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Abstract—A bipartite graph extensively models relationships
between real-world entities of two different types, such as user-
product data in e-commerce. Such graph data are inherently
becoming more and more streaming, entailing continuous inser-
tions and deletions of edges. A butterfly (i.e., 2×2 bi-clique) is the
smallest non-trivial cohesive structure that plays a crucial role.
Counting such butterfly patterns in streaming bipartite graphs is
a core problem in applications such as dense subgraph discovery
and anomaly detection. Yet, existing approximate solutions con-
sider insert-only streams and, thus, achieve very low accuracy in
fully dynamic bipartite graph streams that involve both insertions
and deletions of edges. Adapting them to consider deletions is
not trivial either, because different sampling schemes and new
accuracy analyses are required. We propose ABACUS, a novel
approximate algorithm that counts butterflies in the presence
of both insertions and deletions by utilizing sampling. We prove
that ABACUS always delivers unbiased estimates of low variance.
Furthermore, we extend ABACUS and devise a parallel mini-
batch variant, namely, PARABACUS, which counts butterflies
in parallel. PARABACUS counts butterflies in a load-balanced
manner using versioned samples, which results in significant
speedup and is thus ideal for critical applications in the streaming
environment. We evaluate ABACUS/PARABACUS using a diverse
set of real bipartite graphs and assess its performance in terms
of accuracy, throughput, and speedup. The results indicate that
our proposal is the first capable of efficiently providing accurate
butterfly counts in the most generic setting, i.e., a fully dynamic
graph streaming environment that entails both insertions and
deletions. It does so without sacrificing throughput, and even
improves it with the parallel version.

Index Terms—butterfly counting, bipartite streaming graphs,
fully dynamic streams, edge deletions, approximate estimation

I. INTRODUCTION

Bipartite graphs are a natural fit when it comes to modeling

the relationship between two different types of entities in

real-world applications [1], [2]. For instance, Alibaba’s e-

commerce platform models relationships between users and

products via bipartite graphs [3]. These graphs consist of

billions of vertices (e.g., products, buyers, and sellers) and

hundreds of billions of edges (e.g., representing clicks, or-

ders, and payments). Nowadays, real-world bipartite graphs

are inherently streaming, entailing continuous insertions and

deletions of vertices and edges [4] For example, Alibaba’s

user-product interactions are streams of very high velocity:

Reports of customer purchase activities specify that during a

heavy period in 2017, 320 PB of log data were generated

* The paper is dedicated in memory of Jorge; a mentor and a colleague
who passed away so unexpectedly in May 2023.

within only a six-hour period [5]. Consequently, it is vital to

swiftly analyze the huge volume of incoming data and identify

underlying trends or patterns in bipartite graph streams in order

to gain valuable insights.

The butterfly is the most basic substructure in bipartite

graphs, similar to the triangle in unipartite graphs. A butterfly

(i.e., 2 × 2 biclique) is a complete bipartite subgraph with

two vertices belonging to one entity type and two vertices

belonging to another entity type. Butterfly count is a metric

that plays an important role in many applications. For instance,

it is used to measure the butterfly clustering coefficient in a

bipartite graph, which indicates how cohesive the graph is and

can highlight how entities are clustered [6], [7], [8], [9]. This

metric is important in many real-world applications, such as: in

online recommendation systems to identify similar items [10],

[11], [12], [13], cluster users, and enhance collaborative-

filtering [14]); in real-time anomaly detection [15], [16], [17];

in fraud detection [2]. Also, counting butterflies for each edge

is required for the computation of k-bitrusses [18], [19], [20],

which is used in a varienty of applications, such as community

and spam detection [21], [22], [23], [24], [25], [26].

Approaches that exactly count butterflies in static

graphs [27], [20], [1], [28] are prohibitive for streams because

they necessitate storing the whole graph in memory and take

quadratic time to enumerate butterflies in the worst-case.

