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PDES LEVEL SETS ON WEIGHTED GRAPHS

Xavier Desquesnes, Abderrahim Elmoataz, Olivier Lezoray

Université de Caen Basse Normandie
GREYC - UMR CNRS 6972
6.Bvd Marechal Juin, 14050 Caen, FRANCE

ABSTRACT

In this paper we propose an adaptation of PDEs level sets over
weighted graphs of arbitrary structure, based on PdEs and us-
ing a framework of discrete operators. A general PDEs level
sets formulation is presented and an algorithm to solve such
equation is described. Some transcriptions of well-known
models under this formalism, as the mean-curvature-motion
or active contours, are also provided. Then, we present sev-
eral applications of our formalism, including image segmen-
tation with active contours, using weighted graphs of arbitrary
topologies.

Index Terms— PDEs, level sets, graphs, eikonal equa-
tion, front propagation.

1. INTRODUCTION

The partial differential equations (PDEs) provide a major
mathematical tool in image processing, and are involved in
the resolution of many problems such as image segmentation,
object detection, image restoration or denoising, and so on.
In this paper, we focus on the geometric PDEs for front prop-
agation and their implementation by level set methods. The
level set formulation to describe the curve evolution has been
introduced by Osher-Sethian [1]. It provides well-known
advantages such as treating self-intersections or topological
changes and can be easily extended to IRY with d > 1. Given
a parametrized curve I : [0, 1] — £, evolving on a domain 2
due to the effect of a scalar field 7 : 2 — IR. The level set
method aims to find a function ¢(z, t) such that at each time ¢
the evolving curve I'; can be provided by the 0-level set of ¢.
In other words I'; = {z|¢(x,t) = 0} and the curve evolution
can be done solving

o¢

5 =7 Ve, ey
with initial condition ¢(x,0) = ¢o(z), the initial embed-
ding of I'. A well known example of geometric PDEs in
image processing is the mean curvature motion (MCM),

%‘f = |V¢|V. (%), which found application in image
denoising. One can also quote the active contours mod-
els summarized by % = [aV.(9(|IVe|)Ve) + BF] |V

b}

where ¢ is an edge detection function (g satisfies g(z) — 0
when  — o0), a and (3 are application dependent. Many
variations of active contours models can be found in litera-
ture. One can remark that when J is positive or negative,
equation (1) describes respectively morphological dilation
and erosion process.

The level set approach to perform a front propagation is
popular and literature is rich of efficient resolution methods.
See [2] and references therein. Most of applications of these
PDE based models focus either on image processing on Eu-
clidean models, or on structured meshes. However, many
other interesting applications involve data defined in more
topologically complex domains: data defined on manifolds
or irregularly shaped domains, data defined on network-like
structures, or data defined as high dimensional point clouds
such as collections of features vectors.

Thus, the objective of this paper is to extend this PDE
based front propagation concept to graphs of arbitrary topol-
ogy. Such a formulation enables the processing of a huge
variety of discrete data that can be represented by a weighted
graph, with applications in data clustering or image segmen-
tation. Then, we propose to exploit the framework of PdEs on
weighted graphs [3], to overcome the difficulties inherent in
the geometric nature of the PDEs and propose a general for-
mulation of geometric PDEs on graphs. Thus, we use a level
set function ¢ : V' — {—1, 1} as an implicit representation of
the front and the evolution equation is given by

0

20 — FIV 6| = max(F, 0)[ Vol + min(F, 0V o),
2)

where |V, ¢| and |V ¢| are discrete versions of the gradient

on graphs, which are defined in the sequel.

2. PARTIAL DIFFERENCE EQUATIONS ON
WEIGHTED GRAPHS

We begin by briefly reviewing some basic definitions and op-
erators on weighted graphs.



Notations and Definitions. We assume that any discrete
domain can be modeled by a weighted graph. Let G =
(V, E,w) be a weighted graph composed of two finite sets:
V = {uy,...u,} of n vertices and E C V X V a set of
weighted edges. An edge (u,v) € E connects two adjacent
vertices © and v. The weight w,, of an edge (u,v) can be
defined by a function w : V x V. — RT if (u,v) € E, and
Wyy = 0 otherwise. We denote by N (u) the neighborhood
of a vertex u, i.e. the subset of vertices that share an edge
with u. In this paper, graphs are assumed to be connected,
undirected and with no self loops.

Let f : V — R be a discrete real-valued function that
assigns areal value f(u) to each vertex u € V. We denote by
H (V') the Hilbert space of such functions defined on V.

