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Abstract—A large component and service-based software sys-
tem exists in different forms, as different variants targeting
different business needs and users. This kind of systems is
provided as a set of “independent” products and not as a
“single whole”. Developers use ad hoc mechanisms to manage
variability. However, for deriving new product variants that
are built upon existing ones, the presence of a single model
describing the architecture of the whole system with an explicit
specification of commonality and variability is of great interest.
Indeed, this enables them to see the invariant part of the
whole, on top of which new functionality can be built, in
addition to the different options they can use. We investigate
in this work the use of software product line reverse engineering
approaches, and in particular the framework named But4Reuse,
for recovering an architecture model that enables us to build
a Software Architecture Product Line (SAPL), from a set of
software variants. We propose a generic process for recovering an
architecture model of such a product line. We have instantiated
this process for the OSGi Java framework and experimented it
for building the architecture model of Eclipse IDE SPL. The
results of this experimentation showed that this process can
effectively reconstruct such an architecture model.

I. INTRODUCTION

Software Product Line (SPL) Engineering (SPLE) considers
the existence of a single model describing all the variants that
implement each architecture element.

The particularity of this “single” architecture is that it
includes what is refereed as a variability model (also called
feature model), in which variability and commonality are
explicitly specified using high level characteristics of the so-
called features [1]. These are then mapped to components,
which are organized according to the identified features. Prod-
uct variants can be derived (generated) by choosing the desired
features, then SPL tools choose and assemble the appropriate
components mapped to the selected features [1]. During recent
years, multiple approaches have been proposed addressing
SPL implementation, or product derivation [1], [2]. However,
there are many systems that exist as several “independent”
variants and not as a “single whole”. Indeed, large component
and service-based software systems exist in different forms,
as different variants targeting different business needs and
users. For example, IDEs like Eclipse, exist as several variants
targeting different kinds of software engineers. These systems

often use ad hoc mechanisms to manage variability and they
do not take complete benefits from the SPLE framework.

For developers of new product variants that are built upon
existing ones, the presence of a single model describing the
architecture of the whole system with an explicit specification
of commonality and variability is of great interest. Indeed,
this enables to see the common part of the whole, on top
of which new functionality can be built, in addition to the
different options they can use.

This paper considers the challenge of analysing the source
code of existing variants of component and service-based
software systems to reverse-engineer a software architecture
following that is common to all the existing variants. We call
this constructed architecture Software Architecture Product
Line (SAPL) that represents the unique software architecture
that supports the software product line and common to all the
product variants members of the SPL.

We defend a vision by considering SAPL as a reference ar-
chitecture starting from which the architecture of each product
variant can be derived. Indeed, each derived software variant
can have its own life. This life is regulated by evolution needs
whose origin often depends on the context which is specific to
each product. From the point of view of the responsible on the
maintenance of the product, the architecture is a crucial artifact
for two reasons: i) understand the product before making the
changes, and ii) notify changes made on the product to keep its
documentation compliant with its implementation. However,
the situation where the product variants do not have any spe-
cific architecture raises problems during the maintenance stage
of a product on the two points mentioned above: i) referring to
a generic architecture to understand a given product is a very
difficult task. Knowing that understanding is the most costly
activity during maintenance, this will generate considerable
additional costs. ii) Modifying a generic architecture, to take
into account the modifications made on one of its products, is
a task that is not only difficult and error prone, but also with
unforeseeable consequences on the other products.

Our vision is that the different products (software) can
be created from the same SPL, but must be able to evolve
independently and without constraints. So, our approach to
solving the two problems mentioned above is that the product
line must produce the software architecture of a product, but



not directly the corresponding software. This is what we called
Software Architecture Product Line (SAPL).

We propose in this paper a process for SAPL-reverse-
engineering. This process extends the BUT4Reuse framework,
which is considered as one of the most effective methods for
SPL-reverse-engineering [3], [4]. This framework was pro-
posed as a generic and extensible framework for SPL reverse-
engineering. We extend BUT4Reuse to SAPL reverse-engineer
large component and service-based software systems starting
from a collection of their existing variants. The remaining of
the paper is organized as follows. In Section II, we expose our
SAPL-RE process. In Section III, we present an instantiation
of the process for the OSGi component model. We show the
results of our experiments in Section IV. We finally discuss
the related work in Section V, before concluding the paper in
Section VI.

