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Abstract

In this paper, we study an online data mining problem
from streams of semi-structured data such as XML daza.
Modeling semi-structured data and patterns as labeled or-
dered trees, we present an online algorithm StreamT that
receives fragments of an unseen possibly infinite semi-
structured data in the document ovder through a data
stream, and can return the current set of frequent patterns
immediately on request at any time. A crucial part of our al-
gorithm is the incremental maintenance of the occurrences
of possibly frequent patterns using a tree sweeping tech-
nigue. We give modifications of the algorithm to other on-
line mining model. We present theoretical and empirical
analyses 10 evaluate the performance of the algorithm.

1. Introduction

Recently, a new class of data-intensive applications such
as network monitoring, web site management, sensor net-
works, and e-commerce emerged with the rapid growth of
network and web technologies. In these applications, the
data are modeled not as static collections but as transient
data streams, where the data source is an unbounded stream
of individual data items, e.g., transaction records or web
page visits, which may arrive continuously in rapid, time-
varying way [18].

Particularly in data communication through internet, it is
becoming pepular to use semi-structured data-based com-
munication technologies [2], e.g., SOAP [19], to send het-
erogeneous and ill-structured data through networks. Since
traditional database technologies are not directly applicable
to such data streams, it is important to study efficient infor-
mation extraction methods for semi-structured data streams.

In this paper, we model such semi-structured data
streams by sequences of labeled ordered trees, and study
the frequent pattern discovery problem in online setting.
We model a semi-structured data siream as an infinite se-
quence of the nodes generated by the depth-first scanning
of a possibly infinite data tree. An online algorithm has to
continuously work on the data stream, and has to quickly
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answer queries on request based on the portion of the data
received so far. This formulation captures typical sitvations
for web applications reading a sequence of XML tags or
SAX events element by element from a data stream. Since
this is a finest-grained online model, the results of this paper
can be easily generalized to coarser-grained models where,
e.g., XML documents are processed page by page.

We present an online algorithm StreamT for discovering
labeled ordered trees with frequency at least a given mini-
mum threshold from an unbounded data stream. A difficulty
lies in that we have to continuously work with unbounded
data streams using only bounded resources. A key idea is
a technique of sweeping a branch, called the sweep branch,
over the whole virtual data tree to find all embeddings of
candidate patterns intersecting it. Using this sweep branch
as a synopsis data structure, we achieve incremental and
continuous computation of all occurrences of patterns with
bounded working space.

As another idea, we adopt a candidate management pol-
icy similar to Hidber [11] for online association mining to
limit the number of candidate patterns as small as possible.
We also use the enumeration technigue for labeled ordered
trees that we recently proposed in [4], a generalization of
a technique by Bayardo [6]. Combining these ideas, our al-
gorithm StreamT works efficiently in both time and space
complexities in online manner. Furthermore, we extend our
algorithm to the forgetring model of online data stream min-
ing, where the effect of a past data item decays exponen-
tially fast in its age. We also give theoretical analysis on the
accuracy of the discovered patterns as well as an empirical
analysis of the scalability of the algorithms.

The rest of this paper is organized as follows. In Sec-
tion 2, we give basic definitions, and in Section 3, we
present our online algerithm. In Section 4, we modify this
algorithm in the forgetting model. In Section 5, we report
experimental results, and in Section 6, we conclude. For
proofs not found here, see [5].

1.1. Related Works

Emerging technologies of semi-structured data have at-
tracted wide attention of networks, e-commerce, informa-
tion retrieval and databases [2, 19]. In contrast, there



have net been many studies on semi-structured data min-
ing [1,4,7,9,13, 15, 16, 20, 22]. There are a body of re-
searches on online data processing and mining [10, 14, 18].
Most related work is Hidber [11], who proposed a model of
continuous pattern discovery from unbounded data stream,
and presented adaptive online algorithm for mining associ-
ation rules. Parthasarathy et al. [17] and Mannila et al. [14]
studied mining of sequential patterns and episode patterns.
Yamanishi et ai. {21] presented an efficient online-outlier
detection system SmartSifter with a forgetting mechanism.