Operators on Weighted Graphs. For better comprehen-
sion of the next Section, we now quickly recall some oper-
ators on weighted graphs as they are defined in [3]. Con-
sidering a weighted graph G = (V, E,w) and a function
f € H(V), the weighted discrete partial derivative operator

of fis

(0uf)(u) = Vwuo (f(v) = f(u)). 3)
Based on this definition, two weighted directional difference
operators are defined. The weighted directional external and
internal difference operators are respectively :

Of f(u) = /wyy(f(v) — f(u))" and
9y f(u) = —/wu (f(v) — f(u))”

with (z)* = max(0,x) and (0)~ = min(0, z).
The weighted gradient of a function f € H (V) at vertex u is
the vector of all edge directional derivatives :

(V)W) = (0sf() (4 )er ©)

And the weighted morphological external and internal gradi-
ent (Vi f)(u) and (V, f)(u) are :

“

T

(Vi) = (0 f)w) ©)

(u,v)EE

Finally, the graph curvature [4] is given by:

Rw(u) =Y 7 (u0)(f(u) = f(0)), N

VU

with 'YIU(U>U> = wuv(lvwf(v)‘_l + |wa(u)|_1).

PdE based Morphology Let us consider .4, a subset of V.
The outer and inner boundary sets of A are respectively de-
noted 9t A and 9~ A. With 0T A = {u € A°|Fv € A,v ~
u}and 0~ A = {u € A|Fv € A°,v ~ u} where A€ is the
complement of A. It was recently shown [3] that for any level
set f* = x(f — t) of a function f, at a vertex u € V, the £,
norm of the gradient (V,, f)(u) can be decomposed as

(VY@ = (V@ + (V@G- ®)

Based on these formulations, the discrete analogue of the
continuous PDEs based dilation and erosion formulation can
be defined as shown in the sequel.

Continuous scale morphology [5] defines flat dilation ¢ :
IR®™ — IR™ and erosion ¢ : IR®™ — IR™ of a function
f%: IR™ — IR by structuring sets B = {x : ||z, || < 1}, with
the general PdEs

90(f) Oe(f)
a5t Ouf =+[IVf|pand ot of=—-IVIly
©))
Recently, graph based versions of these PdEs have been pro-
posed in [3] as

%ﬁu» = 0 f (u) =+ (V5N @), (10)
and
0 _ o, ) = —|(Vap@l, A

Remarks. In the sequel we will always consider the Lo norm.

3. TRANSCRIPTION OF GEOMETRIC PDES ON
GRAPHS

In this section, we present our transcription of geometric
PDEs on weighted graphs of arbitrary topology and a new al-
gorithm to describe the propagation of a front on such graphs.

Let G(V, E, w) be a weighted graph. A front evolving on
G is defined as a subset 2y C V/, and is implicitly represented
at initial time by a level set function ¢o = Uy = xa, — Xag»
where x : V' — {0, 1} is the indicator function and Qf is the
complement of 4. In other words ¢¢ equals 1 in 2y and —1
on its complementary.
Then, from the general equation (1) transposed on graphs, the
front propagation can be described by

92 (u) = F(u)[[ (Vo) (w)]|
ot
{%(U) = Uo, -

with F € H(V),andw : V x V — R is the weight func-
tion. Based on the previous definition of discrete dilation and
erosion on graphs (9), (10), the front propagation can be ex-
pressed as a morphological process with the following sum of
dilation and erosion.

{?)‘f(U) = (A NVEo) @+ (F) (Vo) (w)ll
¢o(u) = Uy

(13)
To solve this dilation and erosion process, on the contrary to
the PDEs case, no spatial discretization is needed thanks to
derivatives directly expressed in a discrete form. Then, the
general iterative scheme to compute ¢ at time ¢ + 1 for all



u € V is given by:

¢ (u) = ¢ (u) + At [(F(u)"[(VE0") (w)ll+
(F ()~ I1(Vod") (w)ll]

Ateach time t+1, the new value at a vertex u only depends on
its value at time ¢ and the existing values in its neighborhood.
This equation can be split in two independent equations, in
function of the sign of F:

(14)

54 ) = {aﬁt(u) + AMF@I(VES) @ Flu) >0
¢'(w) + MF|(Vio) W] Flw) <0,
s)

Such decomposition of the process in two independent equa-
tions for erosion and dilation processes enhances the compu-
tation of the solution because one only has to compute one
morphological gradient at each iteration, for a given vertex.
Moreover, one can remark that at initialization both two gra-
dients are zero everywhere, except for vertices which lies in
the inner and outer boundaries of £2g. Then, the set of vertices
to be updated at each iteration can be restricted to two inner
and outer narrow bands, initialized respectively with 9~
and 07 and updated over time with neighbors of vertices
already in. The narrow bands growth follows the fronts evo-
lution and to avoid them to become too large, the narrow
bands are reinitialized periodically. Thus, each 7 iterations,
which correspond to a step k, the front is given by the set
Q. = {u|#*"(u) > 0} and the associated level set function is
also reinitialized as ¢y, (u) = Uy, = xq, (v) — xag (v). Then,
the inner and outer narrow bands are respectively reinitialized
as 0~y and 617 Q,.

