold cross validation
experiment. We report accuracy and macro average F1 score
for each of the fold tested.

It can be easily observed that the accuracy for each of
the fold is close to 0.96 for CAM. Also, the Fl-score is
around 0.90. Similar results are also observed for TLAM.
Accuracy scores are 0.96 and macro F1 scores are around

TABLE III: Cross Validation Summary for CAM and TLAM

CAM TLAM
Accuracy FI score Accuracy Fl score
(Macro Avg) (Macro Avg)
Fold 1 0.96 0.89 0.96 0.89
Fold 2 0.96 0.90 0.96 0.88
Fold 3 0.95 0.89 0.96 0.88
Fold 4 0.96 0.92 0.97 0.92
Fold 5 0.96 0.90 0.96 0.88

0.88 for all folds except fold 4. Fold 4 has slightly better
performance (accuracy: 0.97 and macro F1 score 0.92). 5-fold
cross validation results with both CAM and TLAM suggest
that our proposed dataset is well structured and uniform
throughout its extent.

2) Testing performance: In table [[V] we report the detailed
performance result of test procedure. Discriminating features
such as fire, smoke, flame help in better classification of fire
images. Moreover, as the Water Disaster images of our dataset
have unique characteristics, the F1 score is high for this class.

Table[[V]clearly shows the efficacy of our dataset in training
the classifier models. The test images are classified with
significantly high Fl-score. The macro average F1 score for
CAM and TLAM are: 0.96 and 0.97, respectively. In contrast
the macro F1 scores of the same classifiers are very low: 0.42
and 0.39 when the classifiers are trained with UCI dataset.
Most importantly, the UCI dataset cannot make the classifiers
learn effective discriminative features for Human Damage, Fire
Disaster, and Land Disaster. We observed that for most of the
test images, the classifiers have put attentions completely in
the wrong regions.

Figure [6] presents some samples of attention heatmaps.
In this figure, first row has the input images, middle row
contains examples of misplaced attention. Third row shows
that attention is moved to the correct region when we train
CAM with our dataset. The heatmap represents the attention
intensity. Reddish heatmap indicates higher attention.

[6l@) is a test image from Fire Disaster class. But UCI trained
CAM model has put it’s attention on the road as seen in the
image [6[g). In contrast, CAM trained with our dataset learns
to pay it’s attention correctly on the smoke region as shown
in [6m).

A test image from Water Disaster class is in [6{b) and the
attention heatmap is shown in [f(h) when CAM is trained with
UCL. It is easy to see that classifier has put it’s attention on
the vehicles and human resulting in wrong classification. The
image [6(n) shows that the attention is in the expected water
region; thus the CAM model could correctly classify it as
Water Disaster image.

Similarly, [6(d) is a Draught image that falls under the Land
Disaster class. UCI trained CAM pays attention towards the
human inﬂj) whereas the CAM model trained with our dataset
puts attention on the dry and fractured land in [6]j) to classify
the image as Land Disaster.

We have also devised an experiment to show how well
our dataset generalizes on UCI dataset. As UCI dataset does
not have any explicit test set, we randomly pick 40 images



TABLE IV: Performance Summary for CAM and TLAM on Test Data

CAM CAM TLAM TLAM
trained on trained on trained on trained on
proposed training set UCI dataset proposed training set UCI dataset
Precision F1 Precision Fl1 Precision F1 Precision F1

Infrastructure Damage 0.91 0.93 0.71 0.81 0.87 0.92 0.67 0.78
Fire Damage 1.00 0.98 0.03 0.03 1.00 1.00 0.00 0.00
Human Damage 0.91 0.92 0.00 0.00 0.94 0.97 0.00 0.00
Water Disaster 1.00 1.00 0.91 0.94 1.00 0.98 0.94 0.94
Land Disaster 0.94 0.94 0.06 0.06 1.00 0.94 0.00 0.00
Non Damage 0.97 0.96 1.00 0.65 1.00 0.99 0.70 0.61
Macro Average 0.96 0.96 0.45 0.42 0.97 0.97 0.38 0.39

