

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jan 04, 2025

Pre-Trained Neural Networks used for Non-Linear State Estimation

Bayramoglu, Enis; Andersen, Nils Axel; Ravn, Ole; Poulsen, Niels Kjølstad

Published in:
The tenth International Conference on Machine Learning and Applications

Link to article, DOI:
10.1109/ICMLA.2011.118

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Bayramoglu, E., Andersen, N. A., Ravn, O., & Poulsen, N. K. (2011). Pre-Trained Neural Networks used for
Non-Linear State Estimation. In The tenth International Conference on Machine Learning and Applications IEEE.
https://doi.org/10.1109/ICMLA.2011.118

https://doi.org/10.1109/ICMLA.2011.118
https://orbit.dtu.dk/en/publications/6acc906f-6645-45de-96ce-4616e67ed084
https://doi.org/10.1109/ICMLA.2011.118

Pre-Trained Neural Networks used for Non-Linear State Estimation

Enis Bayramŏglu, Nils Axel Andersen, Ole
Ravn

Department of Electrical Engineering
Technical University of Denmark

Elektrovej DTU Building 326 DK-2800
Kongens Lyngby

{eba,naa,or}@elektro.dtu.dk

Niels Kjølstad Poulsen
Department of Informatics and Mathematical

Modelling
Technical University of Denmark

Richard Petersens Plads DTU Building 321
DK-2800 Lyngby
nkp@imm.dtu.dk

Abstract— The paper focuses on nonlinear state estimation
assuming non-Gaussian distributions of the states and the
disturbances. The posterior distribution and the aposteriori
distribution is described by a chosen family of paramtric
distributions. The state transformation then results in a
transformation of the paramters in the distribution. This
transformation is approximated by a neural network using
offline training, which is based on monte carlo sampling. In
the paper, there will also be presented a method to construct
a flexible distributions well suited for covering the effect of
the non-linearities. The method can also be used to improve
other parametric methods around regions with strong non-
linearities by including them inside the network.

I. INTRODUCTION

In Engineering, especially since the advent of electron-
ics, estimation of the internal state of a dynamic system
has been an important challenge . Application of the
principles of Bayesian statistics to this problem is the
subject of Bayesian filtering field. This field has seen a
recent research explosion, owing to its optimality under
the assumption of accurate system models. However, the
optimal solution brought by the Bayes theorem involves
analytically intractable equations for the general non-linear
filtering problem.

The application of Bayesian filtering to real problems
using electronic processors requires some approximations
to the exact solution. The research in this field focuses
on various approximation methods each of them with
some trade-offs in computational resources, accuracy under
different conditions, ease of implementation etc. Chen [1]
provides a recent comprehensive survey of the various
approaches.

It is possible to model the involved Bayesian probability
distributions in parametric or non-parametric methods,
while commonly a hybrid is used. Parametric methods
approximate the distribution using an analytic distribution
described by some parameters, or they solve the filtering
problem analytically under certain simplifications. The
well known Kalman filter(KF) [2] is probably the most
significant example in this category and it is the exact
solution for the linear, Gaussian prior case. KF assumes
that the system state vector is normal distributed, and it
estimates the parameters of this distribution. Among the
many extensions of KF The unscented Kalman filter [3]
is an important recent method in this category, where
the parameters of the Gaussian is calculated through so

called sigma points, propagated through the system non-
linearity. Daum filters [4] are exact solutions to a restricted
class of non-linear systems, and they use a member of
the exponential family to represent the state distribution.
Projection filters [5] on the other hand provide an approx-
imation to exact non-linear filters. They can use a variety
of parametric distributions.

The non-parametric methods do not make an assumption
about the shape of the distribution. Most important in this
category are the particle filters (E.g [6], [7]). They approx-
imate the actual distribution with a set of state samples.
These samples are propagated through the system along
with resampling to keep track of the actual distribution.
Non-parametric methods give better results under strong
non-linearities compared to parametric methods. However,
their computational requirements are higher and they grow
exponentially with state dimensions, in contrast to usually
polynomial growth with parametric methods.

Hybrid methods also exist such as mixture Kalman filter
[8], which is basically a bank of extended Kalman filters
borrowing resampling from particle filters. Particle filters
can also be improved using Rao-Blackwellization [9]. In
this approach, the particles are augmented with parametric
distributions along dimensions, where an analytic solution
exists or a parametric method would be accurate enough.