Zaki [22] and Asai et al. [4] independently developed
efficient pattern search techniques, called rightmost expan-
sion, for semi-structured data, which is a generalization of
the set-enumeration tree technique {6]. Although our al-
gorithm partly uses this technique, its design principle is
different from previous semi-structured data mining algo-
rithms {4, 7, 9, 13, 15, 16, 20, 22]

2. Preliminaries
2.1. Model of Semi-Structured Data

Semi-structured data are heterogeneous collections of
weakly structured data [2], which are typically encoded in
a markup language such as XML [19]. We model semi-
structured data and patterns [2] by labeled ordered trees.
For the basic terminologies on trees, we refer to, e.g. [3].

Labeled Ordered Trees. We define labeled ordered
trees according to [4, 12]. Let £ = {£, ¢y, %,,...} be afixed
alphabet of labels. Then, a labeled ordered tree on L (1ree,
for short) is a labeled, rooted, connected directed acyclic
graph T {V.E, B, L,vo) with the following proper-
ties [31. Each node v € V of T is labeled by an element
L{v) of L, and all node but the root vy have the unique
parent by the child relation £ C V2. For each node v, its
children are ordered from left to right by an indirect sibling
relation B € V2 [3]. Note that the term ordered means the
order not on labels but on chiidren.

The size of a tree T is the number of its nodes |T| = |V|.
Throughout this paper, we assume that a tree of size & has
the node set V = {1,..A,k} and the nodes are ordered
in the pre-order by the depth-first search order on T. We
refer to the node ¢ as the i-th node of T'. This assumption is
crucial in our discussion. By this assumption, the root and
the rightmost leaf of T, denoted by root(T) and rmi(T),
are always 1 and k, respectively. For a tree T of size k, the
rightmost branch of T, denoted by RAM B(T), is the path
from the root 1 to the rightmost leaf k of T'.

We denote by T the class of all labeled ordered trees cn
L. We alsoreferto V, F, B and L as Vp, Ep, By and L,
respectively, if it is clear from context.

Matching and Occurrences. Next, we define the no-
tion of matching between two labeled ordered trees T' and
D. A pattern tree T matches a data tree D if T can be em-
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Figure 1. A data tree D and a pattern tree T
on the set £ = {4, B} of labels

bedded in D with preserving the labels, the (direct) child
relation, the (indirect) sibling relation by a non-coliapsing
mapping, that is, there exists some function  : Vpr — Vp
that satisfies the following (i)}-(iv) for any v, v, vs € Vp:

(i} ¢ is one-to-one.

(i) Lr{v) = Lp(e(v))-
(iii) (v1,v2) € Eq iff (p(v1),p(v2)) € Ep.
(iv) (v1,v2) € Br iff {p(v1), (v2)) € Bp.

Then, we say that ¢ is a matching function of T 10 D). or
T occurs in D, We assume the empty tree | suchthat | L] =
0 and 1 matches 10 any tree at any node. An embedding
of T in D w.rt. ¢ is the image ¢(T) € Vp of T into D,
whose induced subgraph is isomorphic to T. We define the
root occurrence and the rightmost leaf occurrence of T in
D w.rt. o by the nodes ©(1) and @(k) of D to which the
root and the rightmost leaf of T map, respectively. If  is
not irrelevant then we simply omit .

For example, Fig. 1 shows examples of labeled ordered
trees [ and T on £ = {A, B}. We see that the pattern
tree 1" maitches the data tree [J, where the matching is des-
ignated with a set of arrows from T to ). The root occur-
rences of T in ) are 2 and 7, while the rightmost occur-
rences are 4,6, and 10.

Semi-structured Data Streams. Let ) be a labeled or-
dered tree, called a daia tree with finite depth and possibly
infinite width. Given a collection of trees as a data source,
we always treat them as a single tree by combining trees
with appending the imaginary common root. Recall that the
nodes of ) are numbered in the preorder traversal of .

We introduce a convenient sequential representation of
labeled ordered trees. The depth of node v of tree T is the
number of edges on the path from the root to v. The depth-
label representarion of a node v of D is the pair (d,¢) €
N x £ of the depth d and the label £ of v. Then, a data tree
D is encoded as the sequence m = {(di, £1), (d2,f2),...)
of depth-labe! pairs corresponding to the nodes on the pre-
order traversal of T'. This depth-label representation = also
linearly related to the open-close parentheses representation
as in XML [19].

