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Abstract — With a view to obtaining a high quality contrast 

enhancement, low-pass filters are used to remove the noise 

generated in a high-gain histogram equalization process. To 

preserve signal variations, the LP operation applied to the pixels 

in non-homogeneous regions should have less smoothing strength 

than that in homogeneous regions. The pixel classification 

according to the gray level homogeneity is thus a critical part in 

the LP filtering. In this paper, two algorithms for pixel 

classification according to the gray level homogeneity of their 

regions are proposed. In each of them, image pixels are grouped 

in such a way that, in the same group, pixels in homogeneous 

regions can be easily distinguished from those in non-

homogeneous regions by a simple gradient thresholding, despite 

the complexity of signal gradient degradation in images. The two 

proposed classification algorithms are very simple, requiring 

very small quantity of computation. Their effectiveness has been 

proven by the simulation results. 
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I. INTRODUCTION 

Adaptive histogram equalization (AHE) algorithms, such as 

CLAHE [1], are widely used to enhance effectively image 

contrast. Most of AHE algorithms, however, result in 

undesirable noise that can be very pronounced, affecting the 

processing quality. There are two approaches to the noise 

reduction in the process of contrast enhancement. The first is 

to make the transformation function of histogram equalization 

more adaptive to local image signals. It can be done by 

modulating the “local” cumulative functions [2] or by adaptive 

clipping [3]. The other approach is to use low-pass filters to 

remove the noise generated by a histogram equalization 

process. Low-pass filters are used to reduce the blocking 

effect [4]. In [5], a transportation map regularization (TMR) 

filter is used for noise removal after CLAHE.  

The involvement of low-pass filtering allows the 

enhancement of the image contrast and the reduction of the 

noise to be performed separately, and it is thus very 

promising. The scheme presented in [6] uses simple low-pass 

filter stages to achieve an effective noise removal while 

preserving signal variations. The successive filtering 

operations given by the cascaded stages provide different 

smoothing effects and a binary mask is used in each stage to 

expose/shield the pixels to make the filtering discriminative. 

The processing quality of this scheme depends, however, on 

the quality of the classification of the pixels according to the 

homogeneity of their regions. In [6], some adjustments in the 

classification need to be done manually, which makes the 

quality control less evident. 

The objective of the work presented in this paper is to 

develop algorithms of the pixel classification for the multi-

stage low-pass filtering in the contrast enhancement scheme 

for a noise removal and signal preservation to achieve a high-

quality low-noise enhancement. The algorithms are designed 

to process varieties of low-contrast images in which the signal 

quality may be severely affected by gradient degradation, and 

to generate protection masks for the discriminative low-pass 

filtering in the contrast enhancement scheme. 

II. PROPOSED ALGORITHMS 

Signal gradients of the pixels in a region can be used to detect 

the gray level homogeneity [7]. With a view to generating the 

masks controlling the multistage low-pass filtering in the 

contrast enhancement scheme shown in Fig. 1, high-pass 

operators are included to generate the signal gradients. The 

pixels in an image may be divided into two classes, namely 

the homogeneous and non-homogeneous ones, by a simple 

gradient thresholding under the condition of good-quality 

gradients. Unfortunately the signal gradients in an image 

requiring a contrast enhancement are usually of poor quality. 

Hence, the pixels should be grouped in such a way that in the 

same group, the pixel gradients are easily “distinguishable” so 

that a high-quality classification can be achieved by a simple 

thresholding in each group. In this section, the basic method of 

gradient threshold generation is presented and two different 

classification algorithms, each using this basic method but 

having its specific pixel grouping, are proposed. 

 
Fig. 1 Block diagram of the contrast enhancement in which a new procedure 

of pixel classification and mask generation, shown in the dashed 

frame, is incorporated. 



A. Analysis of the gradient distribution and the threshold 

generation for pixel classifications  

Gradient values of the pixels in an image can be obtained by 

high-pass operations, such as SOBEL convolutions. Fig. 2 

illustrates a typical distribution, or histogram H(Gr), of the 

gradients Gr obtained from such an operation. It is commonly 

known that the pixels in homogeneous regions are placed in 

the left part of the gradient distribution and those in non-

homogeneous regions in the right part. It may be difficult to 

determine the exact threshold dividing the pixels into the two 

groups. However for a practical purpose, one can define three 

gradient thresholds, ThL, ThH, and ThM, in such a way that (i) 

all the pixels having their gradients smaller than ThL are 

classified as homogeneous pixels, (ii) those having their 

gradients greater than ThH as non-homogeneous ones, (iii) 

those having their gradients between ThL and ThM as near-

homogeneous ones, and (iv) the remaining pixels as near-non-

homogeneous ones. 

