This is a preprint version of the paper entitled “Privacy in Indoor
Positioning Systems: A Systematic Review”, presented in the
2020 International Conference on Localization and GNSS (ICL-
GNSS)

Please cite this paper as:

S. Holcer, J. Torres-Sospedra, M. Gould and |. Remolar, "Privacy in Indoor Positioning
Systems: A Systematic Review", 2020 International Conference on Localization and
GNSS (ICL-GNSS), Tampere, Finland, 2020.

DOI
https://doi.org/10.1109/ICL-GNSS49876.2020.9115496

Publisher Name
|[EEE

Electronic ISBN
978-1-7281-6455-7

Print on Demand (PoD) ISBN
978-1-7281-6456-4

Electronic ISSN
2325-0771

Print on Demand (PoD) ISSN
2325-0747



Privacy in Indoor Positioning Systems:
A Systematic Review

Sylvia Holcer*®, Joaquin Torres-Sospedra*-

Michael Gould*:

, and Inmaculada Remolar™

*Institute of New Imaging Technologies, Universitat Jaume I, Castellon, Spain
tUuBIK Geospatial Solutions S.L., Castellén, Spain

Abstract—This article presents a systematic review of pri-
vacy in indoor positioning systems. The selected 41 articles on
location privacy preserving mechanisms employ non-inherently
private methods such as encryption, k-anonymity, and differential
privacy. The 15 identified mechanisms are categorized and
summarized by where they are processed: on device, during
transmission, or at a server. Trade-offs such as calculation
speed, granularity, or complexity in set-up are identified for
each mechanism. In 40% of the papers, some trade-offs are
minimized by combining several methods into a hybrid solution.
The combinations of mechanisms and their levels of offered
privacy are suggested based on a series of user mobility cases.

I. INTRODUCTION

The Global Navigation Satellite System (GNSS) provides
accurate location readings when outdoors, but it is not effective
in indoor environments [1]. People on average spend 90%
of their time indoors [2] yet there is no standardized Indoor
Positioning System (IPS) fitting in all possible scenarios.
Research in IPS is improving in accuracy, energy efficiency,
and calculating speed [3], but privacy continues to lack
definitive solutions [4]. The same level of privacy should be
applied to location data as any other demographic data such
as age, gender, income, education level, occupation, etc. Any
combination of demographic data with location data, even
coarse location data such as a postal code, might be enough
to personally identify an individual.

Privacy is a growing concern as the number of wearable
and Internet of Things (IoT) devices collecting location data
continues to grow [5]. De Montjoye ef al. [6] studied the
mobility traces of smartphones and state that human mobility
is highly unique. They conclude that four randomly chosen
spatio-temporal points are enough to uniquely identify 95% of
the individuals. Loss of location privacy has serious implica-
tions. Location information reveals home addresses, company
travel, and visits to sensitive areas such as medical clinics,
client locations, political events, etc [7]. This underlines the
necessity to research privacy in IPS.
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The General Data Protection Regulation' (GDPR) was
created by the European Union to lawfully protect the personal
data of its citizens. It states that personal data should be
processed in a fair and transparent manner, for its intended
purposes, keeping only what is necessary, with justified storage
times, in a secure, confidential, accurate and accountable
manner. The regulation defines personal data to include lo-
cation data, which can identify a natural personal directly
or indirectly. Therefore, privacy of location data guarantees
the user that either they control the access to their data by
others, or that their data gets processed in order to not contain
any personally identifiable information. Liu ef al. [8] look at
all applications of location privacy. Their review summarizes
location information as a three-part tuple <identity, position,
time>, yet it is possible to lose privacy based on spatial
information without time, using frequency alone to determine
the likelihood of revisits by a user. They posit that users
need to be guided to help them select the most appropriate
Location Privacy Preserving Mechanisms (LPPM), and that
there has been some research about automatically determining
or recommending personalized privacy settings. Most of them
rely on previous social media privacy settings.