Conversely, we can uniquely decode a depth-label repre-
sentation 7 into a labeled ordered tree as follows.



Definition 4 ({4, 22]} Let S be atree of size & > 1. Then, a
rightmost expansion of 8 is any tree T of size k + 1 obtained
from S by (i) attaching a new node w with a label in £ as a
child of a parent node p on the rightmost branch of § so that
(i) w is the rightmost sibling of p. Then, we say that T is a
successor of S, or § is a predecessor of T'. If the depth and
the label of wis d € N and £ € £, resp., then 7" is called
the (d, £)-expansion of S. The (0, £)-expansion of 1 is the
single node tree with label ¢.

Thus, the empty sequence ¢ transforms to the empty tree
1, and if the sequence « transforms to a tree S, then the
sequence 7 - (d, £) to the (d, £}-expansion of 5. The no-
tion of depth-label representation is motivated by the tree
expansion technique [4, 22], and plays an important role in
the following discussion.

For example, in the previous example of Fig. 1, the data
tree [} transforms to the depth-label representation 7 =
(Oa R), (1: A)'n (Qv A), (2‘ B)v (2’ A)r (2: B)s (1? A)a (2a A):
(2, A), (2, B), and vice versa.

We ntodel a semi-structured data stream as an infinite
sequence of the nodes generated by the depth-first scanning
of & possibly infinite data tree as follows. For a set A, we
denote by A™ the sets of all infinite sequences on A. A
semi-structured data stream for D is an infinite sequence
S = (vi,v2,...,v;,...) € (N x £)*, where for every
t 2 1, the i-th element »; = (d;, &) is the depth-label rep-
resentation of the i-th node v; = i of D). Then, v; is called
the i-th node of § and 1 is called the tinte stamp. The i-th
left-half tree, denoted by D, is the labeled ordered tree that
is the induced subgraph of I consisting of the first ¢ nodes
(v1,v2,...,v;) of the traversal.

Online Data Mining Problems. Now, our online data
mining problem is stated as follows. The definition of the
frequency of a pattern 7" at time 4 will be specified later.

Definition 5 (Online Frequent Pattern Discovery from
Semi-structured Data Streams) Let 0 < ¢ < 1 be a non-
negative number called the minimum support. In our online
mining protocol, for stages ¢ = 1,2,.. ., an online mining
algorithm A iterates the following process: A receives the
i-th node v; from the stream S, updates its internal state
based on the first ¢ nodes vy, ..., v; received so far, and
then on request by a user .4 reports a set F; of frequent
pattemns that appears in I; with frequency no less than ¢.

The goal of an online algorithm is to continuously work
on unbounded stream for arbitrary long time with bounded
resources, and to quickly answer user’s queries at any time.

We define the models of the frequency of patterns as fot-
lows. Letz > 1be any time. Forevery 1 < j < i, we define
the indicator function hz’t;')(T) = 1 if the pattern T has a
root occurrence at the node v; in D;. Otherwise, we define
hit;')(T) = 0. For a technical reason, we require not only
(1} but also the whole ¢(T") to be contained in D;.
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Definition 6 Let S be a given semi-structured data stream
and T € 7 be any pattern. Below, count,(T") and freq;(T)
denote the counr and the frequency of T at time i, resp.

¢ Online Model (OL). In this model motivated by Hid-
ber [11], we count the rumber of distinct root occur-
rences of T in D;. The frequency of T at time 1 is:

freqi(T} = Yeounti(T) = %Z;=1 hit;-”(T)

¢ Forgetting Model (FG). In the forgetting model, e.g.,
[21], the contribution of the past event decays expo-
nentially fast. For positive number 0 < «v < 1 called a
Jorgetting factor, the frequency of T is defined by:

freqig,i(T) = ;/;l E;:l v hit;i)(T)- (1)

Although we used a simplified normalization fac-
tor Z; ¢ instead of a more precise one Z;
Z;=1 +*~4, most of the discussion in the later sec-
tions also holds.

A difference of above models is the speed of decay.
Since the effect of a past event decays exponentially faster
in FG than in OL, the former is more trend conscious than
the latter. We can deal with the stiding window model in this
framework in a similar manner. For details, see [5].

