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Abstract—Swarm learning (SL) is an emerging promising
decentralized machine learning paradigm and has achieved high
performance in clinical applications. SL solves the problem of
a central structure in federated learning by combining edge
computing and blockchain-based peer-to-peer network. While
there are promising results in the assumption of the independent
and identically distributed (IID) data across participants, SL
suffers from performance degradation as the degree of the non-
IID data increases. To address this problem, we propose a
generative augmentation framework in swarm learning called
SL-GAN, which augments the non-IID data by generating the
synthetic data from participants. SL-GAN trains generators
and discriminators locally, and periodically aggregation via a
randomly elected coordinator in SL network. Under the standard
assumptions, we theoretically prove the convergence of SL-GAN
using stochastic approximations. Experimental results demon-
strate that SL-GAN outperforms state-of-art methods on three
real world clinical datasets including Tuberculosis, Leukemia,
COVID-19.

Index Terms—Swarm learning, privacy-preserving decentral-
ized machine learning, non-IID, data augmentation, generative
adversarial network.

I. INTRODUCTION

Machine learning (ML) models are data hungry. In precision
medicine [1]], the performance of ML models that identify
patients with life-threatening diseases, such as leukemia, tu-
berculosis or COVID-19, increases with the size and diversity
of the training samples [2]]. In practice, to train a robust clinical
ML model, patient-related data often needs to be centralized
in a central repository [3]], [4]. However, such data sharing
across different institutions or countries, faces privacy and
legal obstacles. This problem has been solved by federated
learning [S]], in which multiple participants jointly train a ML
model under a central coordinator. In federated learning, each
participant trains a local model using the local data separately,
and then shares the learned model gradients to the coordinator
for model aggregation. Although, the private data is distributed
and not disclosing to others, the central structure in federated
learning remains vulnerable to attack [6].

To tackle the limitations of federated learning, swarm learn-
ing (SL) [7] combines edge computing and blockchain-based
peer-to-peer network. In SL, a new participant register via
a blockchain smart contract, obtains the global model, and

—_

AUC
ACC I
F1 | !

Scores

e e 0 0 0 o0 o0 o o °
N w A OO0 N ® O O
ooy v

—_
L

B=0.05 B=0.1 p=0.5  p=1 B=5

Fig. 1. Performance of swarm learning on the Tuberculosis dataset. 8 controls
the degree of the non-1ID, the lower the (3, the more imbalanced the data
distribution is. With the /3 increases, the performance of SL increases.

trains the model locally. After a user-defined synchronization
interval, local model parameters are exchanged and merged to
update the global model by a randomly elected edge node. The
chosen edge node replaces the role of central coordinator in
federated learning. In the context of clinical data mining, SL
provides a fairness environment for multi-parties ML model
training and creates a strong incentive to collaborate without
data sharing. As SL secures data sovereignty, security, and
confidentiality, it has been successfully applied in healthcare
fields [7]I, 8], [9]. However, the non-independent and identical
distributed (non-IID) data heavily limit the performance of SL.
As shown in Figure|I} with the degree of non-IID increases (3
from 5 to 0.05), the AUC scores of SL decreases from 93%
to 69%.

Existing methods for solving the non-IID problem in decen-
tralized learning can be roughly divided into two categories:
algorithm-based methods and data-based methods. Algorithm-
based methods improve the model robustness by modifying
the local loss function [10], [11] to make the local model
consistent with the global model, designing a new aggregation



scheme [12], [13]] to improve the model aggregation mech-
anism, or training personalized models [14], [15] for each
participant rather than the same global model. However, as
discussed in [16], existing algorithm-based methods are not
always better than vanilla FedAvg [5]. Data-based methods
construct a more balanced data distribution among participants
or on the server by data sharing or augmentation strategies
[L7], [18]], which achieve a high performance on non-IID
data. Unfortunately, there are still two challenges in directly
applying these methods to SL. On the one hand, these methods
need a trusted central coordinator to employ data sharing or
data augmentation, which is contrary to the assumption in
SL. On the other hand, data augmentation strategies based
on generative adversarial network (GAN) remains a challenge
is that GAN may not converge on non-IID data. To the best
of our knowledge, there are currently no works to solve the
non-IID problem in SL.