The most prominent IPS technology is Wi-Fi [9] because
it is relatively quick to implement, especially when using
the fingerprinting method. In this case, privacy is two-fold.
Allowing the Localization Server (LS) access to the user’s
measurements gives it the possibility of tracking the user
within the building. This may include continuous tracking,
keeping historical records of the user’s location, and sharing
these locations to third parties without the user’s knowledge.
On the other hand, if the LS sends its database (also called
a radio map) and algorithms to the user to let them calculate
their location on their own, then the LS loses its privacy and
can be abused by an adversary. Building and room layouts
and all Access Points (APs) locations might be confidential
to the operations of a military, hospitals, airports, government
offices, etc.

Due to the ubiquitous presence of IPSs and location-based
services (LBSs) in our personal devices, such as smartphones
and wearables, we consider necessary to review the different
mechanisms to enhance location privacy on those devices.
Thus, this paper aims to systematically review all LPPMs
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in IPS in order to discuss the current trends and analyze
the possible lines for future work. The review is based on
the PRISMA guidelines proposed in [10] to assess the pros
and cons of a health care intervention with a wide array of
systematic reviews and meta-analyses.

The remainder of this paper is organized as follows. Section
II describe the methodology used for the systematic review and
the datasets considered for the search. Section III introduce
the main results retrieved from the search of related literature.
Section IV discusses the current solutions and draws the lines
for future work.

II. METHOD

The literature review follows a systematic review scheme
proposed in the PRISMA guidelines. The search was per-
formed on the Scopus and Web of Science databases. The
results were combined (360 + 351 = 711) and the 229
duplicates were removed. Afterwards, 122 totally unrelated
titles were removed from the combined list. The inclusion
criteria are that the articles must use privacy preservation
mechanisms in their work about indoor positioning systems.
Exclusion criteria are sources that are not in the English
language, are published before 2015, and that are not articles
or conference papers. The search queries and results are
reported in Table I. Filtered audio, video, or device-free indoor
positioning systems are inherently private because they do
not contain any personally identifiable information in order to
operate, therefore the papers using these also were excluded.

TABLE I
SEARCH QUERIES AND RESULTS OBTAINED WITH THE TWO SCIENTIFIC
DATABASES

Web of Science Scopus

Search terms

TITLE-ABS-KEY (indoor AND
(privacy OR ethic*) AND (lo-
cati* OR locali* OR navigat* or
posit* or track*))

Search terms

TS = (indoor AND (privacy OR
ethic*) AND (locati* OR lo-
cali* OR navigat* or posit* or
track®))

Results
436 documents in English

Results
360 documents in English

Meeting 182 Conf. paper 208
Article 178 Article 120
Other 18 Conf. review 87
Patent 14 Review 9

Clinical Trial 2 Book chapter 2

Editorial 2 Book 2
Review 2 Editorial 1
Book 1 Note 1

Early access 1 Undefined 2

A. Overview

III. RESULTS

41 articles fit the previously described inclusion and exclu-
sion criteria [9, 11-50]. Several dimensions of this literature
were explored: the technology used, the localization method,
and the LPPMs. Wi-Fi was used in 70% of the papers.
The remaining 12 papers either did not explicitly mention

Inherent

Location On device ------- Local calculations middleware

Privacy

Not inherent Transmission ---- Encryption

(in that, Paillier's cryptosystem
Atserver =3 \ anonymity
i Map of devices
i Differential privacy
i Obfuscation/perturbation

Fig. 1. Location privacy categories.

which technology was used, had used several, or had too few
counts to consider meaningful correlations. The localization
algorithms yielded similar results. Received Signal Strength
(RSS) fingerprinting was used for most Wi-Fi localization, and
there were only 2 papers that used trilateration, therefore these
dimensions were not pursued.

All the LPPMs can be categorized into one of three groups
based on the processing of the location data: on-device, during
transmission, and at the server (see Fig. 1). Each of the
methods will be summarized below.

B. On device

One way of dealing with keeping location information
private from the LS is by keeping all localization calculations
on the device itself. Schauer et al. [45] concentrate on passive
Wi-Fi readings to estimate indoor location on the user’s device
in a method they call beacon-based fingerprinting. A model-
based signal propagation algorithm was devised in [43] with
specially developed firmware for Wi-Fi modules.