Our method can be used with any parametric distribu-
tion, and it approximates the function which gives the set
of parameters that best fits it to the actual distribution. A
feed-forward neural network for the state transition and
another for the measurement are trained to give a matched
set of filters. We train the neural networks using random
samples of the input distribution parameters, control inputs,
measurements and system states. Therefore, as the training
iterations go to infinity, the resulting networks provide a
global fit to the actual distribution, in contrast to most
parametric methods that use local properties of the system
non-linearities.

The Gaussian requirement is also lifted by using neural
networks. We also describe a way of obtaining distributions
with flexible parametric shapes to be used with the neural
networks.

Our method is feasible for lower order systems and
in a custom but restricted subset of the parameter space.
Other parametric methods can be used as blocks in the
neural networks to alleviate this and obtain a performance
superior to both. The desired global properties of the well-

known filters such as stability can be combined with the
ability of the neural networks to handle wild regional non-
linearities.

II. FORMULATION

A general discrete system modelled as a Markov chain is
usually described by (1) in the state-space representation.

xn+1= f(n,xn,un,dn)

yn= g(n,xn,un,vn)
(1)

In (1), xn is the state vector at samplen, y is the
meausrement,un is the control input,dn andvn are the
process and measurement noises andf() and g() are the
state transition and measurement functions respectively.

In Bayesian filtering,xn is treated as a random vector
with the probability density function (pdf)p(xn). The aim
of the filter is to find the distribution of the state vector at
time stepn given the measurements up ton (p(xn|Yn),
Yn = {y1 . . .yn}).

This is usually achieved iteratively over time steps with
the assumption that the initial distributionp(x0) is known.
Then, first,p(xn|Yn−1) is given by;

p(xn|Yn−1) =

∫

p(xn|xn−1)p(xn−1|Yn−1)dxn−1 (2)

andp(xn|Yn) is obtained fromp(xn|Yn−1) through;

p(xn|Yn) =
p(yn|xn)p(xn|Yn−1)

∫

p(yn|xn)p(xn|Yn−1)dxn

(3)

(2) is governed by the state transition function (f) as
p(xn|xn−1) is obtained from it. Similarly, (3) is governed
by the measurement function (g) asp(yn|xn) is obtained
from it. Approximations top(xn|xn−1) and p(xn|xn)
are needed, because in general the sufficient statistics of
these pdfs are infinite dimensional, so we would need an
unbounded amount of parameters to describe them, even
if we assume ap(x0) with finite sufficient statistics.

In order to approximately representp(xn|Yn) (or simi-
larly p(xn|Yn−1)), in our method we choose a parametric
distribution, denoted asq(xn|αn|n). The vector αn|n

parameterizes the distributionq and in this context we
chooseαn|n such thatq(xn|αn|n) is as close top(xn|Yn)
as possible, in some appropriate distance measure.

Note that, for instance, KF based filters use a Gaussian
distribution with the parametersα = {µ, C} (mean and
covariance). The alternatives for our method span any
parametric distribution, as long as it is described by a
reasonably few number of parameters. In section IV, we
propose applying a parameterized transformation on a
Gaussian to obtain a custom flexible distribution, which
is collectively parameterized by the parameters of the
Gaussian appended with those of the transformation (α =
{µ, C,αtrans}). Another example is a mixture of two
Gaussians as in the given sample application. The mixture
is described by the parameters of the individual Gaussians
and the mixing coefficient (α = {µ1, C1,µ2, C2, cm}).

The filtering problem for state transition is to find
the parametersαn|n−1 that best approximate, w.r.t
some measure,p(xn|Yn−1) given p(xn−1|Yn−1) =
q(xn−1|αn−1|n−1). The new parameter vectorαn|n−1

is a function of the old parameters, the control input
and possibly the sample number as in (4a). The filtering
problem is also similar for measurements. The parameters
αn|n that best approximatep(xn|Yn) givenp(xn|Yn−1) =
q(xn|αn|n−1) will be a function of the prior parameters,
the measurement and again possibly the sample number as
in (4b).

αn+1|n = h(n,αn|n,un) (4a)

αn+1|n+1 = j(n,αn+1|n,un,yn) (4b)

To clarify the meaning of the functionsh() and j(),
one can form an analogy with the Kalman filter. In this
analogy,h() would be the prediction, or the time update,
stage of the Kalman filter. In order to calculate the expected
value of the system states at samplen, given the measure-
ments up ton − 1 , x̂n|n−1 and the covariance of those
states,Pn|n−1; one useŝxn−1|n−1, Pn−1|n−1, the system
input at samplen, un and the state transition matrix at
samplen (if the system is time varying),Fn. Collecting
{x̂n|n−1, Pn|n−1} together asα

n|n−1, the parameters of
the distribution, one can summarize this calculation as
(4a). Fig. 1 summarizes these relationships graphically. The
analogy follows similarly between the KF measurement
update and (4b). The representation in (4a) and (4b) could
be generalized to non-linear systems, whereh() and j()
do not in general have analytic expressions.