Wang et al. [20], [1] devise a vertex-priority-based algorithm

that considers both insertions and deletions of edges in a

batch-dynamic setting. However, their per-batch computation

mechanism cannot keep up with the pace of bipartite graph

streams and results in stale counts in streaming applications.

Approximate streaming methods that estimate the butterfly

counts also exist [28], [29], [16]. However, all of them are

strictly focusing on insert-only bipartite graph streams, and

none of them can support both deletions and insertions of

edges. This is primarily due to the inability of their sampling

algorithms to maintain uniform random samples in presence

of deletions. As a result, they fail to provide accurate butterfly

counts in the most general and realistic setting, the fully

dynamic one. This also directly results in a degradation of the

output quality of many algorithms that rely on butterfly counts.

Consider, for instance, the precision and recall metrics, which

are utilized by anomaly detection algorithms to measure the

quality of detected anomalies over time. Typically, an anomaly

in bipartite graph streams appears when a certain number

of butterflies that are formed is above some threshold [16],

http://arxiv.org/abs/2312.03435v1


[17], [30], [31]. Therefore, precision and recall will degrade

significantly if the butterfly counts are maintained inaccurately,

which will happen if edge deletions are ignored and not

treated accordingly. In order to improve the quality of anomaly

detection, it is vital to address the edge deletions appropriately.

Counting butterflies in fully dynamic bipartite graph streams

is challenging for three main reasons: (i) Due to the complexity

of the butterfly counting problem and the nature of bipartite

graphs, exact algorithms are prohibitive as they require the

whole graph to be stored in main memory. (ii) An approximate

solution is more suitable for achieving high throughput and

maintaining a small memory footprint, but should provably de-

liver unbiased estimations. Doing so by using simple sampling

techniques that only work for insert-only streams (e.g., reser-

voir sampling) falls short for a bipartite graph stream that

also involves deletions; (iii) Devising a parallel algorithm for

increased throughput is appealing for graph streams but non-

trivial. Specifically, all threads should have almost the same

workload to not introduce stragglers while at the same time

reducing contention among them.

We propose ABACUS, which tackles all the above-

mentioned challenges by providing accurate estimates for the

butterfly counts in bipartite graph streams with deletions.

Specifically, we use Random Pairing (RP) [32] to maintain a

uniform random sample of bounded size from a fully dynamic

graph stream over which we estimate the butterfly counts. We

prove that our estimates are unbiased and have low variance.

Importantly, ABACUS eliminates the need for extra hashmaps

that bookkeep wedges [20], [28] by refining its butterfly

counts via set intersection operations. Furthermore, we present

a parallel variant of ABACUS, called PARABACUS, which

processes a graph stream in mini-batches [33], [34] using all

available threads. More precisely, we maintain a versioned

sample, which incorporates different states of the maintained

sample that correspond to different edges in the mini-batch.

Finally, we conduct the per-edge butterfly counting attributed

to each edge in a mini-batch in parallel to enhance throughput.

In summary, we make the following major contributions:

(1) We formalize the problem of counting butterflies in fully

dynamic streams, entailing both insertions and deletions of

edges (Section II).

(2) We present ABACUS, an approximate algorithm handling

bipartite graph streams with both insertions and deletions. We

present a set intersection-based process for updating the butter-

fly counts that makes our algorithm more space-efficient as it

alleviates the need for bookkeeping. We refine our estimates by

calculating the probability that a butterfly is formed between

an edge that arrives and the sample we maintain (Section III).

(3) We prove that ABACUS always maintains unbiased esti-

mates for butterfly counts of low variance. We provide the

time and space complexity of our algorithm (Section IV).

(4) We present the parallel version of ABACUS, namely,

PARABACUS, which processes the graph stream in mini-

batches using all available threads to enhance throughput.