II. A GENERIC PROCESS FOR SAPL-REVERSE
ENGINEERING

Before presenting the proposed process for SAPL Reverse
Engineering and variant derivation, we first describe the meta-
model supported by our approach.

A. SAPL Metamodel for Component-Based Software Variants

Figure 1 depicts the defined SAPL meta-model which is
used for creating an architecture for a set of component-based
software variants. We have been inspired in the definition
of this meta-model by the feature meta-model in [5]. We
enriched it by adding component-based architecture elements.
An instance of this meta-model serves as a feature model that
represents the variability in a family of software product vari-
ants and a comprehensive architecture (modules / components)
that helps the developer to understand the structure of the SPL
features and the relations between them.

As our meta-model is used for representing the component-
based systems, it has been defined based on an abstract syntax
of a software component model. It is used to represent any
kind of component-based system such as OSGI, Spring, etc.
A generally accepted view of a software component is that it
is a software unit with provided capabilities and a set of re-
quirements. The provided capabilities (ProvidedElement
in our meta-model) can be operations performed by the com-
ponent. The requirements (RequireElement in our meta-
model) are needed by the component to produce the provided
capabilities.

B. SAPL-RE and Component-based Application derivation
process

The goal of the process presented in this paper is to analyze
existing product variants to extract a SAPL with an explicit
specification of commonality and variability. This architecture
can be used to generate new variants using the principles of
SPLE. This extraction is one of the most challenging research
directions identified in the SPL community. Many SPL extrac-
tion approaches have been proposed in the last years. Wesley
et al. [6] present a complete survey on these existing works. In

this paper, we propose to revisit this problem from the software
architecture (SA) perspective.

In this context, we identified five main challenges: 1) How
to extract a software architecture from the source code; 2) How
to compare the architecture variants to identify the common
part and find and name different features; 3) How to construct
the SAPL with an explicit specification of the variability at an
architectural level; 4) How to simplify and reduce the com-
plexity of the recovered architectures. The extraction should
be generic and extensible to support all these different views;
5) Once the SAPL is constructed, one remaining challenge is
related to the derivation process. How the SAPL can be used
to derive new SA variants?

The overall process of our approach to tackle the identified
challenges is illustrated in Figure 2. This process is initially
introduced in our previous work [7], which is substantially
extended in this paper with a detailed specification and a
validation. It is composed of three main activities: 1) Reverse-
Engineering of SA variants; 2) SAPL Reconstruction; and
3) Variants Derivation. In the following, we describe each
activity.

1) Reverse-Engineering of SA Variants: The first activity
in our approach is to use reverse-engineering techniques to
extract a software architecture variant from the source code of
each software variant. As we will see in the next section, the
reverse-engineering of SAs from eclipse variants is based on
the analysis of the configuration files and the source code of
the different components (plugins).

2) SAPL Construction: In this activity, the different SA
variants are analyzed and compared to identify the common
part and the different features. As illustrated in Figure 2, this
activity extends the BUT4Reuse framework to support archi-
tectural artefacts. Indeed, BUT4Reuse [3], [4] was proposed as
a generic and extensible framework to identify features from a
set of similar artifacts. It is extensible by enabling to add dif-
ferent concrete techniques or algorithms for the relevant steps
of feature identification, mining feature constraints, extracting
reusable assets, synthesizing and visualizing feature models.

To support the different types of artifacts, and enabling
extensibility, BUT4Reuse relies on adapters for the different
artifact types. These adapters are implemented as the main
components of the framework. An adapter is responsible for
decomposing each artifact type into the constituting elements,
and for defining how a set of elements should be constructed
to create a reusable asset. Designing an adapter for a given
artifact type requires three main tasks:

• Element identification. The first step is to identify the
Elements that compose an artifact. This will define the
granularity of the elements in a given artifact type. For
the same artifact type, we can select from coarse to fine
granularity (e.g., package level versus statement level for
source code).