The entire process to perform the front evolution is summa-
rized in Algo. 1 and some examples will be provided in the
sequel. The condition to stop the algorithm is application de-
pendent.

Algorithm 1 Resolution
Initialization:
L+ {uluedtQoudQo},t« 0,07 < 0,k + 0.
loop
for allu € L do
compute ¢ (u)
L+ LU{vlve N(u)}
end for
0T < 0T +1
if 07 = 7 then
k+ k+1,Q = {ul¢t(u) > 0}
L+ {uluedtQua, }, ot + 0
o' = X0, (u) — xag (u)
end if
t—t+1
end loop

Eikonal Equation Using PDEs, and in the case where F
is defined non-negative on the whole domain §2, the relation
between the level set formulation (1) and the well-known
eikonal equation (F(z)||VT(z)| = 1) stems from the fol-
lowing change of variable : ¢(x,t) =t — T'(x) (where T'(x)
is the arrival time of the curve at a point x).

Using previous definitions of morphological evolution equa-
tions, one can formulate the same relation and obtain a PdEs-
based version of the eikonal equation, defined on weighted
graphs of arbitrary topology. Let G(V, E, w) be a weighted
graph (with functions T and F defined on #(V')). Because
F is defined non-negative, the evolution process described
by equation (12) can be seen as a dilation process and the
evolution equation rewritten as

0

2 ) = FIV56) ). (16)
With a similar change of variable ¢(u) =t — T'(u), we have
00 . )
3¢ (W =FI(Vyt=1))(w)ll = FI(Vy,T)(u)ll, and then,

and then,
FI(VLT) ()] = 1. (17

Numerical schemes and algorithms to solve such equation
were provided in [6].

4. EXAMPLES

Mean Curvature Motion From the general morphologi-
cal curve evolution equation (13), the mean curvature motion
equation can be written as follows, where the speed F is given
by the opposite of the graph curvature (??) :

96 — {m;ﬁ(u)uwm(um :
ot IR @II(Vae) @I,

(u) <0
(u) >0

S

¢
5 (18)

where k% is the graph curvature. Figure 1 presents an ex-
ample of front regularization on an arbitrary graph, using the
mean curvature motion.

Active Contours The following example will illustrate
graph-based versions of eikonal equation and active contours,
with our formulation of PDEs level sets on graphs, in a unique
application. For this example, we adapt the well-known Chan
& Vese active contour model [7] on weighted graphs. Using
equation (13), the speed F is then defined as

Flu,t) = BKuw(u) + o ((u = p1(8)? = (u — pa2(1))?)
19)
where IC,, is a term of curvature, p1 and po are the mean out-
side the curve, respectively inside. « and [ are application
dependent. The active contour evolution is performed on a
reduced version of the initial image, a region adjacency graph
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Fig. 1. An illustration of mean curvature motion on an arbi-
trary graph. The graph is weighted by a constant weight func-
tion (w = 1). Top-left image shows the initial front. Other
images show the regularization of the front at different steps.

Fig. 2. An illustration of PDEs level set on graphs. The initial
image is decomposed in regions using the eikonal equation,
and a weighted RAG is built from the resulting region map.
First row shows the initial image with superimposed initial
front location and the region map. Second row shows the
evolution of the active contour (red dots) on the graph (pre-
sented in blue) using PDEs based active contours. Third row
presents the final contour on the graph, and its transposition
on initial image. See text for details

(RAG), obtained from a superpixel decomposition. Such de-
composition is performed using a regular-grid of seeds, which
are dilated on the image 4-adjacency-grid graph using the
PdEs based version of the eikonal equation (16). The result-
ing region map is then transformed in a second graph (the
RAG) where each node is associated with a superpixel and
edges represent the adjacency between superpixels. The two
weight functions are computed from pixels intensity, respec-
tively regions mean intensity. A detailed description of the
method can be found in [6]. One can remark that due to its
construction the second graph is irregular. Then, the active
contour evolution is performed on this second graph, using
our formulation of active contours on weighted graphs and
Algo. 1. Finally, the contour at convergence of the algorithm
is transposed from the graph to the region map and then to
the original image. Figure 2 presents each steps of the entire
process.

5. CONCLUSION

In this paper, we have presented an adaptation of PDEs level
sets over weighted graphs, based on PdEs and using a frame-
work of discrete operators. An algorithm to solve the pro-
posed equation was also provided. Experimental results have
shown the potentiality of the proposed formulation of PDEs
level sets and its adaptivity to graphs of arbitrary topology.
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