Specifically, we maintain sample versions and distribute the

counting of per-edge butterflies attributed to each edge in a
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Fig. 1: (a) Butterfly structure. (b) Running example showing

the graph sample S, an incoming edge {u, v}, and the butter-

flies that {u, v} potentially forms with the edges in S.

mini-batch to all available threads (Section V).

(5) We conduct comprehensive experiments on a variety of

real-world bipartite graph workloads. We show that ABACUS

and PARABACUS give both efficient and accurate estimates,

which align with our theoretical analysis (Section VI).

We then discuss related work in Section VII, where we stress

that existing butterfly counting algorithms for graph streams

fail to address the above-mentioned challenges attributed to

edge deletions. We conclude the paper in Section VIII.

II. PROBLEM STATEMENT

Let us first introduce the notation we use throughout the paper

(shown in Table I) and the core definitions necessary to for-

mally define the problem we address. We consider undirected

and unweighted bipartite graphs without zero-degree vertices,

and without duplicate edges. We begin by defining a fully

dynamic bipartite graph stream as follows:

Definition 1. A fully dynamic bipartite graph stream Π is a

sequence of elements (e(1), e(2), . . . ). Let G(t) = (V (t), E(t))
be a bipartite graph that contains all edges E(t) that appear

in the sequence Π up to time t (inclusive), and let their

corresponding set of vertices V (t) = L(t) ∪ R(t), which is

separated into two disjoint partitions; a left one, L(t), and

a right one, R(t), where L(t) ∩ R(t) = ∅. It holds that

E(t) ⊆ L(t) × R(t). Also, N
(t)
v = {w ∈ V (t)|(v, w) ∈ E(t)}

denotes the set of neighbours of a vertex v ∈ V (t). For each

discrete timestamp t ≥ 0, let e(t) = ({u(t), v(t)}, δ) be the

tth element in the sequence Π, where {u(t), v(t)} is the actual

edge and δ ∈ {+,−} denotes the change in G at time t,
i.e., whether the edge is inserted or deleted. More precisely,

({u(t), v(t)},+) signifies that the edge did not exist up to time

t− 1, i.e., ({u(t−1), v(t−1)} /∈ E, but will be inserted at time

t, i.e., ({u(t), v(t)} ∈ E. Similarly, {u(t), v(t)},−) indicates

that an existing edge {u(t), v(t)} ∈ E is about to get deleted.

Implicitly, we assume that only new edges can be inserted

(i.e., multigraphs with parallel edges are out of scope) and

only edges that already exist can be deleted. Also, vertices that

end up with degree zero, are deleted from V (t), ∀t. A butterfly

is a complete 2× 2 bipartite subgraph, where two vertices of

one bipartition are connected with two vertices of the other

bipartition. For instance, a butterfly subgraph is depicted in

Figure 1a. Let us now formally define a butterfly pattern that

appears in such bipartite graphs as follows:



TABLE I: Notations.

Π fully dynamic bipartite graph stream

G(t) = (V (t), E(t)) bipartite graph at time t

V (t) = L(t) ∪R(t) set of vertices (left and right partition)

δ edge insertion (δ = +) or deletion (δ = −)

{u(t), v(t)} edge between two vertices u and v at time t

e(t) = ({u(t), v(t)}, δ) an element of Π at time t

{u(t), v(t), w(t), x(t)} butterfly formed by vertices u, v, w, x at time t

B(t) set of butterflies in G(t) at time t

S(t) sample of the stream Π at time t

N
(t)
u set of neighbours of vertex u ∈ V (t) in G(t)

N
S,(t)
u set of neighbours of vertex u in the sample S(t)

d
(t)
u degree of vertex u ∈ V (t)

d
S,(t)
u degree of vertex u in the sample S(t)

c butterfly count estimate

cb #uncompensated (“bad”) deletions ∈ S(t)

cg #uncompensated (“good”) deletions /∈ S(t)

k memory budget (max #edges in S)

C(t) set of created butterflies up to time t

D(t) set of deleted butterflies up to time t
M number of edges in a mini-batch

α percentage of edges that are deletions

Definition 2. Given a bipartite graph G(t) and four vertices

u, v, w, x ∈ V (t), where u, x ∈ L(t) and v, w ∈ R(t), a

butterfly is the induced subgraph {u, v, w, x} that is formed

by the edges (u, v), (u,w), (v, x), (w, x) ∈ E(t).