To address these challenges, we propose a novel genera-
tive augmentation framework in SL called SL-GAN, which
augments the non-IID data to a balanced data distribution
among each participant by using a generative model. In SL-
GAN, discriminators and generators are trained locally and
aggregated after a user-defined synchronization interval by a
randomly elected edge node. Furthermore, under the standard
assumption in SL, we theoretically prove the convergence of
SL-GAN using stochastic approximations. We evaluate our
SL-GAN on three real-world clinical datasets with various
data distributions among participants. The experimental results
show that SL-GAN can effectively improve the performance
of SL on non-IID data and outperforms the state-of-the-art
methods.

The main contributions of this paper are as follows:

(1) To the best of our knowledge, this is the first study on the
non-IID problem in SL. We propose SL-GAN, a novel
data augmentation framework in SL, which jointly trains
a global generative model to augment the non-1ID data
without a central coordinator.

(2) We theoretically prove our SL-GAN converges with non-
IID data under the standard assumption in SL.

(3) We test SL-GAN on three real-world clinical datasets
with various data distributions. The experimental results
demonstrate that SL-GAN outperforms the state-of-the-
art approaches and is robust to varies data distributions.

II. RELATED WORKS
A. Non-IID in Decentralized Learning

Since there are currently no works to solve the non-I1ID
problem in swarm learning, we describe the related works
in other decentralized learning method, such as federated
learning. Existing methods in federated learning to deal with
the non-IID problem are divided into two categories [19]]:
algorithm-based methods and data-based methods.

1) Algorithm-based methods: As suggested in [20]], the
weight divergence of local models caused by non-IID data is
the root cause of model performance degradation. To alleviate

this problem, Fedprox[10] adds a penalty term in the objective
function to make the local model consistent with the global
model. SCAFFOLD|21] controls the similarity between the
local model and the global model by adding a regularization
term to the local loss function. To avoid the influence of the
local model from nodes with large data volumes, FedNova[[11]]
normalizes the local model before model aggregation. Unlike
modifying the objective, personalized federated learning [14],
[15] aims to train personalized models in each participant
rather than the same global model. However, as shown in [16],
existing algorithm-based methods are not always better than
vanilla FedAvg [5].

2) Data-based methods: To construct a balanced data dis-
tribution among each participant, data-based methods perform
data augmentation or data sharing strategies under the co-
ordination of a central server. Mixup[17] is a simple and
commonly used data augmentation method, which constructs
a new samples by linear interpolation, and FedMix[22] is
another work that using Mixup strategies. However, Mixup
cannot generate unseen labels. Unlike data augmentation, data
sharing methods [23l], [24] alleviates the non-IID problem by
collecting a small subset of samples from participants on the
central server. However, these methods violate the privacy
assumption in federated learning. Unlike these methods, our
SL-GAN trains a global GAN for data augmentation.

B. Federated Generative Models

To synthesize fake data with a distribution similar to the
global data, federated GAN [18]], [25] train a global generative
model among participants in federated learning. Existing fed-
erated GANSs can be divided into two categories. One type is
that generator trained on the server, discriminators are trained
on the client. DP-FedAvg-GAN [25] is the first work in such
architecture to train a global GAN for data generation, which
under the assumption of IID data. F2U [26] follows previous
settings and assign different weights for local discriminators in
the process of model aggregation on the non-IID data. Another
type [18] is that both discriminator and generator are trained
on the client and aggregated on the server. Unfortunately, these
methods require a central server and cannot guarantee the
convergence of the GAN on non-IID data. In contrast to these
methods, our SL-GAN trains a global GAN without a central
coordinator. And we theoretically prove the convergence of
SL-GAN.