• Similarity metrics definition. This task defines a simi-
larity metric between any pair of Elements. An element
should be able to compare its definition with the one of



Fig. 1. SAPL Metamodel for Component-Based Software Variants

another element and return as output a value ranging from
zero (completely different) to one (identical).

• Structural dependencies definition. The purpose of this
task is to identify Structural Dependencies for the Ele-
ments. When the artifact type is structured, the elements
will have containment relations. In the case of architec-
ture artifacts, relations between interfaces, components
and plugins usually capture this information.

In this paper, we extend BUT4Reuse by proposing a new
adapter related to software architectures. In addition to allow
comparing software architectures, this new adapter is designed
with a set of parameters to consider different architectural
views (services, interfaces, packages, extensions, etc).

Once the adapter is implemented, SAPL construction fol-
lows four sub-activities as illustrated in Figure 2.

a) Decomposition in Architectural Elements: The first
step takes as input a collection of architecture variants that are
obtained from the reverse-engineering activity. It decomposes
each variant into a set of Architectural Elements (AEs). The
computed AEs can be of different types depending on the
considered view.

b) Block Identification and Feature Naming: This step
reuses algorithms implemented in BUT4Reuse which auto-
matically identify sets of AEs that correspond to the distin-
guishable features from the SA variants. These sets of AEs are
named Blocks. In this paper, we reused the algorithm called
Interdependent Elements that formalizes block identification
using class equivalences. Once blocks are identified, the next
step is a semi-automatic process where domain experts manu-
ally review the elements from the identified blocks to map
them with the functionalities (i.e., features) of the system.
BUT4Reuse integrates what is called VariCloud [8], a tool
that analyzes the elements inside each block and extracts
words that help domain experts to identify features. VariCloud
uses information retrieval techniques, such as TF-IDF (Term
Frequency Inverse Document Frequency), to analyze the text

describing elements inside blocks. The descriptions used by
BUT4Reuse to build word clouds are thus provided by the
specific adapter. As we will see in the next section, for our
adapter, words correspond to the names of packages, interfaces
and plugins.

c) Dependencies Identification: During this step, the
approach identifies the dependencies between the different
blocks. BUT4Reuse uses the dependencies defined within the
adapter to identify dependencies between blocks.

d) Multi-View SAPL Constrcution: A software architec-
ture of a large system is a complex entity; it cannot be
presented in a single view. One of the most important concepts
associated with software architectures are views. A view is
the result of applying a viewpoint to a particular system
of interest (for instance, service-, interface-, and extension-
oriented views). In this step of our process, we enable the
developer to construct a multi-view SAPL. These views can
help and assist the developer to understand progressively the
SPL.

3) Variants Derivation: In this step, the developer can
select starting from the recovered SAPL a set of features
that meet her/his requirements for deriving the architecture
of the new variant. We provide a graphical tool to visualize
the derived architecture. Once the developer analyzed and
understood this architecture, she/he can derive the new product
as a new variant.

III. INSTANTIATION OF THE PROCESS FOR OSGI
COMPONENT/SERVICE MODEL

We have instantiated the previous process for the OSGi
Java framework, in order to analyze applications like Eclipse.
The OSGi specification defines a component model and a
framework for creating highly modular Java systems [9].
Eclipse-based applications run on top of Equinox which is
the reference implementation of the OSGi specification. It
is a collection of similar software products that share a set



Reverse-Engineering of 
Software Architecture 

Variants

Source code 
Variants 

Software 
Architecture

variants

…

1

Software Architecture Product Line
Construction

Dependencies 
Identification

Multi-views SAPL Construction

Block identification
and Feature Naming

Decomposition In 
Architecture 

Elements

2

Software Architecture Variant Derivation
3

Software Architecture 
Product Line

…

…

Software Architecture 
Variants

…

Views

Fig. 2. Proposed SAPL-Reverse Engineering Process

of software assets. It offers a set of “releases” where each
one is a large-sized Java application composed of hundreds to
thousands of components, registering and consuming hundreds
of services. This complex structure requires a considerable
effort to understand all dependencies when building a new
product. The default Eclipse releases are predefined for target-
ing specific developer needs. Currently, if a developer wants
to create a customized release, she/he has to select one of the
default releases1 (for instance, IDE for C/C++ Developers)
and then manually install new software which meets her/his
requirements. In this paper, we consider Eclipse releases as
product variants and we aim to adopt the SAPL approach
in order to be able to develop efficiently a personalized
Eclipse variant. Before presenting the implementation details,
we introduce the OSGi Meta-Model.