The PL-Protector middleware [25] is built between the
platform component layer and the application layer. It prevents
Google’s fused location service from reaching the application
location request, and instead apply privacy rules on cached
locations. It is the only privacy solution that seriously con-
siders the seven tenets of the Privacy-by-Design framework
proposed for developers for socially acceptable and user-
friendly privacy. The middleware’s drawbacks include being
exclusive for Android systems, and initial set up requiring
some technical knowledge which might be outside the scope
of the technical abilities of some users. Locally computed
positions and middleware are complex to implement because
they require the technical background knowledge.

C. Transmitted data

Fig. 2 shows that encryption is the most popular mecha-
nism, probably because it is a common solution for securely
transmitting data. The papers that use encryption aim to
balance semi-honest security models with good estimation
accuracy and low computational overhead. Pseudo-certificates
in [34] rely on trusted third parties (Certificate Authorities) for
their protocol. The IMAKA-Tate method [16] is built upon a
three-way handshake, using encrypted public keys exchanged
between each side. In the OTPri method [50], the user’s mobile
locally computes its location with an oblivious transfer. In
this process it reveals several vicinity AP identifiers, which
exposes a coarse-level location that can still be abused by
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an inference attack. The PILOT method in Jarvinen et al.
[20] combines RSS quantization and an outsourcing protocol
with semi-trusted third parties to make an efficient localization
scheme for large-scale deployment. These encryption methods
take up time and resources to set up, therefore are not easy to
implement. Perhaps a more secure but computationally heavy
approach is applying the Paillier cryptosystem. It allows for
addition operations on encrypted location information against
the fingerprint radio maps. This method is discussed in the
hybrid solutions.

D. On the server

K-anonymity, spatial obfuscation, and differential privacy
are three main privacy mechanisms that are implemented on
a server with the localization information received from a
device.

K-anonymity is a method that aims to guarantee privacy,
by establishing that a single user cannot be identified from
k — 1 other users. Consider the following database in Table II.
Users 2 and 3 cannot be distinguished from each other, there
for k = 2. Possible identifiers, such as names or postal codes
have been altered to reduce the information of the database.

Li et al. [44] build upon previous K-anonymity attempts
by creating dummy signal strength data that model human
mobility behaviour with a Gauss-Markov mobility model.
Their work is incomplete as it does not consider indoor
physical constraints such as walls. This knowledge can be
exploited by an adversary to filter out unrealistic dummy
signals. Furthermore, any form of anonymization cannot effec-
tively protect users from inference attacks. It has been proven
that auxiliary information can be used to re-identify users.
Netflix released an anonymized database of 100 million movie
reviews of 500,000 users. In 2008, researchers demonstrated
that by linking the data with movie rating from Internet Movie
Database (IMDB), a movie database website, 99 of the unique
records were identified with 8 movie ratings (allowing 2 to be
wrong) and dates that have up to a 14-day error [51].

TABLE II
EXAMPLE OF K-ANONYMITY

User # Gender Postal code  Condition

1 M 12-XXX diabetes

2 F 12-XXX migraines

3 F 12-XXX migraines

4 F 12-XXX food allergy

Spatial obfuscation (or cloaking) reports a different area to
the LS than the actual one. The work by [38] has each user
work collaboratively by sending their RSS measurements to a
chosen leader, which then adds specially adjusted noise to the
data before sending it to the LS. The use of the collaboration
prevents inference attacks, but also should use a trust system
within the network to deter malicious agents.

Randomization of Media Access Control (MAC) addresses
consists of sending the LS a fingerprint with frequently chang-
ing device identification, to prevent the LS from gathering a
history of readings from a single device ID. However, ran-
domization itself is not a simple mechanism. Armengol ef al.
[17] mention that there are issues with of address collision and
network disruptions. In another paper, [52] demonstrate that
BLE-based location tracking and analytics are possible even
when the MAC addresses are randomized. The trackability is
possible due to the low frequency of MAC address changing,
and the original information contained in the UUID and the
probe request field.