We now define the problem of estimating the number of

butterflies in a fully dynamic graph stream Π under infinite

window semantics [35]. Let B(t) denote the set of all butter-

flies in a bipartite graph G(t). We, thus, formally define the

problem we focus on, as follows:

Problem Statement. Given a fully dynamic bipartite graph

stream (e(1), e(2), . . . ) comprised of a sequence of edge inser-

tions and deletions in a bipartite graph G, we aim to maintain

butterfly count estimates |B(t)|, using bounded memory, such

that the estimates are unbiased and the errors are minimized.

Note that we assume the traditional data stream model where

the changes in the input stream can be accessed only once in

the given order unless they are explicitly stored in memory.

III. ABACUS

We now present ABACUS, an algorithm designed to facilitate

the efficient and accurate counting of butterflies in fully dy-

namic bipartite graph streams. ABACUS employs sampling to

maintain a subset of the edges of bounded size, and estimates

butterfly counts through the maintained sample. First, we give

an overview of the general workflow of ABACUS. Subse-

quently, we present the sampling scheme ABACUS employs for

maintaining a uniform random sample. Finally, we illustrate

the exact methodology we use to refine butterfly estimates.

A. Overview

Let us now elaborate on ABACUS’s main workflow as shown

in Algorithm 1 (lines 4-14). It ingests a fully dynamic graph

stream, element by element, and maintains a uniform random

Algorithm 1 ABACUS

1: Input: fully dynamic input bipartite graph stream Π =
(e(1), e(2), . . . ), graph sample S , memory budget k ≥ 2

2: Output: butterfly count estimate c
3: S ← ∅, |E| ← 0, c← 0, cb ← 0, cg ← 0
4: for each element e(t) = ({u, v}, δ) in Π do
5: // Update the Butterfly Count

6: increment =
sgn(δ)

Pr(|E|,cb,cg)
⊲ sgn(δ) is the sign of δ

7: if
∑

x∈Su
dx <

∑
x∈Sv

dx then choose v ⊲ Else, u

8: for each vertex w ∈ NS
u \ v do ⊲ u’s neighbors ∈ S

9: CN = SetIntersection(NS
w , NS

v )
10: for each vertex x ∈ CN do
11: c += increment
12: // Update the Sample
13: if δ = + then InsertToSample({u, v}, k)
14: else if δ = − then DeleteFromSample({u, v})

sample S of bounded size k by utilizing the Random Pairing

(RP) [32]. Note that the memory budget k is the maximum

possible sample size in ABACUS, and thus, we use the terms

memory budget and sample size interchangeably throughout

the paper. The RP sampling scheme is suitable for streams

that contain both insertions and deletions and ensures that

the sample is always uniform. Uniformity is a property that

enables us to extrapolate our estimations to the whole graph

stream. Under deletions, the usual sampling schemes, such

as reservoir sampling [36], do not guarantee uniformity. The

processing happens per element (line 4), and once processed,

ABACUS evicts it from the main memory. On a high level, for

each incoming element, ABACUS first refines the maintained

butterfly count estimates and then updates the sample S.

Specifically, for each incoming edge (either edge insertion or

deletion), ABACUS finds all the butterflies that the edge forms

with the edges in the sample S (lines 8-11) and updates the

butterfly count (lines 6, 11). Due to the inherent complexity

of the butterfly structure itself, it is challenging and important

to spot the formed butterflies efficiently. One must also prove

that the estimates provided are unbiased and of low variance,

and thus, accurate and robust. Afterwards, ABACUS updates

the sample S (lines 13-14) by essentially deciding whether to

insert the edge {u, v} to S (if δ = +) or delete it from S (if

δ = −), where δ indicates an edge insertion or deletion.