A. OSGi Meta-model

Figure 3 presents our metamodel for the OSGi SAPL. It
is an adaptation of the meta-model in Figure 1 for the OSGi
component model. A component in OSGi is known as a bundle
or a plugin (PluginElement in this metamodel) which
packages a set of Java types, resources and a manifest file.
Plugin dependencies are expressed as manifest headers that
declare requirements and capabilities. The “import-package”
header is used to express a plugin’s dependency upon packages
that are exported by other plugins. The “require-bundle” is

1In https://www.eclipse.org/downloads/packages/release

used when a plugin requires another plugin. The first plugin
has access to all the exported packages of the second. The
manifest file declares also what are the packages that are
externally visible using “export-package” (the remaining pack-
ages are all encapsulated). Furthermore, the Java interfaces
that are present in the exported and imported packages are
considered respectively as the plugin’s provided and required
interfaces (represented by ProvidedInterfaceElement
and RequiredInterfaceElement).

Besides, the OSGi framework introduces a service-oriented
programming model which is a publish, find and bind model.
The registered services with the OSGi Service Registry
are represented by the RegisteredServiceElement,
while a consumed service by a plugin is represented by a
ConsumedServiceElement.

Services are not the only collaboration way between plugins.
Equinox provides a means of facilitating inter-plugin collab-
oration via Extension Registry. Plugins open them-
selves for extension or configuration by declaring extension
points (ExtensionPointElement in this metamodel) and
defining contracts. Other plugins contribute by developing
extensions (ExtensionElement in this metamodel) using
existing extension points.

Our OSGi meta-model allows to produce several SA views
that represent different kinds of plug-in’s capabilities and
requirements. The supported architecture views in this meta-
model are: interface, service, package, and extension views. Of
course these views are not orthogonal, there are intersections



Fig. 3. An OSGi Meta-Model

between each other. But, nobody would be able to understand
the whole system by analyzing all the views together. Thanks
to this meta-model, developers can progressively understand
the system by analyzing each architecture view separately. In
addition, our framework can be easily extended to support
other views in order to cover all the aspects that the developers
need to know when they develop a new variant.

B. Reverse Engineering of the Eclipse Variants

For recovering the SA variants, we analyze the Eclipse
artifacts as follows: i) for each variant, we create a
compositeElement with the name of the variant. ii)
for each plug-in, we create a PluginElement with the
plug-in’s characteristics. iii) we parse the manifest file of
each plug-in to identify the exported and imported pack-
age elements. iv) the provided and required interface el-
ements are identified by analyzing the Java source code
and Bytecode in the exported and imported package folders.
iv) the extension and extension-point elements are identified
by parsing the “plugin.xml” files of each plug-in. v)
Finally, the programmatically registered and consumed ser-
vices are identified by parsing the source code and byte-
code of each class in the plug-in. We parse here the fol-
lowing statements: <context>.registerService(..)
and <context>.getServiceReference(..) to cap-
ture the type of classes that are instantiated and registered. In
addition, the services that are declared with DS (Declarative
Services) framework are identified by parsing the “OSGI-
INF/component.xml” files. Before saving the architecture, we
create the connectors to link the created elements. At the end,
we note that the parsing of the source code and bytecode has
been implemented by reusing existing Java tools such as AST-
Parser and ObjectWeb-ASM.