Note that, in the Kalman filter analogy, the solution
is exact, in the sense that if the prior distributionp(x0)
is Gaussian, the system is linear and the process and
measurement noises are also Gaussian;p(xn|Yn) will be
Gaussian for alln. We do not require this for (4a) and (4b).
If the state distribution does not remain in the family of
distributions described byq(xn|α), we define thath() and
j() return the parameters that best approximate (in terms
of cross entropy) the actual distribution within the assumed
family.

We propose that these two functions could be approx-
imated by neural networks. Training of these networks
is not a trivial task however.h() and j() are not easily
computed for even single values. Section III describes our
training approach.

III. TRAINING

The neural networks should be trained such that the
parametric pdf described by the output parameters is as
close to the actual pdf produced by the non-linear process.
We used the cross-entrophy as the distance between the two
distributions. The aim is to minimize the integral given in
(5).

D = −

∫

X

p(xnew|αold, iextras) log (q(xnew|αnew)) dxnew

(5)
Here, iextras is used to represent the extra inputs

such as the sample number(n), control inputs (u) and
measurements(y). We have defined the network error func-
tion to be the expected value of this distance measureD.
The expectation is taken over an assumed distribution of

Fig. 1: Analogous to the Kalman filter prediction update, a
pre-trained neural network receives the parameters for the
distribution for the previous state, and outputs those for
the current state.

old parameters and extra inputs. This error, as a function
of network weights vectorw is given in (6). Note that
αnnout(w) is the network estimate, so it is a function of
the network weights.

E(w)=E{D (αold, iextras,w)}

E(w)=

∫

A

∫

I

∫

X

p(xnew|αold, iextras)p(αold, iextras)

log (q(x|αnnout(w))) dxnew diextras dαold (6)

The calculation of this error function, even for a single
network state, is a computational challenge. Therefore,
we use an approximation inspired by the Monte Carlo
method. The approximation procedure differs slightly for
state transition and measurement.

a) State Transition: We draw a sample from the
distribution of input parametersαs and the control inputs
is, the extra input in this case. We then draw a samplexs

from the pdf described byαs. We propagatexs through
the state transitionf(xn,un,dn) given in 1 usingis and
a sample ofdn to obtainxsnew. The approximation toE
is given in (7).

b) Measurement: We again draw a sample from the
distribution of input parametersαs and a samplexs

from the pdf described byαs. Applying the measurement
function g(xn,un,vn) on xs and a sample ofvn we
obtain a sample measurementis, the extra input. The
approximation toE is again given in (7) withxsnew = xs.

The measurement and state transition cases differ, since
there is no general way to draw a sample from the posterior
distribution given by the prior distribution parameters and
the measurement. We instead generate a measurement sam-
ple from the state sample using the measurement equation.

Ê = −log (q (xsnew|αnnout(w,αold, iextras))) (7)

It can be shown that the expected value ofÊ equalsE
for both cases. Due to the coarse approximation toE we
use, We have chosen to use gradient descend for training

the networks. The training iterationi is given as in (8).w
is the network weights as a vector andk is the training
weight varying over iterations.

wi+1 = wi − k(i)
dÊ

dwi

(8)

k starts with a relatively high value, and it is decreased a
few orders of magnitude during the course of the training.
This ensures that the final stages of the training averages
over a large sample of̂E, improving the approximation. As
k gets sufficiently small, the steps of the network weights
averaged over samples will approach those that would be
obtained by using the actualE.

This training algorithm favours the parameter regions
where the corresponding actual distribution has a low
entrophy. Fitting the parameters in these regions have a
larger impact onE compared to the high entropy regions.
Therefore the training algorithm so far spends most of the
learning resources on these regions. This problem can be
solved by weightingE as in (9) to improve learning in
desired regions.

E = E{W (αold, iextras)D(αold, iextras)} (9)

A. Training Stability

The training algorithm is, in essence, a stochastic gra-
dient descent. Kiwiel [10] analyzes the convergence of
stochastic gradient descent algorithms. Since the objective
function E(w) given in (6) is not generally quasiconvex
with respect to the network weights, convergence to the
global minimum can not be guaranteed.