B. Counting Butterflies per Edge

We now explain how ABACUS finds the number of butterflies

an incoming edge forms with the edges in the sample, as

shown in Algorithm 1 (lines 4-11). As we refine our butterfly

counts using every incoming edge, irrespective of whether the

edge is later included in the sample, the operation of per-edge

butterfly counting must be as efficient as possible.

For each incoming edge {u, v}, ABACUS chooses to com-

pute the butterflies formed using the vertices on u’s side that

are neighbors of v, or using the vertices on v’s side that are

neighbors of u (line 7). ABACUS chooses to explore vertices

on the side of the incoming edge’s endpoint that has the

smallest cumulative degree. This is a common heuristic [28],

[20], and allows for choosing the cheapest side to conduct the



Algorithm 2 RANDOM PAIRING [32]

1: procedure InsertToSample({u, v}, k)
2: |E| ← |E|+ 1
3: if cb + cg = 0 then
4: if |S| < k then S ← S ∪ {{u, v}}
5: else if Bernoulli( k

|E|
) = 1 then

6: replace a random edge in S with {u, v}

7: else if Bernoulli( cb
cb+cg

) = 1 then

8: S ← S ∪ {{u, v}}
9: cb ← cb − 1

10: else cg ← cg − 1

11: procedure DeleteFromSample({u, v})
12: |E| ← |E| − 1
13: if {u, v} ∈ S then
14: S ← S \ {{u, v}}
15: cb ← cb + 1
16: else cg ← cg + 1

counting. In the context of ABACUS, choosing the cheapest

side leads to conducting cheaper set intersections using ver-

tices that belong to the bipartition with the smaller cumulative

degree. The fact that the complexity of a set intersection

operation between two sets is the size of the smallest set, leads

to improved performance. As we see in our running example

in Figure 1b, we choose the side of vertex v or equivalently

we conduct the counting using the neighbors of u in S as

they have the smallest cumulative degree. Specifically, in our

example u has only one neighbor in the sample S, i.e., r2 with

degree 2, whereas v has two neighbors in S, i.e., l1 and l2
with cumulative degree equal to 5.

Consider that ABACUS chooses v (line 7). If so, it explores

every neighbor w of u in the sample S (i.e., excluding v)

(line 8). Subsequently, ABACUS finds the common neighbors,

CN , as the result of the set intersection between the set

of neighbors of v and the set of neighbors of w (line 9).

The result, CN , of a set intersection (if not empty) contains

all the vertices that serve as the fourth vertex x forming a

butterfly along with the edge’s endpoints u, v, and the current

vertex w that ABACUS explores amongst the neighbors of

u (line 10-11). In case the result of the set intersection is

empty, this means that no butterfly that contains the incoming

edge {u, v} is formed through the vertex w. In our running

example in Figure 1b, since ABACUS chooses v, the only

vertex that is neighbor of u in S is r2, belonging to the

right bipartition (shown in the upper part). Vertex v has

neighbours NS
v = {u, l1, l2} and vertex r2 has neighbors

NS
r2 = {u, l1}. We exclude vertex u from the corresponding

neighboring sets as u /∈ S, and we observe that their common

neighbor, l1, indicates that the butterfly {u, v, l1, r2} has been

formed. Finally, ABACUS adjusts the butterfly count for each

discovered butterfly with a certain increment (line 11), as we

describe in the sequel.

C. Random Pairing for Uniform Samples

Intuitively, the larger the size of the sample S that ABACUS

maintains, the more accurate the butterfly count estimations.

This is in consistence with what has been demonstrated for

triangle count estimation methods on fully dynamic graph

streams [15], [37]. Therefore, to minimize the information

loss, ABACUS strives to keep as many elements in the sample

S as possible within a predefined memory budget k ≥ 2.