3. Online Mining Algorithms

In this section, we present an online algorithm StreamT
for solving the online frequent pattern discovery problem
from semi-structured data stream.

3.1. Overview of the Algorithm

In Fig. 2, we show our algorithm StreamT in the online
model. Let & = (vy,v3,...,0:5,...) € (Nx £)® bea
possibly infinite data stream for a data tree D. Through
the stages ¢ = 1,2,..., StreamT receives the i-th node
v; = (d;,¢;) from S, updates a pool ¢ C T of candidate
patterns and the internal state, and on request reports a set
of frequent labeled ordered trees F; C T with frequency no
less than a given threshold 0 < ¢ < 1.

To continuously compute the set of frequent patterns on
an unbounded stream, the algorithm uses a technique, simi-
lar to plane sweeping in computational geometry [8], to find
all root occurrences of candidate patterns in . A basic idea
of our algorithm is explained as follows. To detect all em-
beddings of a set of patterns in D, we sweep a path from
the root to the currently scanned node v;, called the sweep
branch, rightwards over the data tree D by increasing the
stage ¢ 1,2,.... While we sweep the plane, we keep
track of all embedding of pattemns that intersect the current
sweep branch.



Algorithm StreamT

Input: A set L of labels, a data stream (v1,v2,...,0i,...) of a
data tree D, and a frequency threshold ¢ < ¢ < 1.
Output: A sequence (F1, Fa, ..., Fy,...) of sets of frequent pat-
terns, where F; is the set of frequent patterns for every 1.
Variables: The candidate pool C C T, and the bucket stack B =
(B[0],..., B[Top])-
Method:
1. ¢ := the class of all single node patterns;
B:=@andTop=-1;i:=1;
2. While there is the next node v,

(d, 8), do the followings:
(a) Update the bucket stack B[0]--- B[d — 1):
(B, EXP) := UpdateB({B,C, (d, ),);
(b) Update the candidate pool C and the bucket B[d}:
(B,C) := UpdateC(EX P, B, C, (d, £),4);

(c) Output the set F; = {T € C| freqi(T) > o } of
frequent patterns; i =i+ 1;

Figure 2. An online mining algorithm for semi-
structured data stream

Figure 3. The i-th left-half tree D; and i-th
sweep branch 5 B; for the data tree D

The algorithm incrementally maintains the following
data structures during the computation.

e Aset C C 7 of patterns, called the candidate pool.

« A stack B (Bi0}, B[1], ..., B[Top}} of buckets,
called the sweep branch stack (SB-stack, for short).

For each candidate T € C, the following features are
associated: A counter count(T') of the root occurrences of
T in D;. A vecter Rtor = (Rtor[0}], Rtor[l],...) of the
latest root occurrences Rtor[d] = p of T with depth d.

3.2. Incremental Pattern Discovery Using Tree
Sweeping
To keep track of all embeddings of candidate paiterns,
we do not need the whole information on them. Instead, we
record the information on the intersections of these embed-
ding and the current sweep branch at every stage.
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Figure 4. The root and the bottom occur-
rences r and b of pattern T on D; w.r.t the
sweep branch S B; with matching ¢.

Let ¢ > 1 be any stage. In what follows, we denote
by v;, D; and SB; the present node, the left-half tree and
the sweep branch at stage 7. In other words, SB; is the
rightmost branch of D;.

For pattern T, let ¢(T") be an embedding of T with some
matching ¢ : Vr — Vp of T to D;. Since an embedding
of a tree is also an ordered tree in I3;, we can define the
rightmost branch, denoted by RM B(p(T)) C Vp, of p(T)
in ;. During the scan of I3, the sweep branch §B; C Vp
may have nonempty intersection SB; N RM B(p(T)) with
RMB(p(T)).

Lemma 1 For any embedding o(T') of @ partern T and the
sweep branch S By, the intersection SB; N RM B(p(T?)) is
a consecutive path in D.