The objective function is a weighted sum of the cross
entrophy for the posterior and the estimated distributions,
therefore, it has a bounded global minimum as long as
the posterior distribution has bounded differential entropy
everywhere in the summation region. Although, we have
direct information on the prior distribution rather than the
posterior distribution, having a prior distribution with a
bounded differential entropy will result in such a posterior
distribution for a wide range of systems.

Therefore, it can be shown that, with a small enough
step size, the stochastic training proposed in this paper will
result in convergence to a local minimum of the objective
function under conditions that do not impair applicability
to practical systems.

IV. DISTRIBUTIONS

In theory, any parameterized function could be used with
our method, as long as it is greater than zero everywhere
and its volume converges for the chosen parameter space.
However, there is one obstacle. During the calculation of
Ê in 7, one needs to calculate the probability density.
Therefore, the chosen function needs to be normalized by
multiplying it with a normalization constantc. Calculating
the derivative ofc with respect to the distribution parame-
ters will require too much computation, considering thatÊ

is a coarse approximation and it is calculated many times.
The numeric calculation ofc can be avoided by us-

ing a distribution with knownc and warping it with a
parameterized coordinate transformation. Without losing

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

x
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

y

0

0.1

0.2

0.3

0.4

0.5

(a)

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

x
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

y

0

0.1

0.2

0.3

0.4

0.5

(b)

Fig. 2: (a) The Gaussian described by 11 (b) The resulting
distribution after coordinate transformation

much flexibility, the Jacobian of the transformation could
be one everywhere so thatc remains unchanged. Such a
transformation, along with its Jacobian is given in (10).
Combining such a transformation with a rotation could
provide a wide range of shapes.

x̂= x

ŷ= f(x,αt) + y
, J =

∣

∣

∣

∣

∣

[

1 0
df(x,αt)

dx
1

]
∣

∣

∣

∣

∣

= 1 (10)

In order to obtain a blurred arc shape, one could
transform a Gaussian with the transformation above using
f(x,αt) = ax2. Combined with the rotation this would
result in an arc with desired curvature and angle. A
warped Gaussian example is provided in Fig. 2. Fig. 2a
is the original gaussian described by (11). Fig. 2b is
the distribution obtained by warping this with (10) using
f(x,αt) = 0.5x2. The neural networks could be used to
estimate the parameters of such a distribution.

N

([

0

0

]

,

[

1 0
0 1

9

])

(11)

V. INTEGRATION WITH OTHER FILTERS

Our approach is meant to work on its own for lower
order systems, and in a restricted region of the parameter

Parametric

Filter

Input

Neurons

Output

Neurons

Fig. 3: Integration of the neural state estimator with a guest
parametric filter. The guest filter receives the raw inputs
and its outputs are directly propagated to the network
output. The linear neurons at the output layer are connected
also to the hidden layers of the neural network.

space. But it can easily be integrated with existing estima-
tors to lift both of these restrictions.

Deterministic and parametric filters such as the extended
Kalman filter or the unscented Kalman filter can be inserted
in the neural network as a block in the first layer as in
Fig. 3. In this figure, the guest filter receives a set of raw
inputs and its outputs are connected directly to the output
neurons as well as the hidden layers. the output neurons are
assumed to have a linear activation function. The neurons
can be thought applying a correction to the guest filter.

The network structure must be modified as in Fig. 4 so
that the neurons do not interfere with the output in the
regions that they are not trained for. The neural suppressor
block modifies all the neural intervention to the output.
It could simply be a multiplication with the assumed
distribution for the network inputs used during training.
This way, one can use a preferred filter while improving
it in a certain region to better reflect the non-linearities.

This method could be integrated with the particle filters
to generate a hybrid filter. A bank of neural networks can
be used with resampling to obtain a mixture filter. On the
other hand, based on Rao-Blackwellization, along appro-
priate dimensions each particle could be augmented with
a parametric distribution, whose parameters are estimated
by neural networks.

VI. SAMPLE APPLICATION

We have chosen a non-linear transformation of a single
variable to demonstrate the method. The transformation
is given in (12). We approximate the pdf of the state
variablex by a Gaussian, in order to be able to compare
the performance of the neural networks with those of an
extended Kalman filter and an unscented Kalman filter.
Therefore the pdf has 2 parameters, the mean and the

Parametric

Filter

Input

Neurons

Output

Neurons

Neural

Suppressor

Fig. 4: The suppression block added in this figure is
necessary, since the network is trained for a region of
the input space. Outside this region the neurons constitute
disturbance and their outputs need to be suppressed.