III. PROPOSED METHODS

In this section, we propose SL-GAN framework, describe
its training algorithm and theoretically prove its convergence.
Table [I| summarizes notations used in this paper.

A. SL-GAN

Figure [2] shows the architecture of our SL-GAN, in which
jointly trains a GAN among participants. In SL-GAN, each
participant trains generator and discriminator locally. When a
user-defined synchronization interval reached, the trained local
discriminators and generators are aggregated on a randomly
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Fig. 2. SL-GAN architecture. The green dotted arrow circle represents a swarm network used for aggregating the target clinical machine learning model.
The blue dotted arrow circle denotes the swarm network that used to aggregate the parameters of GAN. Discriminators and generators are trained locally and
aggregated on a elected edge node. Synthetic data generated by the trained generator are used to balance the data distribution among participants.

TABLE I
SUMMARY OF NOTATIONS

Notation Description
C set of participants
X local dataset of participants
lr learning rate
N local training epochs
T aggregation time interval
9D, 9G stochastic gradient of discriminator and generator
9D, 9G true gradient of discriminator and generator
0p,0q parameters of discriminator and generator
p aggregation weight
M9p MY stochastic gradient errors
v discriminator parameters in the interval
o) generator parameters in the interval
a maximum round between two aggregations
sup supremum
E expectation
m mean value
o standard deviation

elected participant and then sent back to each participant with
the swarm network. After SL-GAN converges, the trained
generator is used for data augmentation. Finally, The target
classification model is trained using the combination of the
synthetic data and the local private data.

Algorithm [I] describes the training process of SL-GAN.

(1) Each participant trains local generator and discriminator
using standard GAN training procedure. The discrimi-
nator is trained using the real data X,.,; and the fake
data X .. generated by the generator, the generator is

updated follow the discriminator (lines 1-6 of Algorithm
).

(2) When reached the pre-defined synchronization interval
T, participants send their local discriminator and gener-
ator to a temporarily elected node for aggregation with
the weight p., p. = % (lines 7-10 of Algorithm
).

After model aggregation, each participant receives the

aggregated discriminator and generator and updates their

local model (line 11 of Algorithm [T).

The algorithm repeats the above process until SL-GAN
converges.

3)

B. Convergence Analysis

In this section, we show that our SL-GAN converges in
swarm learning with non-IID data. We denote the gradient of
discriminator and generator in participant i by g% and gf,.
Let 6" = (0%,,0%)" be the parameter of the participant i. The
true gradient rather than stochastic gradient of each client is
specified as g%, and g.,. In addition, we define the stochastic
gradient errors M(P) and M9e), where M(r) = ¢} —
Sipigy and M) = g — Sipigt,.

We follow the assumptions in the centralized GAN.

1) g% and gg are L-Lipschitz.

2) S,lr =00, plr? < oo
3) {M,(IGD)} and {MT(LOG)} are martingale
difference sequence of the increasing o-filed

F, = o(0p,,0¢,, M, M%) 1 <n),n>o0.

4) supy||0p, ||<oo and sup,||fg, ||<oo



Algorithm 1 SL-GAN model training process

Input: Local training epoch N, batch size B, learning rate of
discriminator Irp(n), learning rate of generator Irg(n),
local discriminator 6p,, local generator ¢, , synchroniza-
tion interval 7', start time tp, current time ¢, weight of
model aggregation p..

Output: well trained discriminator §p_ and generator 0. .

1: for n from 0 to N — 1 for all clients do

2: X!, < (sample random batch data of batch size B)

3: Xt ... < (sample random noise of batch size B)

4: X}ake — Generator(X? ;e 9’6,) . ‘

5: elD — 6‘3) - er(n) VG}L_-) ZOSSD(H_}W X}ak’e’ X?Z“eal)

6: 0 < 0 —lra(n) oz, lossa (06, Xiape, 0p)

7: if (t — to)|T then

8: Random select a participant ¢’ for model aggrega-
tion

9: 06 < > pebg,

ceC

10: 0%, ;C pebl.