Permutation adds controlled or random noise to the RSS
data. A specific use of permutation is used in differential
privacy. Differential privacy is a mathematical method of
releasing aggregate statistics of a database for analysis without
the release of personal information. It satisfies the condition
that any sequence of responses to database queries are almost
equally likely to occur, regardless of the presence or absence
of any individual. There are many algorithms to achieving
differential privacy. Their main task is to add random choices
and the level of privacy is set by the epsilon ¢ parameter.
The randomness is determined with a Laplacian or exponential
mechanism. The smaller the e, the better the privacy will be,
but since more randomness is added, the accuracy of the output
decreases. In [33] the user sends a sample of the AP sequence
to the LS. Then, the sequences reference points are grouped
into k clusters, and differential privacy is used to mask the
real centers of the AP clusters.

E. Hybrid methods

Privacy is difficult to implement because there is no ideal so-
Iution. Table IIT summarizes the disadvantage of each method.
Of the 41 papers, 40% use two or more LPPMs. Eshun e al.
[40] develop a system to allow the LS to query the user’s
position without them losing their privacy, for example to
track employees in a work environment. They assume that
both parties are distrusting, therefore it is a secure multi-party
computation problem. Their solution is to use a probabilistic
data structure called the Spatial Bloom filter (SBF) with an



TABLE III
MAIN DISADVANTAGES OF THE DIFFERENT LOCATION PRIVACY
PRESERVING MECHANISMS (LPPM).

LPPM Disadvantage
encryption, Complex computations cost more
Paillier cryptosystem  time and processing resources
perturbation,
differential privacy, Lowered accuracy reduces utility
obfuscation
k-anonymity, .

yruty Trusted servers, inference attacks
randomization
middleware,

local calculations Complex implementation

efficient decision algorithm that is then encrypted using the
Paillier cryptosystem. They design a system that allows the
user to hide their location from the SP when in a sensitive area.
They also include some permutation of the filter so the server
cannot reconstruct it after decrypting it. Armengol et al. [17]
use two algorithms to reduce the communication overhead of
data encrypted with the Paillier cryptosystem. The paper [15]
relies on protecting the privacy of the crowdsourcing users pro-
viding RSS measurements for the offline fingerprinting phase
by receiving their data perturbed with differential privacy and
encrypted with the Paillier cryptosystem.

Most of proposed solutions combine two LPPMs to enhance
the location privacy. However, there is no winner combination
as each author combines different approaches (see Table IV).

TABLE IV
HYBRID SOLUTIONS

LPPM 1 LPPM 2 Ref.
encryption encryption [32]
encryption Hilbert curve [46]
encryption local calculations [50]
k-anonymity bloom filter [21]

k-anonymity differential privacy [28]
k-anonymity Hilbert curve [48]
local calculations obfuscation [37]
local calculations differential privacy [18, 30, 39]
local calculations randomization [14]
Paillier cryptosystem  differential privacy [13, 15]
Paillier cryptosystem  local calculations [36]
Paillier cryptosystem  spatial Bloom Filter ~ [40]
perturbation randomization [22]

FE. Other approaches

A couple of papers included in the review focus on breaking
existing privacy mechanisms. In [9], the PriWFL method is
proven to be faulty. A malicious client can fabricate queries
to the LS with RSS values set to zero for the APs that are
presumed to be far away from the user. The LS does not notice
that the query is not genuine because it is encrypted with a
Paillier cryptosystem. This way the attacker can extract the
entire Wi-Fi fingerprint database from the LS.

Zheng et al. [53] develop a location inference attack using
smartphone’s inertial sensors, deploy BLE beacons to obtain
the readings and for labelling sensitive areas, and mining

techniques for the movement patterns and environment data.
Side channel attacks are possible sources of threats to security
and privacy. Zhang et al. [35] propose a map as a countermea-
sure for channel state information-based attacks. They direct
a user to a location where Channel State Information (CSI)
readings are difficult to analyze. In another study [19], small
COTS drones are deployed in an indoor environment to detect
and map all present IoT devices. Such information is useful
to find rogue devices or tracking personal employee devices
which might not be permissible in certain private environments
(operation rooms or corporate meetings).