Fig. 5: The network configuration used for the sample
application. The inputs are the parameters for the Gaussian
distribution and the system control input. The outputs are
the parameters for the estimated Gaussian distribution.

standard deviation of the Gaussian (µ, σ). A simple neural
network for estimating the parameters is given in Fig.
(5). The inputs are the 2 initial distribution parameters
and the control input. The outputs are the 2 transformed
distribution parameters.

xn+1 = xn + p tanh(
xn

w
) + un + dn (12)

w = 0.2, p = 0.4, dn ∼ N (0, 0.1)

The assumed initial distribution for parameters are all
independent withµ ∼ N (0, 2), σ ∼ N0.7, 0.4 and
un ∼ N (0, 2). This simple network is trained with
approximately3× 107 iterations, taking around 5 minutes
on a 3.4 GHz AMD PhenomTM2 X4 Processor.

The results with the simple network are given in Fig. 6
and 7 along with those of a network containing 15 neurons
at the hidden layer for comparison. In Fig. (6), the network
inputs are (µ, σ, u) = (0, 0.5, 0). The inputs for Fig. 7
are (µ, σ, u) = (0.3, 0.6, −0.2).

Comparing the two sets of figures, it is clear that the
approximation is enhanced using more neurons. The real
interesting problem here is the time evolution of the neural
network outputs when used as an estimator for a system
recursively. For this purpose, we couple the state transition

Fig. 6: The output of the simple network in Fig. 10 (green)
and the output from a network with 16 neurons in its
hidden layer (blue) for the inputs (µ, σ, u) = (0, 0.5,
0), resulting in a bimodal actual output distribution (red),
due to the transformation non-linearity.

Fig. 7: The outputs of the same networks as in Fig. 6, this
time for the inputs (µ, σ, u) = (0.3, 0.6,−0.2)

in (12) with the simple measurement equation given in
(13). We further apply the simple estimated state (x̂n)
feedback control law given in (14) to keep the system
state near the non-linearity around 0. We have used the
Kalmtool[11] toolbox to simulate the system and the
estimators to obtain a comparison. Note that for the data
update of neural network filters, a conventional Kalman
filter data update is used since the measurement equation
is purely linear.

yn = xn + vn (13)

vn ∼ N (0, 2)

un = x̂n (14)

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

Actual State
Estimated State
1 Sigma Confidence Region

Fig. 8: The simulation results for the system described by
the state transition equation (2), the measurement equation
(13) and the control law (14) using a neural network
estimator for state feedback.

0 20 40 60 80 100
−6

−4

−2

0

2

4

6

Actual State
Estimated State
1 Sigma Confidence Region

Fig. 9: The simulation results for the same system as in
Fig. 8, using an unscented Kalman filter instead of the
neural network.

Fig. 8 shows the evolution of the system state along with
its estimate over 100 time steps using the neural network
with 15 hidden neurons. For comparison, Fig. 9 shows the
same plot while the estimator is an unscented Kalman filter.
Note how the neural network estimator keeps the system
state closer to 0. Since the simulations are probabilistic in
nature, we have performed runs with 100000 time steps
to obtain some performance metrics. Since the feedback
control is trying to keep the system state at 0, we have
chosen the RMS (root mean square) of the system state
as the first metric. The second metric is the average log-
likelihood (ALL) of the real system state on the distribution
proposed by the estimator. Table I compares these metrics.

These simulations show that the neural network state
estimator behaves in a stable manner for this system.
The performance metrics show that the neural network
estimator performs better than both the EKF and the UKF
even though it is also approximating the state distribution
with a Gaussian distribution.

Estimator RMS ALL
Neural Network 1.2274 -1.2661
Unscented Kalman Filter 1.2399 -1.2915
Extended Kalman Filter 1.2521 -1.2941

TABLE I: Comparison of performance metrics

Fig. 10: The network configuration used for estimating
the state distribution using a mixture of two Gaussians.
The inputs are the parameters for the mixture of two
Gaussians and the system control input. The outputs are
the parameters for the estimated distribution.