11 Send back 6%, 6%, and all participants update local
discriminators and generators

12: end if

13: end for

5) Ellgh = gpll < 095, Ellgg — g5l < 0ge and [lg), —
ng” SIU‘QD

where (1)-(4) are used in stochastic approximation of GAN
convergence. In assumption (5), the first bound ensures that the
local stochastic gradient is close to the local true gradient, the
second bound ensures that the local discriminator true gradient
of the non-IID data are close to the discriminator true gradient
of the pooled data [18], the last bound represents bounded
gradient divergence.

To prove the convergence of SL-GAN, we connects the
convergence of GAN to the convergence of an ordinary
differential equations (ODE) representation of the parameter
updates [27]. We prove that the ODE representing the pa-
rameter updates of SL-GAN asymptotically tracks the ODE
representing the parameter updates of the centralized GAN. As
defined in [27], [28]], the centralized GAN tracks the following

ODE asymptotically.

-

Therefore, the problem of proving the convergence of SL-
GAN is transformed into proving that the parameter of SL-
GAN follows asymptotically. As proofed in [18]], we have,

Op(1)

gp(0p(t),0c(t))
0c(t) (6 eg ) M

(
9c(0p(1),

E||0p;, — val| + E |66 — 6| <

Zop + o 9% [(1 4 2r(n — 1) L) 4K _1]

2

E6p, —vnl +E[0c — ¢, <

(00, + pop + 065)
2L

3)

v, and ¢,, represent the parameter of discriminator and gen-
erator in the interval between two aggregations, respectively.
The specific definition is as follows

n

vy =0p,, + Y Ir(k)gp (¢y,vk), (4)
k=n1

b, =0an, + Y _ Ir(k)ga (¢, vr) (5)
k=nq

where n; means the nearest aggregation timestamp. However,
in swarm learning, there is no K, which indicates every K
local epochs. Fortunately, we can still prove that in the interval
between every two adjacent aggregations, the local epochs for
every client is bounded,

n'—n; <a,Vie{l,---,m} a>0

which is trivial because a participant will not train itself
infinitely anyway. We just need to treat max(n® —ny) as K,
bringing it to the Equations (2) and (3), we will get the same
result as federated learning. Based on the Theorem 1 in [18]
and Theorem 2 in [29], ¢ in SL-GAN tracks the ODE
asymptotically, namely it will converge eventually.

IV. EXPERIMENTS
A. Experimental Setup

1) Datasets: We use three real-world clinical datasets, as
shown in Table |lI} and their details are as follows:

e Tuberculosis [7] is an RNA-Seq dataset based
on whole blood transcriptomes, which combines
data from healthy controls with published data
in Gene Expression Omnibus (GEO). This dataset
merged from 9 independent datasets: GSE101705,
GSE107104, GSE112087, GSE128078, GSE66573,
GSE79362, GSE84076, GSE89403. There are 1550
samples from patients with active tuberculosis, latent
tuberculosis, fatigue, autoimmune diseases, HIV and
controls. All active tuberculosis samples are listed as
CASE and and all other samples are listed as CON-
TROL. After data preprocessing, there are 18136 genes
(columns) in this dataset.

e Leukemia dataset [30] contains 2379 transcriptomes
derived from peripheral blood mononuclear cells
(PBMC) or bone marrow, published at the GEO under
subseries GSE122505. In this dataset, independent

data sets selected from GEO are as follows:
GSE10255, GSE1159, GSE12417, GSE12995,
GSE13425, GSEI14471, GSE14895, GSE16129,
GSE25571, GSE26281, GSE33315, GSE34860,
GSE37642, GSE43176, GSE4698, GSES51082,