From the above lemma, we define the root and the
bottom occurrences of T wrt. ¢ 1o be the highest and
the lowest nodes in the intersection SB; N RM B{p{T))
(Fig. 4). We can easily see that if the intersection SB; N
RM B(p(T)) is contained in SB; then the corresponding
bottom occurrence becomes the rightmost occurrence of T
w.r.l. . The next lemma gives an incremental character-
ization of the rightmost occurrences, which enables us to
detect all rightmost occurrences of candidate patterns by
maintaining all bottom occurrences of their predecessors on
the sweep branch using the SB-stack.

Lemma 2 Let T € T be any pattern of size k > 1. At every
time i = 1, T has a rightmost occurrence at the current
node v; in D; iff there exists some pattern S of size (k — 1)
that has a bottom occurrence at the parent of v; in D; and
such that T is the (d, £)-expansion of S, where d is the depth
of the rightmost leaf k of T from its root and £ = L{v;) is
the label of vi. This is also true even if k = 1.

To implement this idea, we use the sweep branch stack
B = (B[0], B[1],..., B|T'op]} to record the intersections
of embeddings of patterns with the current sweep branch
S§B;. Top > 0is the length of 5B;. Each bucket B[] {0 <
b < Top) contains a set of triples of the form v = (T, 7, b)
such that pattern 7" has the root and the bottom occurrences



of the depths » and b, respectively, on S B;. For each bucket
Bid|, the time stamp B[d].time € N of the last time is
associated with the bucket.

For any stage 7 > 1, the SB-stack B
(B[0], B[1], ..., B[Tap)]) is said to be up-to-date w.rt. the
present sweep branch SB; if T'op is the length of SB;, and
for every 0 < b < Top, the bucket B[b] contains all triples
(T,r,b) € T x Nx Nforsome T € C and r € N such
that the pattern T appears in D; and has the root and the
bottom occurrences on S B; of the depths r and b, respec-
tively {Fig. 4). Then, we also say that each bucket Bi#] is
up-to-date if no confusion arises. Note that the up-to-date
stack is unique at time 7. Now, we give a characterization of
the contents of the current SB-stack B; inductively.

Lemma3 Let i > 1 and v; (d,¢) be the cur-
rent node of the data stream S for D.  Let By
{Be[0L, B[1], ..., Bx[Topk)) be the SB-stack at time k &
{i — 1,i}. Suppose that both of the SB-stacks B, and B,_,
are up-to-date. Then, the foilowing 1 — 4 hold:

I. Forany0 < b < d—1, 7 € B;b] if and only if
TE B‘_I[b].

2. Forb=d—1, v € Bi[d— 1] if and only if either (i) ar
(i) below holds:

(1) TE Biml[d — 1]

(ii) 7 is represented as 7 = (T,r,d — 1) for some
tuple (T, r,b) € B;_1[d]U - U B;1[Top,_1]
suchtharr < d < b.

3. 7 € Bi[d] ifand only if T = (T, r,b) and either (i) or
(ii) below holds:

(i) T is the single node tree with the label {.

tii) T is the (d — r, £}-expansion of S for some rriple
(8,7, d—1) € Bi[d - 1].

4. Foranyb > d, B;[b] is undefined.

Proof. Case 1, 2, 3(i) and 4 are obvious. For case 3(ii), sup-
pose that E is an embedding of T in D and its right-branch
embedding intersects SB; with the bottom depth b = d.
Then, T has the rightmost occurrence at the current node
v; = 1. Let Cy is the tree obtained from E7 by removing
v;. Then, Cr is an embedding of the predecessor of T with
the rightmost occurrence at the parent, say w, of v; = {.
Since the depth of the parent w is d — 1, the corresponding
triple (S,r,d — 1) for Cr belongs to B;[d — 1] where T is
the (d — r, £)-expansion of S. o

Fig. 5 illustrates how to update the sweep branch stack
B,_, based on Lemma 3. Suppose that we receive the i-th
node (d, ¢) from a data siream. Then, the triples in UN-
CHANGE buckets, i.e., B{0] U ... U B[d — 1], stay un-
changed. The buckets in B{d]U- - - U B[T op] are partitioned
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Figure 5. SB-stacks from time: — 1 to {

Algerithm UpdateB(B,C, (d, £),1)

Input. Abucketstack B = (B[0], B[1],..., B[Top]), a candidate
pool C, a depth-label representation v; = (d,{) € N x £ of
the ith node of the data stream &, and the current time i;