Fig. 11: The output of the neural network given in Fig. 10.
The input distribution is the same as in Fig. 6

In order to further show the potential of neural networks
with non-Gaussian distributions, we have also trained the
neural network shown in Fig. 10, to estimate the system
state distribution using a mixture of two Gaussians. In this
case the distribution has 5 parameters; the means and the
standard deviations of the Gaussians (µ1, σ1, µ2, σ2) and
the mixing coefficientc. Fig. 11 shows the estimate of the
neural network for the same input distribution as in Fig.
6. This shows that the neural networks can achieve stable
learning also with non-Gaussian distributions.

VII. CONCLUSIONS

Tracking generic probability density functions under
non-linear transformations and posterior calculations isan
analytically intractable problem. In order to cope with this
intractability, parametric methods most often rely on gaus-
sian approximations calculated from values or derivatives

of the non-linear functions at specific points. Our method
aims to lift both restrictions here. It is applicable to non-
Gaussian distributions, and it produces a result asymp-
totically based on the values of the non-linear functions
at all the points under the initial distribution. The heavy
computation required by this property is performed offline,
during training.

We have shown in this paper that the neural network es-
timators can be trained to be stable even inside a feedback
control loop. Our simulations results further show that the
neural network estimator performs better than the EKF and
the UKF for that example, even though it is approximating
the state distribution with a simple Gaussian.

Parametric filters usually behave well in many regions
of the parameter space, where the non-linearities are mild.
However, they produce unreliable results close to strong
non-linearities. Our method can be used to improve other
filters in those regions by including them as a block inside
the network. The neurons can be suppressed outside those
regions to avoid interference.

The parameter estimation problem is a very sound appli-
cation for the neural networks, because the approximated
function is well defined and it is possible to calculate it.
Therefore, the available data for training is unbounded, and
overfitting is not a possible problem. By simply increasing
the number of neurons and synapses, one can improve the
accuracy. The fact that the training is offline and it is easily
parallelizable enables the use of very complex networks.

Once the generic training algorithms are implemented, it
is very fast to apply the method to a given system. It simply
requires the state transition and measurement functions of

the system, without even the need to calculate derivatives.

REFERENCES

[1] Z. Chen, “Bayesian filtering: From kalman filters to particle filters,
and beyond,” McMaster University, Tech. Rep., 2003.

[2] R. E. Kalman, “A new approach to linear filtering and prediction
problems,”Transactions of the ASME Journal of Basic Engineer-
ing, no. 82 (Series D), pp. 35–45, 1960.

[3] S. Julier and J. Uhlmann, “A new extension of the kalman filter to
nonlinear systems,” inInt. Symp. Aerospace/Defense Sensing, Simul.
and Controls, Orlando, FL, 1997.

[4] F. Daum, “Solution of the zakai equation by separation of variables,”
IEEE Transactions on Automatic Control, vol. 32, no. 10, pp. 941–
943, 1987.

[5] D. Brigo, B. Hanzon, and F. LeGland, “A differential geometric
approach to nonlinear filtering: the projection filter,”IEEE Trans-
actions on Automatic Control, vol. 43, no. 2, pp. 247–252, 1998.

[6] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J.Jansson,
R. Karlsson, and P. J. Nordlund, “Particle filters for positioning,
navigation, and tracking,”Signal Processing, IEEE Transactions
on, vol. 50, no. 2, pp. 425–437, 2002. [Online]. Available:
http://dx.doi.org/10.1109/78.978396

[7] H. Tanizaki, “Nonlinear and non-gaussian state space modeling
using sampling techniques,”Annals of the Institute of Statistical
Mathematics, vol. 53, no. 1, pp. 63–81, 2001.

[8] R. Chen and J. S. Liu, “Mixture kalman filters,”Journal of the
Royal Statistical Society. Series B, Statistical Methodology, vol. 62,
no. 3, pp. 493–508 and 2 680 693, 2000.

[9] J. S. Liu and R. Chen, “Sequential monte carlo methods for dynamic
systems,”Journal of the American Statistical Association, vol. 93,
pp. 1032–1044, 1998.

[10] K. C. Kiwiel, “Convergence and efficiency of subgradient methods
for quasiconvex minimization,” Mathematical Programming,
vol. 90, pp. 1–25, 2001, 10.1007/PL00011414. [Online]. Available:
http://dx.doi.org/10.1007/PL00011414

[11] E. Bayramoglu, S. Hansen, O. Ravn, and N. K. Poulsen, “Deriva-
tive free filtering using kalmtool,” presented at: 13th International
Conference on Information Fusion, FUSION 2010 : Edinburgh, UK,
2010.