[(L+2r(n—1)L)" —1] —lr(n — Dpe, K



TABLE II
STATISTICS OF DATASETS

i of samples  f of samples

Distribution of samples  Distribution of samples

Dataset . f of columns (training set) (test set)
(training sef)  (test set) (CASE:CONTROL) (CASE:CONTROL)
Tuberculosis 1240 310 18136 620:620 155:155
Leukemia 1943 436 22283 826:1117 206:230
COVID-19 1920 480 19400 237:1683 59:421

GSE6269, GSE67684, GSE83449, GSE8879, GSE9006,
GSE9476. Acute Myeloid Leukemia (AML) samples
are classified as CASE and all other samples are
classified as CONTROL.

e COVID-19 [7] is an RNA-Seq dataset based on whole
blood transcriptomes, which contains 296 samples from
patients with COVID-19, as well as 2104 other control
samples (autoimmune disease, Fatigue, healthy con-
trols, HIV, latent tuberculosis and active tuberculosis).
COVID-19 samples are labeled as CASE and all other
samples are labeled as CONTROL. After data prepro-
cessing, there are 19400 genes (columns) in this dataset.

Table [II] shows the statistical information of three datasets.
We split the total samples into training dataset and test dataset
with the ratio 8:2.

2) Baseline Methods: We adapted two state-of-the-art
algorithm-based methods (Fedprox, FedNova) in federated
learning and one data-based method (Mixup) to swarm learn-
ing as baseline methods. The detail information of baseline
methods are as follows:

— Fedprox [10] is an algorithm-based method, which

modify the objective function of participant k as follows,

t K t)2

Ay, (w; w") :Fk(w)+§||w7w I (6)

where Fj,(w) represents the original objective function,

w? is the parameter of the global model obtained in the

t-th round.

FedNova [11]] is an algorithm-based method, which

modify the original aggregation method to

Lt —

w (Zk 1kak Z A(t)

)

where T,gt)

is the number of iterations of participant k
in round ¢, and A,(:)
round .

Mixup [[17] is a simple data augmentation method,
(1= A;

{ A)y;

where (z;,y;) and (z;,y;) are two randomly selected
samples, A € (0,1).

is the gradient of participant &k in

§= i+ (1 ©

3) Data Partition: To simulate the non-IID data in real
world, we use the distributed-based label imbalance method
in [16], that each participant is allocated a proportion of the
samples of each label according to Dirichlet distribution. In
practice, we allocate a py, ; (pg,; ~ Dir(8)) proportion of the
samples of label & to participant j, where Dir(.) represents
Dirichlet distribution and S (8 > 0) is its parameter. In this
approach, we can flexibly control the degree of the non-IID
by varying the parameter 5. The smaller the /3 is, the more
unbalanced the data distribution is.

4) Data Augmentation: After SL-GAN converges, the syn-
thetic data generated by the trained generator is used to
augment local data based on global data distribution. During
training, each participant contains the same amount of data
and its label distribution is consistent with the global label
distribution. For instance, the data contained in a participant is
{CONTROL:40, CASE:414} on the Tuberculosis dataset with
B =1, and the distribution of global data is CONTROL:CASE
= 1:1. After data augmentation, the data of the three partici-
pants are {CONTROL:556, CASE:556}.

B. Performance on Classification

Figures [3] - [5] show the comparisons of the performance on
Tuberculosis, COVID-19, Leukemia dataset, respectively. We
compare vanilla swarm learning, Fedprox, FedNova, Mixup
with our SL-GAN in four different data distributions (5 =
0.05,0.1,0.5,1). SL-GAN outperforms all the baseline meth-
ods in terms of F1 score, accuracy, and AUC in three datasets.