Quiput: Aset EXP €T x N x N of triples ;
Method:
I. If d < Top, then do the followings:
- BELOW := B[d| U...U B[Top]
— /* Discard the triples below the branching point ¥/
REMOVE = {(T,7,b) € BELOW |r > d};
—/* Collect the triples across the branching point ¥/
CHANGE = {(T\,v,b} ¢ BELOW|{r<d-1}
—/* Change the bottom occurrences of the triples */

Bid - 1] := Bld-1Ju{(T\.r.d - 1)|(T,7,b) €
CHANGE };
2. EXP = {(Te.d,d)}, where T} is the single node tree with
the label ¢;

1. Foreach (§,r,d — 1) € B[d - 1] do the followings:
—T is the (d — r, £}-expansion of S;
-EXP:=EXPU{(T,rd};

4. Return (B, EX P);

Figure 6. Updating the SB-stack

into REMOVE and CHANGE. The triples in REMOVE
buckets are discarded, and triples in CHANGE buckets
move to the bucket B[d — 1. For all triples in B[d ~ 1],
we apply the rightmost expansion and then insert obtained
expansions into EXP.

In Fig. 6, we show the algorithm UpdateB for incremen-
tally updating the SB-stack. At any stage ¢ > 1, UpdateB
updates the first d— 1 buckets B;[0] - - - B;|d~ 1]} of new one.
The d-th bucket is not immediately updated, but the updated
contents are separately returned as EX P for computing the
bucket B;/d] in further processing. The following corollary
is immediately from Lemma 3.

Corollary 4 For every time invoked in the while loop in
StreamT of Fig. 2 at time i > 1 with the current node
v; = (d,!), the algorithm UpdateB(B,C, {d, #),1) returns



the followings: (i) The sequence B[0], ..., B[d— 1] of buck-
els that are up-to-date at time i up to depth d — 1. (ii) The
set EX P of all triples corresponding to the bottom occur-

rences on S B; whose depth is d and predecessors belong to.

C.

3.3. Duplicate Detection for the Root Occurrences

From the observations above, the algorithm UpdateB
(Fig. 6) detects all rightmost leaf occurrences of the patterns
whose predecessors belong to € at Step 2 and Step 3.

Then, the next step is to compute the corresponding root
occurrences from these rightmost occurrences. Let b € Vp
be a rightmost occurrence of pattern T° whose triple {T', r, b)
is detected at Step 2 or Step 3 of UpdateB. Recall that a
list Rtor = (Rtor[0], Rtor[l],...) is asscciated with each
T € C and it is initially empty. Then, we can obtain the
root occurrence corresponding to the triple by the following
procedure FindRootOcc:

FindRootOce(B, (T, r, b))
e Letf:= Blr].tirne and p := v;
e If Rior[r] = p then return UNDEF;

¢ Otherwise, Rtor[r] := p and return p as the root occurrence
of T'; (Duplicate check)

Figure 7. Finding root occurrences

It is easy to observe that FindRootOcc correctly finds
the root occumrence as follows. If the sweep branch S$B;
intersects an embedding of T w.r.t. a matching ¢ then it
also intersects the root occurrence of T" w.r.t. ¢, and thus the
component r of (T, r, b) correctly gives the depth of a root
occurrence, say, w € Vp. By definition, B[r].time stores
the time stamp, say t, of the node on SB; whose depth is
r when it is first encountered. Thus, v; = w gives the root
occurrence corresponding to the triple.

Furthermore for a fixed r, any node w’ occupies the
bucket B[r] in a consecutive period during the scanning of
S. Thus, it is sufficient to record the last root occurrence of
depth r for each depth v > € in order to check the duplica-
tion of the occurrences. Hence, we see that FindRootOcc
correctly detect the root occurrence of candidate patterns
without duplicates.