C. But4Reuse Adapter for Eclipse-Software Architecture Vari-
ants

In this section, we present our adapter for Eclipse-SA
variants2. We have followed the generic activities which are
defined in [4] to implement this adapter :

i) Elements identification: to compare and
analyze several product variants, But4Reuse divides
each variant into a set of elements. Our elements
are: PluginElement, ServiceElement,
PackageElement, InterfaceElement,
ExtensionElement, and ExtensionPointElement.
To identify them, our adapter loads and parses the input
Eclipse SA variants and performs a mapping of the elements
in the input SAs with these elements.

ii) Similarity strategy: It involves comparing all pairs of
elements of the same kind. Two elements are similar if they
have the same name and exactly the same sub-elements. For
example, i) two plugin elements are similar, if they have
the same symbolic names, and their extension elements and
interface elements are also similar. ii) Two interface elements
are similar, if they have the same qualified names and contain
exactly the same operations (method signatures).

iii) Structural dependencies identification: A plugin el-
ement structurally depends on its required plugins. These
dependencies are identified starting from the different outgoing
connectors (service, interface, extension, or package connec-
tors) of this plugin element.

iv) Block identification and feature naming: We used
the interdependent elements algorithm in the identification
process. Once the blocks are identified they have names like
block 0, block 1, etc. They are then automatically renamed

2For more details see: http://tiny.cc/wuwv7y



Fig. 4. Example of SAPL for three Eclipse Variants

using VariClouds [8], in order to give them more representative
names.

D. Multi-views SAPL Construction for Eclipse SA Variants

The generation of the SAPL is implemented as a separate
plug-in. This plug-in provides an extension-point for other
developers to contribute by developing extensions for gen-
erating SAPL for other kinds of component-based software
product lines, such as applications built with Java 9+ module
system. This plug-in provides an editor that allows to visualize
graphically the SAPL as follows. First, the SAPL can be
visualized as a compact representation of all the assets of the
SAPL in terms of “features”. Second, we enable the developer
to click twice on a given feature in order to visualize its
architecture, which can be opened in another editor. In this
way, instead of visualizing the whole SAPL in one screen, we
assist the developer to understand features progressively. Fig-
ure 4 depicts the generated SAPL starting from three Eclipse
variants which are IDE for Java, IDE RCP and RAP, and IDE
for Java and Report Developers. The block “eclipse core
equinox” is common to the three variants. The edge with a
dashed line represents a discovered require dependency.

Besides, Figure 5 shows an excerpt of the architecture
of the block “eclipse birt jst”. As we can see, the
component “BIRT Emitter Conf. Plug-in” provides
an extension-point which is extended by several plugins. In this
architecture, the set of provided / required elements that are
not connected to others components, represent elements that
are connected to components located in other features. Our
tool enables the developers to merge two or several features
in a single architecture to visualize the structural dependencies
between them.

E. Architecture and Product Derivation

In order to create a new Eclipse variant, the developer can
use the featureIDE tool for configuring manually the SAPL
and select a set of desired features among the identified list.
Before deriving the variant, we offer to the developer a way
for mapping this configuration into an architecture model for

this variant. This architecture model represents the structure
of selected features and their relationships without variability
information, which is useful for the understanding purpose.
At the end, the new variant can be derived by collecting the
extracted software assets which correspond to the selected
features.

IV. EVALUATION OF THE PROCESS

In order to evaluate the performance of our approach, we
have conducted a set of experiments on a set of Eclipse
releases (product variants). The selected variants are the 12
Eclipse IDE Kepler SR2 releases3. The size of these variants
varies from 110 to 323 MB and the number of components
varies from 213 to 892 components.

In this experiment, we have addressed the following re-
search questions:

• RQ1: What is the performance of our SAPL reverse
engineering process?

• RQ2: What is the additional cost induced by the proposed
Muti-Views SAPL construction?

• RQ3: What is the performance of block identification and
feature naming?

• RQ4: What is the additional cost induced by the variants
derivation using our approach?

A. Evaluation Protocol

a) : For answering RQ1, we have measured the accuracy
of SAPL recovery process and the SA / product derivation. We
have followed the following steps:

1) We have used our approach to recover the SAPL
from the candidate variants. Next, we have used
FeatureIDE Framework4 for configuring a new vari-
ant in which we have selected Xtext feature and all
the features that are identified from Eclipse Modeling
variant.

3Downloaded from: https://bit.ly/2uylkT8
4FeatureIDE Framework: http://www.featureide.com/



Fig. 5. Excerpt of the SA of “eclipse birt jst” Block (Extension and Package view)

2) After that, we have used our tool to derive the SA
corresponding to this configuration.