 
Fig. 2 Gradient distribution of the pixels of an image. 

The gradient histogram presented in Fig. 2 illustrates that 

a good concentration of the pixels in homogeneous regions is 

found in the left side of the gradient distribution, but it reduces 

rapidly around the point of the maximum value of | |, or 

 = 0. The threshold ThL is found at this point. The 

threshold ThH is reasonably found at a point where the 

gradient distribution tends to approach a constant, i.e., | | 

being at a level close to zero, such as 0.001. The other 

threshold, ThM, is between ThL and ThH, at the point where 

| | reaches its peak value. Thus, these threshold values 

can be easily found in the derivatives of the gradient 

distribution. 

The above-described threshold generation is done by 

means of the gradient distribution analysis. It is used in the 

two algorithms for pixel classification in order to generate the 

masks to be used in the scheme shown in Fig. 1.  

B. Classification algorithm with pixel grouping based on 

gray level ranges 

This classification algorithm aims at low contrast images 

acquired in high dynamic range (HDR) scenes. The over-and-

under exposure in the acquisition process may seriously  

degrade the signal gradients of such images. Moreover, the 

degree of the degradation is usually different, depending on 

the intensity level. Because of the differences of gradient 

degradations, a pixel in a homogeneous region may have the 

same gradient value as one in a non-homogeneous region, and 

consequently these pixels are found in the same bin of the 

gradient histogram of the image. Thus, the basic method of the 

thresholds generation described in Section II.A is applicable 

only if the pixels of the image are grouped to make the pixels 

of different classes, homogeneous and non-homogeneous, in 

the same group “distinguishable” by their gradients. 

The gradient degradation in HDR images is often gray-

level dependent. One can divide the gray level range into a 

number of sub-ranges and assume that, in each of the sub-

ranges, the gradient degradation is approximately “linear” and 

the gray level homogeneity can thus be detected by simply 

comparing the gradient values of the pixels within the sub-

range with the thresholds generated in it. Fig. 3 illustrates the 

process of the pixel grouping, classification and mask 

generation, if the image gray level range is divided into the 

high, medium and low sub-ranges. The pixels in the gradient 

map are sorted into three groups, Ig1, Ig2 and Ig3, according to 

their initial gray levels, resulting in the three gradient 

distributions presented in Fig. 4. By means of the pixel 

grouping, the global gradient distribution is decomposed, and 

the pixels in the same gradient level are to be classified 

differently according to their initial gray levels. 

In the process shown in Fig. 3, in the first block of 

“Classification 1”, the basic method presented in Section II.A 

is applied to the pixel group Ig1 to generate the first three 

thresholds, i.e., ThL1, ThM1 and ThH1, and then the three binary 

masks, BL1, BM1, and BH1, from the same gradient pixel group 

Ig1. Similarly, the other two sets of masks, namely (BL2, BM2, 

BH2) and (BL3, BM3, BH3), are generated by the two other 

“Classification 1” blocks. In the block of “Combination”, BH1, 

BH2 and BH3 are combined to make Mask 1 that is to shield 

non-homogeneous pixels from the low-pass filtering. Mask 2 

is made of BM1, BM2 and BM3, and Mask 3 of BL1, BL2 and BL3. 

 
Fig. 3 Block diagram of the classification algorithm with pixel grouping 

based on gray level ranges. 

 
Fig. 4 Gradient distributions given by Ig1, Ig2 and Ig3 pixel groups. Each is 

normalized with the group pixel population.  



One can see that, by means of the pixel grouping, the 

global gradient distribution is decomposed into those given by 

the pixel groups. The pixels in the same bin of the former are 

sorted, put into the three bins in the three gradient histograms, 

respectively, and then classified differently according to their 

gray level sub-range. A better classification result should be 

expected. 

C. Classification algorithm with pixel grouping 

by histogram-thresholding  

The gradient degradation in a low contrast image may not 

necessarily be gray-level-dependent. The algorithm presented 

in this sub-section is designed for more general cases. In this 

algorithm, the pixels in the input image are grouped according 

to their likeness to be in homogeneous (or non-homogeneous) 

regions. Histogram thresholding [8] is used for this purpose. 

Fig. 5(a) illustrates a gray level histogram curve of an image. 