Fig. 6: Top row: Input images from (a) Fire Disaster, (b) Water Disaster, (c) Water Disaster, (d) Land Disaster, (e) Infrastructure
Damage, (f) Fire Disaster; Middle row: Wrong attention (Using CAM trained with UCI dataset); Last row: Correct attention

(Using CAM trained with our dataset)

from each class and make a UCI test set of 240 images.
Then we compare the classification performance on UCI test
set using CAM model trained on both our proposed dataset
and rest of the UCI dataset. To make the result unbiased, we
perform the random picking and testing five times. The average
classification accuracy of the five runs of testing on UCI test
set is 71.25% with CAM trained on our dataset and 68.62%
with CAM trained on UCI dataset. So, our dataset generalizes
well on UCI dataset.

3) BOWFIRE: To further show the generalization capa-
bility, we have evaluated our model on benchmark disaster
dataset. We have used the Bowfire test set [7] that has only
two classes: Fire and No-Fire. We have tested the Bowfire test
set with CAM and TLAM that are trained with the proposed
dataset. We observe that the F1 score of fire class with CAM
(trained with our dataset) is 0.84, whereas, the F1 score
reported in the paper for [7] is in the range of 0.6 — 0.7
and for it is in range 0.5 —0.6. When we have performed

the experiment with TLAM (trained with our dataset), we have
got exactly the same F1 score 0.84.

4) Classifier’s Attention vs Human Attention: In order to
show the quality of our dataset, we calculate the mean Inter-
section over Union (mloU) of human attention and classifier’s
attention for our test data while the classifier has been trained
with our training set. Additionally, we calculate mlou on test
set for classifier trained with UCI dataset. Table [V] shows
that the mloU is significantly higher when CAM has been
trained with our training set. The mloU for CAM trained
on our proposed dataset is 0.53 whereas the mloU drops to
0.45 for CAM trained with UCI dataset. After doing the same
experiment with TLAM, the mloU significantly drops from
0.31 to 0.18.

To show how subcategorization empowers classifiers’ atten-
tion, we have trained CAM with all images except the images
from Wildfire subcategory. The test mIoU drops from 0.53 to
0.5. Furthermore, we again train a new CAM model discarding



Wildfire and Drought images. The test mloU then drops to
0.49.

Apart from CAM and TLAM, we have also experimented
with recent attention module GradCam++ [25]]. We train using
resnet-101 architecture on both our dataset and UCI dataset.
We then compare the overlap agreement between human
attention and classifier’s attention. Our dataset yields an mIOu
of 0.56 and for UCI it is 0.49. So, GradCam++ also shows
the efficacy of our dataset.

The experimental results suggest that the structure of the
proposed dataset is such well organized and diverse that atten-
tion localization capability of classifiers are much improved.

TABLE V: Overlap agreement between human attention and
classifier attention

Human-Classifier Human-Classifier
Attention Overlap | Attention Overlap
(Mean IoU) (Mean IoU)
.. Proposed UCI
Training Set Dataset Dataset
CAM 0.53 0.45
TLAM 0.31 0.18

V. CONCLUSION

Accumulating a comprehensive image dataset for disaster
detection task is very challenging, especially, images that
contain representative information for different classes. Also,
it is a difficult task to provide annotation for such images. To
reduce biases in the classification process we have provided
class information for each image by three different individuals.
Also six annotators provided bounding box annotations for test
images. In future, we plan to provide bounding box ground
truth annotations for all the images of our dataset. More
challenging issue is to come up with a proper assessment
mechanism for such datasets. It is often not enough to look
only at the quantitative measures such as classification ac-
curacy, precision, recall, F1 score, etc. In this work we try
analysing the performance of the attention based classifiers
not only to show that, systems trained with our dataset can
outperform exact same systems trained with other dataset,
moreover, we show that visually and numerically, human level
attention can be achieved if attention based classifiers are
trained with our dataset.
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