3) Without our approach, we installed manually the Xtext
in the Eclipse Modeling variant (click on Help->Install
Modeling Components->set Xtext...).

4) At the end, we have used the Architecture2Architecture
(a2a) [10] metric to measure the architectural change
between the derived SA and the SA of the variant
that is created manually (in step 3). The architectural
change refers to the addition, removal, and modification
of components and their elements.

a2a(Ai, Aj) = (1− mto(Ai, Aj)

aco(Ai) + aco(Aj)
∗ 100% (1)

where, mto(Ai, Aj) is the number of operations needed
to transform architecture Ai into Aj and aco(Ai) is the
number of operations needed to create architecture Ai

from a “null” architecture.
b) : For answering RQ2, we have used a set of measures

for comparing the size and complexity of the recovered SAPL
views using our process.

c) : For answering RQ3, we have measured the
precision and recall on the results of block identi-
fication process. Indeed, we have compared the content of
each identified block with the content of Eclipse features
(obtained from “features” folders of the input variants). The
evaluation is performed by comparing the plugins that belong
to an identified block with plugins that are present in the
“feature.xml” files of the common features folders of the
artifacts that contain this block. To evaluate block naming, we
have compared our block names with names that are manually
given by three domain experts with more than ten years of
experience working on Eclipse development (see [3]).

d) : For answering RQ4, we have compared the size and
the number of components in “Block 0” (which is considered
as the smallest variant that can be derived using our approach)
with the size and number of components of the smallest input
variant. This allows us to see to what extent is efficient the
variant derivation using our approach.

B. Results and Discussion
1) Experiment results for RQ1: : We have used the

LoongFMR implementation5 of the a2a metric for comparing
the architecture of the variant that is created manually with the
architecture that is derived using our approach. The obtained
value is a2a = 87%. This value can be considered as
a good result that indicates that the two architectures are
not identical but almost the same. To understand why there
is a little difference between them, we compared the new
added (installed) plugins after the manual installation with the
plugins in the architecture of the identified feature “eclipse
xtext” using our approach. We observed that 56 new plugins
(without counting plugins containing source code) are added
to the variant after the manual installation of Xtext feature,
but in the architecture of the identified feature (“eclipse
xtext”) using our approach, we only found 43 plugins. In
fact, all these 43 plugins belong to the manually added plugins.
By analyzing the remaining 13 plugins, either they represent
plugins with older versions which already exist in the default
variant, or they already exist but they are located in another
identified feature where they must belong (for example, the
plugin “com.google.guava” is located in the feature “google
common collect”). This makes our variant more consis-
tent than the variant that is created manually.

In addition, we have compared the size of the two variants
in order to confirm that the derived variant using our approach

5Downloded from: https://github.com/csytang/LoongFMR



corresponds to the variant that is created manually. Indeed, the
size of the Eclipse variant that is created manually is 256 MB,
while the derived variant has a size of 268 MB. This minor
difference in size is due to the fact that in the derived variant
there are some plugins (such as ch.qos.logback.slf4j) that
have been added for meeting the constraints that are discov-
ered using But4Reuse. Examples of these constraints include:
“eclipse ecore implies eclipse Maven apache”
and “Maven apache implies logback qos”, where the
feature “eclipse ecore” is required for installing Xtext.

2) Experiment results for RQ2: In Table I the recovered
SAPL views are compared in size with the whole SAPL (all
views together). First, we can see that the number of elements
(per block or per artifact) in each SAPL view is much less than
the number of elements in the whole SAPL. This confirms
our intuition that focusing on a single view allows to reduce
the size and complexity of the SAPL. We can remark also
that the number of elements in the extension view is less
than the number of elements in the other views. This supports
our idea that the developer needs to start with an architecture
view that contains a few elements (only the plugins and their
extensions). After that, (s)he can pass to another view with
more information about other kinds of dependencies.

3) Experiment results for RQ3: We have found 971 “fea-
tures” folders in all the chosen variants which is larger than
the number of identified blocks. This is due to the fact that in
our adapter, several features are merged into a single block.
We depicted in Table II the obtained values of precision
and recall. As we can see, we have obtained good values of
recall and precision for Block 0. This means that, our tool
can create an operational and minimal variant with an error
rate almost equal to zero.