Its high peaks mainly formed by homogeneous pixels in the 

image. The pixels in the dashed bins are grouped to make the 

high-bin group, and the remaining pixels form the other group, 

referred to as low-bin group. Most pixels in the high-bin group 

are homogeneous pixels, but there is a minority of non-

homogeneous pixels having identifiably higher gradients. 

Pixels in the “medium-range” of the gradient histogram of this 

high-bin group are more probably homogeneous. In the low-

bin group, the majority is of non-homogeneous pixels, 

including those of “medium” gradient range of the group, and 

the minority non-homogeneous pixels are in the upper 

gradient range. This grouping also results in a decomposition 

of the global gradient distribution into the two group-gradient-

distributions, as shown in Fig. 5(b), in order to differentiate 

the gradients of the minority pixels from the majority ones in 

each of the groups. The method presented in Section II.A can 

then be applied to identify the minority pixels in each group. 

                           (a) 

                       (b)     
Fig. 5 (a) Example of image gray level histogram.  

(b) Example of gradient histograms. The black solid curve is given by 

the pixels of an image and the other two by its two pixel groups. 

Fig. 6 illustrates a block diagram of the algorithm 

involving the pixel grouping described above, and detailed 

diagrams of “Pixel grouping” and “Classification 2” blocks 

are presented in Fig. 7. Three histogram thresholds, TG1, TG2, 

and TG3, are applied, one by one, to the same gray level 

histogram of the input image. Each time a binary image, e.g., 

B1, is generated to indicate the pixel positions of the high-bin 

group with one logic value and those of the low-bin one with 

the other. By using this binary image B1, the gradient map Ig is 

divided, in “Pixel grouping” block, into the high-bin and low-

bin groups, namely Ig1-0 and Ig1-1. In each block of 

“Classification 2”, a gradient histogram analysis presented in 

Section II.A is applied to each of the two gradient pixel 

groups, but the procedure is simplified as only one threshold is 

needed from each group. As shown in Fig. 7. ThH is generated 

from the gradient histogram of the high-bin group and ThL 

from the low-bin group. The two thresholds are then used to 

classify the pixels of the image in such a way that, if a pixel 

gradient value Gr is between ThL and ThH, the pixel will be 

classified as homogeneous one if it is in the high-bin group, 

otherwise as non-homogeneous one. 

The histogram threshold TG can be adjusted to determine 

the concentration of the majority homogeneous pixels in the 

high-bin group and that of the majority non-homogeneous 

pixels in the low-bin one. Among TG1, TG2 and TG3 shown in 

Fig. 6, TG1 is the lowest, and it makes the low-bin group Ig1-1 

have a good concentration of non-homogeneous pixels, i.e., a 

good sorting for the non-homogeneous ones and putting all the 

remaining pixels in the high-bin group Ig1-0. The subsequently 

generated Mask 1 is used to distinguish the non-homogeneous 

pixel positions from the rest of the image. Similarly, TG3, the 

highest threshold, leads to the generation of Mask 3 that 

exposes the homogeneous pixel positions and shields all the 

others. 

 
Fig. 6 Block diagram of the classification algorithm with pixel grouping by 

histogram-thresholding. 

 
Fig. 7 Detailed diagram of the blocks of Pixel grouping and Classification 2 

shown in Fig. 6. 

III. SIMULATION RESULTS 

The two pixel classification algorithms proposed in the 

Sections II have been incorporated into the contrast 

enhancement scheme shown in Fig. 1. The simulations of the 

scheme have been done to evaluate the effectiveness of the 

classification algorithms in the noise removal and signal 

preservation for a high-quality contrast enhancement. CLAHE 



process with a tile size of 8 x 8 and clipping limit of 0.03 is 

used in the block of “contrast enhancement”. Four cascaded 

Gaussian LP filters are used and the first one, i.e., the pre-

filter, has its window sized 3 x 3 pixels and σ = 0.5. The other 

3 filters are identical, each having 5 x 5 windows and σ = 1.0 

to provide a moderate smoothing operation. The four SOBEL 

kernels, detecting the gray level variations in the horizontal, 

vertical and two diagonal directions, are used in the HP block 

to obtain the weighted gradients. For the algorithm proposed 

in Section II.B, the gray level sub-ranges are (0, 100), (101, 

200) and (201, 255). In case of the other proposed algorithm, 

TG1, TG2, and TG3 are 10%, 30% and 80% of the maximum bin-

height in the gray level histogram. The simulation results are 

compared with those obtained by the two high-quality contrast 

enhancement algorithms, i.e., the iterated TMR filtering [5] 

and the adaptive histogram clipping [3]. Both algorithms aim 

at reducing noise generated in the CLAHE process. 