In many cases, the vanilla SL algorithm outperforms Fed-
prox and FedNova, which is consistent with the conclusion
in [16]]. This is because algorithm-based methods do not
fundamentally address the problem of data imbalance. In
contrast, Mixup and SL-GAN both perform better than the
vanilla SL algorithm in almost all cases, which means that data
augmentation methods have a significant effect on alleviating
data imbalance. Unfortunately, in Figure [3] (a) and Figure [
(a), F1 scores of Fedprox and FedNova are close to 0, which
suggests that these methods fail to make the local model
consistent with the global model under extreme data imbal-
ances. Compared with Mixup, SL-GAN shows more reliable
performance in various distributions. This is because Mixup
cannot generate the class of samples that are not available in
the local. Therefore, in some cases, the enhancement is redun-
dant data features. SL-GAN trains a generative model among
participants and learns the real distribution, which can generate
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Fig. 3. Performance on the Tuberculosis dataset. We compared with vanilla swarm learning, Fedprox, FedNova, Mixup and SL-GAN in terms of AUC, F1
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synthetic data with an approximate distribution of the global
data. To summarize, in almost all cases, SL-GAN achieves

the best performance. In general, data-based methods show
performance than algorithm-based method because they

better
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construct a balanced data distribution among each participant.

Figure [6] shows the training round on the COVID-19 dataset.
As we can see, by augmenting the synthetic data, SL-GAN
converges to a smaller loss than the vanilla SL algorithm. As
shown in Figure [6] with the degree of non-IID increases (/3
form 0.1 to 0.05), the vanilla SL algorithm has difficulty in
convergence. In contrast, the model augmented by SL-GAN
can still converge to a relatively small loss, which means
that the data augmentation method proposed in this paper can
significantly improve the efficiency and effect of the model
training.

C. Synthetic Data Utility

To evaluate the utility of the synthetic data that generated
by SL-GAN, we train 10 machine learning models on the

synthetic data and test these models on the real data. The
performance of the synthetic data for COVID-19 dataset
shown in Table As shown in Table [V-C| as the value
of 3 decreases (from 1 to 0.05), the accuracy of the synthetic
data does not change. This shows that the proposed SL-GAN
can converge stably on the non-IID data. In many cases, the
performance of the synthetic data is close to that of the original
data. However, The average accuracy of the SL-GAN is 10%
lower than that of the original data, which means that our
generative method does not always successfully capture the
real features of the original data.

V. CONCLUSION AND FUTURE WORKS

In this paper, we presented a generative augmentation
framework in swarm learning for non-IID data, which called



TABLE III
THE ACCURACY OF THE SYNTHETIC DATA ON THE COVID-19 DATASET

Classifier Originaldata gB=1 pg=05 B=01 =005
LGBMClassifier 0.98 0.74 0.72 0.83 0.58
XGBClassifier 0.97 0.70 0.69 0.72 0.60
BaggingClassifier 0.97 0.84 0.76 0.84 0.79
svC 0.96 0.88 0.88 0.88 0.88
RandomForestClassifier 0.96 0.85 0.86 0.86 0.82
LabelPropagation 0.88 0.88 0.88 0.88 0.88
ExtraTreesClassifier 0.96 0.84 0.84 0.84 0.85
CalibratedClassifierCV 0.96 0.84 0.88 0.88 0.87
GaussianNB 0.83 0.86 0.88 0.80 0.86
LabelSpreading 0.88 0.88 0.88 0.88 0.88
LabelPropagation 0.88 0.88 0.88 0.88 0.88
Average 0.935 0.831 0.827 0.841 0.801

SL-GAN. We jointly train a GAN in the swarm learning
network, and theoretically prove the convergence of the SL-
GAN. We augments the non-IID data into IID data using
SL-GAN. We evaluated the proposed SL-GAN on three real-
world clinical dataset. The experimental results show that our
SL-GAN outperforms the state-of-the-art work in various data
distributions.

In the future, in order to protect the data privacy, the
differential privacy will be introduced to the SL-GAN and the
privacy of the synthetic data will be studied. Furthermore, as
there is still a gap between the utility of the synthetic data and
original data, we will combines prior knowledge to improve
the quality of the synthetic data.
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