For the other blocks, we also obtained quite good scores,
especially when we recover the SAPL with the Interface view.
We can observe that the median scores are quite low compared
to the Block 0 scores, but, they are relatively good which
illustrates the effectiveness of our approach. This decrease
compared to Block 0 is explained by the fact that there
are some blocks which contain a few number of plugins
(sometimes one or two plugins), and they are not present in the
corresponding Eclipse features. Hence, we obtained low scores
of precision and recall which decreases the median scores.
But, we can observe from the scores that the number of these
blocks is very low.

Besides, we present in Figure 6 the 62 identified blocks
(for the interface view). The common part between all the
variants (in blue color) represents the “Block 0” that is
named “eclipse core equinox”. This represents the
core components that must exist in each variant. We note that
all block names in this figure are assigned automatically. When
comparing them with names given by the experts, more than
70% of names are the same, thanks to the word cloud that
is used to name these blocks starting from words that are
extracted from the elements names.

4) Experiment results for RQ4: After applying our SAPL
reverse engineering process on the input variants, we have

derived a new variant with only the “Block 0”. We have found
that the size and the number of components in this block is
respectively 62.6 MB and 193 components. This is much less
than the size and the number of components of the smallest
input variant (IDE for Testers with 110 MB). This means that
the minimalistic Eclipse variant (that contains the required
minimum) that can be derived starting from the input variants
can have only this size. This demonstrates the efficiency of
our process. Instead of installing a default variant, we can
configure an architecture, optimized according to developer
requirements, and voluntarily minimalistic.

V. RELATED WORK

Wesley et al. [6] presented a complete survey on the existing
SPLE approaches. Three ways for adopting SPLE are exposed:
(i) from scratch, by applying a complete domain analysis
and variability management before application engineering (ii)
by creating and updating the SPL when every new product
appears; and (iii) by using an extractive approach, which takes
existing products as the basis for the core assets. But4Reuse is
a framework for extractive SPL adoption. Several extensions
of BUT4Reuse have already been developed and published
in [11], [12], [13]. Martinez et al. [11] proposed an approach
for automating the extraction of model-based SPL from model
variants as follows. First, they identify features and detect
constraints among them. After that, the model variants are
refactored to conform to an SPL approach. [13] proposed a
SPL extraction approach from Bytecode based applications.

Besides, software architecture recovery (SAR) is a chal-
lenging problem, and several works in the literature have
already proposed contributions to solve it (e.g., works cited
in [14], [10], [15]). Most of these approaches are proposed
for a single software architecture recovery. Lutellier et al.
[10] present a comparative analysis of six SAR techniques.
Maqbool et al. [15] presented a review of the hierarchical
clustering techniques. In the last decade several works had
proposed approaches that aim to recover component-/service-
oriented architectures from existing systems. For example,
the works in [16] and [17] are based on the definition of
a correspondence model between the code elements and the
architectural concepts. In [18], [19] a component is considered
as a group of classes collaborating to provide a system
function. Seriai et al. in [20] used FCA to perform the
component interface identification. The authors in [21] recover
BPMN models starting from service oriented systems that
have been generated from web applications. Some works have
been proposed to recover software architecture at run-time. For
instance, [22] presented an approach for recovering at run-
time software architectures from component based systems
and changing the system via manipulating the recovered SA.
The authors in [23] have proposed an approach to recover
at run-time architectures of a large-sized component/service
oriented systems by considering some specific use cases in
order to reduce the size of the recovered architectures.