3.4. Candidate Management

The algorithm StreamT stores candidate patterns in a
candidate pool C C T. Fig. 8 shows an algorithm UpdateC
for managing C by updating the frequency count of each
patterns. A root occurrence has monotonicity that if pattern
T is a rightmost most expansion of pattern S then the root
count of S is greater than or equal 1o the root count of T'.
Based on this observation, the algorithm UpdateC uses a

Algorithm UpdateC(EX P, B,C,(d, ), )
Inpur: A set EXP of triples, a bucket stack B =
(B[0], B[1], ..., B[Top)), a candidate pool C, the i-th node
v; = (d, £) € N x L of the data stream, and the time ¢;
Cutput: The updated pair (B, );
Method:
1. /* Increment candidates */
For each riple (T, b} € EXPF, do:
If p := FindRootOce(B, (T, r, b)) is not UNDEF then
-If T € C then count(T) := count(T) + 1,
—1f T ¢ C and the predecessor of T is frequent, then
count(T):=land C:=CU {T}:
2. Bld]:=@; Top:=d, Bld|.time :=i;
freg(T) := count(T}/i:
3. /* Delete candidates */

For each pattern T € € and the predecessor of T is infre-
quent at time ¢ and frequent at time ¢ — 1,

-C=C\{T}h
4. /* Insert candidates in B[d] ¥/
For each triple (T',r,0) € EXP,
-If T € C then B[d] := Bid]u {{T,r,b)};
5. Return (B, C);

Figure 8. Updating the candidate pool

candidate management policy similar to Hidber [1 1], which
is summarized as follows.

¢ Initialize. We insert all single node patterns into C.
This is done at Step 1 of the algorithm StreamT

e Increment. We increment count(T) for all pattern
trees T € € that has the rightmost occurrence at the
current node vy, i.e., count(T} = count(T) + 1.

¢ Insert. We insert a pattern of size more than one if its
unique predecessor S is already contained in C and be-
comes frequent, i.e., freq (S) > o based on the mono-
tonicity of freq (S} w.r.t. rightmost expansion. This is
an on-demand version of the insertion policy of [11].
If some pattern becomes frequent then insert all of its
successors to the candidate pool.

e Delete. We delete a pattern T' from C when its unique
predecessor P becomes infrequent, i.e., freg(T) < o.
To be consistent to the initialization and the insertion
policy, we do not delete any single nodes. As sug-
gested in [11], we postpone the deletion of the patterns
from C until the algorithm requires additional space.

As summary, our algorithm StreamT tries to maintain
the negative border [17), the set of all patterns that are in-
frequent but whose predecessors are frequent.



incFreq(T, )
e If hit{T) 1 then Fr(T) :
Lhit,(T) and IH(T) := 3;
o IfT ¢ C then fH(T) := it

_ u(TJ : h{r fw(T) +

GetFreq(T, i)
o If hit;(T') = 1 then IncFreq(T, i) and return Fr{T);
« Otherwise, return S =T fr(Ty;

Figure 9. Updating and Computing the Fre-
quency

3.5, Time Analysis

We give theoretical analysis of the update time of the
algorithm StreamT at stage 7. Let B;_; be the previous
SB-stack of top Top and V; = |B;_1[5]| be the number of
triples in the j-th bucket. If a node of depth d i IS recelved
then UpdateB updates the SB-stack in O(}" .7 | N;)
time. Then, UpdateC updates pattern pool C in O(kC + D)
time, where & is the maximum pattern size, C' is the number
of candidates in C that occur at the current node v; by the
nghtmost leaf occurrence, and I is the number of removed
candidates in the stage.

4. Modification to the Forgetting Model

The algorithm StreamT in Fig. 2 is an online algorithm
for the online frequent pattern discovery problem in the on-
line model of Definition 6. Now we present modification of
StreamT to the forgetting model also introduced in Defini-
tion 6.

Recall that in the forgetting model, the contribution of
the past event decays exponentially fast. For a forgetting
factor 0 < v < 1, the frequency of T at time ¢ is given by
Eqg. t in Section 2. At first look, implementatior of the for-
getting model is as easy as the online model above because
they only differ in the definition of the frequency. In the
forgetting model, however, the frequency at time ¢ depends
on all of the weights +*~7 of past events changing as i > 1
goes larger. Thus, it seems that an algorithm have to main-
tain all of these weights at every time. Fortunately, this is
not true.

We abbreviate the frequency freqffi(T) and the event
hitg‘) (T), respectively, to fr; and hit;. Below, we give an
incremental method to compute the frequency. Let (i} =
max{ j < i[hit; = 1} be the last time stamp at which T
appeared. Then, we have the following lemma.