IV. DISCUSSION AND FUTURE WORK
A. Criticism

While the concepts of security and privacy overlap, they
are not the same. Data security ensures users that their data
is not seen by anyone with unauthorized access. It should be
distinguished from data privacy, which is an active method of
controlling the access to personally identifiable information.
Data that is properly secured through encryption can still
reveal a user’s identity by being shared or sold to third parties.
For example, a NBC News article from March 7th, 2020
reported that Google sent a notification to a user that police
have obtained a warrant to receive all location data from his
device on the premise of being at the same time and place as
a crime scene under investigation?.

B. Privacy settings

Many of the papers excluded from this survey rely on
device-free positioning by analysing acoustic, infrared, Radio-
frequency Identification (RFID), or ultrasound signals to esti-
mate locations. A significant application of this method is in
Ambient Assisted Living, where patients require non-invasive
motion analysis to infer activeness and physical positions. This
demonstrates that avoiding privacy issues altogether is possible
in many cases where the purpose of localization is unrelated
to personal mobile devices.

The reason that many of these indoor positioning systems
are developed is to support indoor LBSs. The survey of all
ongoing evolutions of LBSs [54] mentions that some indoor
LBSs providers and LS providers are the same entity. It is
for these situations the following suggestions will make the
most impact. Other LBS applications rely on Google’s fused
location Application Programming Interface (API) or one of
Apple’s location services, in which only a system override
such as the middleware solution would be able to control the
information sent from the location request to the LBS.

Different LBS require different kinds of location data; there-
fore, the level of privacy varies between them. The suggested
levels of privacy in Table V show that certain privacy pre-sets
might be appropriate based on the type of user. Additionally,
a user type can have either a high (H) or a low (L) probability
of using the indoor LBS.

Zhttps://www.nbcnews.com/news/us-news/google-tracked-his-bike-ride-
past-burglarized-home-made-him-n1151761



TABLE V
SUGGESTED LBS FUNCTIONS ACCORDING TO THE LEVEL OF PRIVACY

Levels of privacy:

Suggested LBS functions

Suggested LPPM

1: No personal data is needed in the service.
2: Personal data adds value to the service.
3: Personal data is needed in the service.

item retrieval, navigation, POI suggestion
fitness tracking, marketing
research, emergency, social networking

Homomorphic encryption hybrids
Local calculations, differential privacy
Differential privacy, encryption, trusted servers

TABLE VI
SUGGESTED PRIVACY PROFILES AND INFLUENCE OF MOBILITY ON LBS

\ Profile \ Soc. Network  Marketing ~ Navigation  Item retrieval Research ~ Emergency  Fitness Tracking  POI Suggestion \ Total \
Tourist H.3 H,2 H,1 L.- H,3 H.3 H,2 H,1 15
Static Worker L,- L,- L,- H,1 L,- H,3 L,- L,- 4
Moving Worker H,3 H,2 H,1 L,- H,3 H,3 H,2 H,1 15
Student H,2 H.,2 L.- L.- L.- H.3 H,2 H,1 11
Elderly L.- L.- H,1 H,1 L,- H,3 L,- L.- 5
The first level of privacy is the most basic one, that is, REFERENCES

mostly inherently private. It is assumed that to find things
and places in a user’s vicinity, the LBS provider should only
require the location data without any other information. If
the LBS is collecting user information with permission, it
should do so in a fast and secure manner. In a marketing
scenario, there is a high trade-off between sharing privacy
and motivation. Chances are that companies want to collect
fine resolution trajectory data about its customers in return for
sales discounts. Many have already employed loyalty reward
systems that collect personal data with purchase history and
store-level localization. These work on an opt-in basis, which
should be carried over to indoor localization scenarios. When
customers connect to store Wi-Fi, they should be notified in
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certain LBS function was estimated, then the levels of privacy
were applied to those with high probabilities to establish a
score. The conclusion of Table VI is that the more mobile
a user is, the more they will explore less-known areas and
require more functionality and more privacy from LBSs. This
hypothesis could be tested in future studies.
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