In our approach, we assume that the SAs of the product
variants can already exist and considered as inputs for our



TABLE I
VALUES OF SIZE FOR THE RECOVERED SAPL VIEWS vs WHOLE SAPL

SAPL # of
Blocks

Mean of Elem.
per Artifact

Median of Elem.
per Artifact

Mean of Elem.
per Block

Median of Elem.
per Block

Extension 67 3144 2848 51 7
Package 67 7942 7557 208 30
Service 61 54861 12174 29 8

Interface 62 8492 7896 376 57
Whole SAPL 77 74439 30475 664 102

TABLE II
PRECISION AND RECALL CALCULATION FOR THE BLOCK IDENTIFICATION STEP

Extension View Package View Service View Interface View

Precision Recall Precision Recall Precision Recall Precision Recall
Block 0 0.99 0.83 0.99 0.83 0.99 0.83 0.99 0.83
Median 0.76 0.68 0.76 0.68 0.91 0.75 0.94 0.69

Fig. 6. Blocks per Variant: Interface View

SAPL-RE process. Otherwise, we can use one of the existing
approaches for recovering them. However, the organization
of features in the recovered SPLA is based on the result
of the blocks identification and constraints discovering. The
But4Reue framework allows to extend easily this activity by
implementing one of the existing approaches such as FCA.

Besides, few works were proposed in the literature that
aim to recover SPLA. [24] presented a mapping study of
the existing SPLA recovery approaches. Shatnawi et al. [25]
have proposed a process for recovering software product line
architectures of a family of object-oriented product variants.
First, they used FCA to migrate the object-oriented systems
to a set of component variants. Each variant is a set of
similar components that share the majority of their classes and
dependencies. Second, they used FCA to identify mandatory
and optional components. At the end, they build the SPLA as
a feature model where the dependencies between component
variants are based on relations of type alternative, OR, AND,
require and exclude. The authors in [26] have proposed an
approach for recovering SPLA from software product variants.

They identify mandatory components and variation points of
components as a main step. They analyze commonality and
variability across product variants in terms of features.

Compared to our work, the recovered SAPL using our ap-
proach is both a feature model and a complete architecture that
shows all the architectural connections between components.
In addition, our inputs can be system variants or SA variants.
The variability is identified starting from the elements in the
input architectures. Wille et al. [27] have proposed a variability
mining approach for Technical Architecture (TA) variants.
They eliminate the unnecessary information from the input
TAs. The components from the TAs are clustered by filtering
them based on their structural relations to eliminate unrealistic
variability. Unfortunately, their approach can not recover an
architecture describing all the variants. On the other hand,
our solution can derive new SAs and product variants starting
form the reconstructed SAPL. The proposed process is generic
and can be applied for many component based-systems (or -
software architectures).



VI. CONCLUSION

Recovering architecture models of large-sized software
products is an important activity in software maintenance and
evolution. These architecture models offer a good documenta-
tion to understand the software product before changing it. For
large software products with several product variants, these
models become of greater interest since they enable also to
choose the most appropriate variant. SPL Reverse Engineering
(SPL-RE) processes enable to recover models with a better
structure, since they factorize the variable part in the product
variants and enable to see the variability points.

In our work we focused on component- and service-based
systems and proposed in this paper: i) a (meta-)model for
architectures of component/service-based software product
lines, ii) the design of an adapter of a generic SPL-RE
process (But4Reuse) for building architecture models (SAPL
models) by analyzing product variants, iii) an implementation
of this adapter specific to OSGi-based applications, and iv) an
experimentation of this recovery process on a set of Eclipse
releases. The experimentation that we conducted enabled us
to evaluate the efficiency of the process in identifying correct
features, compared to those identified/built by experts. In
addition, it enabled us to measure the accuracy of architectures
of products derived from the recovered SAPL.

As perspectives to this work, we plan to study the enrich-
ment of SPL reverse engineering of large component/service-
based systems by including a learning module which exploits
existing SPLs and their variants/features. In addition, we
envisage the instantiation of the process for other compo-
nent/service frameworks, or just investigate its use with Java
modules for exploring variability in Java SE, EE, ME, TV,
etc. From a tool-support point of view, we intend to enrich
our implementation by capabilities such as software product
configuration and derivation to complete the “loop”.

ACKNOWLEDGEMENT

The work of Tewfik Ziadi was supported by the ITEA3
15010 REVaMP2 project: FUI the Ile-de-France region and
BPI in France.

REFERENCES
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[2] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich,
“FeatureIDE: An extensible framework for feature-oriented software
development,” Science of Computer Programming, vol. 79, no. 0, 2014.

[3] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon,
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