Lemma5 ForeveryT € T and everyi > 1, we have the
recurrence
fro
fri

"-C?

- () @)

i-leq) fTu(i) + % hit; (i > 0)

33

0.14
0.12
0.1
0.0%
06
004
0.02
0.00

= Upperbound of
estimation error of
fraquency (%)

100 1000 10000

The lifetime of a pattern

FO0000

Figure 10. The upper bound of the frequency
error against the life time with v = 0.999

Proof  We first derive the recurrence for the consecutive
steps. Then, derive the recurrence of the lemma by ex-
panding fr, using 1t(i). Since hit, = 0 for any v with
{t(2) < v < i, the claim immediately follows. 0

Now, we present a modified version of StreamT in the
forgetting model. We modify the algorithms StreamT and
UpdateC (Fig. 8) as follows. StreamT maintains the three
parameters fr(T), ft(T}, {¢(T), the frequency, the first and
the last time stamps of the updates for 7. UpdateC uses
IncFreq to update these parameters whenever a root occur-
rence of pattern T is detected at Step 1, and Stream uses
GetFreq to compute the frequency of T" whenever it re-
ceives a request at Step 2(c). We can see IncFreq(T,:) and
GetFreq(T, 1) can be executed in constant time when in-
voked by these procedures.

Then, we will present an upper bound of the error to ¢s-
timate the true frequency of a pattern in this model. The
life time of a pattern T is the period A1 = @ — ft{T) > 0.
The following theorem says that the error becomes expo-
nentially smaller in the forgetting model as the life time Ad
of T goes longer.

Theorem 6 Leti > 1, 0 <y < l,ande =1 - ~. For
any T € C with the life time At = i — ft(T) ar time 1, the
Jollowing inequality holds:

1 )
GetFreq(T, i) < freq'®,(T) < GetFreq(T, i) + e e
Proof. By standard arguments using elementary calculus,
Egs.1—¥* < land (1 —e)* < e~ (z > 0). D

In Fig. 10, we plot the upper bound of the frequency error
given by Theorem 6 varying the life time from A¢ = 1 o
Aj = 100,000, where v = 0.99% and i = 1000,000. A
half-value period is about seven thousands for .

5. Experimental Results

In this section, we present preliminary experimen-
tal results on real-life datasets to evaluate the algorithm
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Figure 11. the online scale-up experiment

StreamT. We prepared a dataset Cireseers by collect-
ing cgi-generated Web pages from an online bibliographic
archive Citeseers '. This dataset consists of |89 HTML doc-
uments of 5.6MB and its data tree had 143,250 nodes. All
experiments were performed on PC (PentiumI{I 500MHz,
512ZMB RAM, Windows2000) and the algorithm was im-
plemented in Java (SUN JDK1.3.1, JIT compiler).

We studied the scalability of StreamT. Fig. 11 shows
the running times of the online version StreamT and the
offline version FREQT [4] of frequent tree miners with the
same frequency threshold ¢ = 2(%) on the data stream for
the dataset Citeseers varying the data size from 16K(nodes)
to 143K(nodes),

From this experiment, the proposed online algorithm
StreamT seems to be much more efficient than the offline
algorithm FREQT. However, this is possibly because our
algorithm computes approximate answers due to candidate
management policy in Sec. 3.4 due to [11] and two algo-
rithms may generate ditferent sets of pattems. Therefore, to
compare the performance of those algorithms, we require
further research.

6. Conclusion

In this paper, we studied an online data mining problem
from unbounded semi-structured data stream. We presented
cfficient online algorithms that are continuously working on
an unbounded stream of semi-structured data with bounded
resources, and find a set of frequent ordered tree pattemns
from the stream on request at any time.

Our labeled ordered trees can be seen as a generalization
of serial episodes of Mannila er a/. [14], and of itemsets and
sequential patterns with a pre-processing of data as used for
encoding XML-attributes in [4]. Thus, it will be an inter-
esting problem to study the relationship of our algorithms
to other online algorithms for classes of patterns such as se-
quential patterns and episodes.

It is also a future problem to examine the online property
of the proposed algorithms using long and trend-changing
seimi-structured data streams in the real world.

htep://eiteseer.nj.nec. com/
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