Comparing the processed images presented in Fig. 8(b)-

(f), one can see that (i) while enhancing significantly the 

image contrast, the CLAHE generates visible noise, 

particularly in the lower part of the image, (ii) some image 

details are lost in (c), and (iii) the processed images in (e) and 

(f) have more image details and less noise. 

 

  
(a)                                                       (b) 

  
                             (c)                                                         (d) 

  
                           (e)                                                         (f) 

Fig. 8 (a) Input  X-rays image, and the results given by (b) the CLAHE, (c) 

the iterated TMR[5], (d) the adaptive clipping [3], (e) the algorithm 

proposed in § II.B, and (f) that in § II.C. 

The images in Figs. 9 and 10 contain a lot of fine details, 

corresponding to high spatial frequency components. In order 

to better illustrate such details, only a segment of each 

processed image is shown. In the images processed by the 

CLAHE, noise is very visible around the boundaries of fine 

objects, for instance, pieces of pollen grains in Fig. 9(b), or the 

pens in the left side of Fig. 10(b). By comparing the processed 

images shown in Figs. 9 and 10, one can see that the proposed 

algorithms yield a better noise reduction in the areas of fine 

objects, without erasing the image details, with respect to 

those of the iterated TMR filtering  and the adaptive histogram 

clipping. 

The PSNR and the Pratt’s Figure of Merit (PFOM) [9] of 

the processed images of Window & Desk and Pollen Grain 

have been measured. The results are presented in Table 1. In 

case of Window & Desk, the two proposed algorithms yielded 

better results combining PSNR and FOM. In case of Pollen 

and Grain, all the four algorithms produced similar values of 

PSNR and FOM, maybe due to the relatively low-quality of 

the available reference image used in the measurement. 

Table 1  

 
 

  
(a)                                                        (b) 

  
(c)                                                    (d) 

  
                         (e)                                                          (f) 

Fig. 9 (a) Input image of Pollen Grain, and a segment of the processed image 

given by (b) the CLAHE, (c) the iterated TMR[5], (d) the adaptive 

clipping [3], (e) the algorithm proposed in § II.B, and (f) that in § II.C. 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 (f) 

Fig. 10 (a) Window and Desk, and a segment of the processed image given 

by (b) the CLAHE, (c) the iterated TMR[5], (d) the adaptive clipping 

[3], (e) the algorithm proposed in § II.B, and (f) that in § II.C. 

IV. CONCLUSION 

In this paper, two algorithms have been proposed to classify 

the pixels of an image of very poor contrast, according to the 

homogeneity of their regions. In these algorithms, simple high 

pass filters are used to obtain the gradient histogram. The 

classification is based on an analysis of the gradient 

distribution. To tackle the problems of various gradient 

degradation patterns in low-contrast images, the gradient 

histogram of the input image are decomposed so that the 

pixels having the same gradients but different kinds of 

neighborhood conditions can be classified differently by 

applying different gradient thresholds to the decomposed 

gradient histograms. The decomposition is implemented by 

pixel grouping. One of the proposed algorithms aims at low-

contrast HDR images, where the image gradients are gray-

level dependent, and the pixels are grouped according to their 

initial gray level ranges. The other algorithm is designed for a 

wider range of poor-contrast images and the pixels are 

grouped by gray-level-thresholding, i.e. dividing the pixels of 

the image into gray-level-histogram high-bin and low-bin 

groups. The majority pixels in the high-bin group are likely 

located in homogeneous regions and the minority non-

homogeneous pixels in this group can be easily identified by 

gradient thresholding. In a similar manner, one can easily 



distinguish the minority homogeneous pixels in the low-bin 

group from the majority non-homogeneous pixels. In case of 

very complex gradient degradations, one can combine the two 

pixel grouping methods, e.g. grouping the pixels in a sub gray 

level range into high-bin and low-bin groups, to make the 

decomposition of the gradient distribution more precise for a 

better quality of the pixel classification. 

The proposed algorithms can be applied in a process of 

noise removal, or for high-quality edge detections. Each of the 

algorithms has been incorporated into a procedure of low-

noise contrast enhancement. It has been proven by simulation 

that the binary masks resulting from the classification can 

make the low-pass filters effectively remove the noise 

generated in the histogram equalization while well preserving 

the signal details. 
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