Random Pairing (RP) [32] is a sampling scheme that always

maintains a uniform random sample containing at most k
edges, given a fixed memory budget k and a fully dynamic

bipartite graph stream. Initially, the sample S as well as the

bipartite graph stream are empty. Note that we initialize the

compensation counters, cb and cg , to zero (Alg. 1, line 3).

Assuming that there is a set E of edges in the input bipartite

stream that have not yet been deleted, we now describe the

core functionality for inserting or removing an edge to or from

S that ABACUS maintains, as illustrated in Algorithm 2. More

precisely, when an edge deletion appears (lines 12-16), if the

edge is in S, then RP increases the cb (line 15); otherwise,

it increases cg (line 16). Intuitively, the counters cb and cg
signify the number of deletions that need “compensation”

from upcoming insertions. On the other hand, when an edge

insertion appears (lines 2-10) and there are no deletions to

compensate for, i.e., cb+ cg = 0 (line 17), ABACUS processes

the upcoming edge insertion as in reservoir sampling [36]

(lines 4-6). In particular, if ABACUS has not exhausted the

memory budget yet, i.e., |S| < k, then we append the newly

arrived edge to S (line 4); else, we replace a random edge in

S with the new edge with a probability k/|E| (lines 5-6). In

case the sum of the compensation counters is not zero, then we

consider them when calculating the probability of replacing

an edge from S with the new one (line 7), and update the

counters accordingly (lines 9-10). Note that the uniformity of

S allows for exactly calculating the discovery probability of

each butterfly in a deterministic way.

D. Butterfly Count Update Mechanism

We now elaborate on how ABACUS updates its butterfly count

estimates. As we described in Section III-B, when an edge (in-

sertion or deletion) arrives, ABACUS first finds the butterflies

that the edge forms with the edges in S. Here, we show how

ABACUS utilizes the spotted butterflies to update the butterfly

count estimate. We explain how much ABACUS modifies its

butterfly count estimate, such that it always remains unbiased.

In Algorithm 1, the specific increment amount with which

ABACUS refines the maintained butterfly count is important for

providing accurate estimations (lines 6, 11). More precisely,

each incoming edge contributes to the creation of some new

butterflies if it is an insertion, or causes the deletion of some

existing butterflies if it is a deletion. We can reason about

the created or deleted butterflies with the edges that exist in

the sample, yet for the butterfly counts in the whole graph

stream, we can only extrapolate using the actual counts we

gain through the sample. Furthermore, the fact that we are

maintaining a uniform random sample implies that the created

or deleted butterflies are discovered with a certain probability,

which we can exactly calculate. Specifically, each time an

element e(t) = ({u, v}, δ) arrives (Algorithm 1, line 4), every

created or deleted butterfly {u, v, w, x}, where u,w ∈ L(t)



and v, x ∈ R(t), is successfully discovered (lines 8-11)

if and only if three specific edges exist in the sample S,

namely, the edges {u, x}, {w, x}, and {v, w}. Assuming that

y = min(k, |E(t)|+ cg + cb), which is the size of the sample

S, we prove that the above-mentioned butterfly discovery

probability through the sample is as follows:

Pr(|E(t)|, cb, cg) =
y

T
·
y − 1

T − 1
·
y − 2

T − 2
, with T = |E(t)|+cb+cg (1)

where cg , cb are compensation counters for the edge deletions

in the RP sampling, and E(t) is the set of edges that remain

in the input bipartite streaming graph (without being deleted)

after the t-th element of the stream is processed. For each

butterfly that ABACUS discovers using the sample, it updates

the corresponding butterfly estimates with the reciprocal of the

probability that the butterfly is discovered (line 6). Utilizing

the reciprocal of the discovery probability as the amount of

change per butterfly discovered makes the expected amount of

changes in the estimated butterfly counts of ABACUS exactly

one, and thus, enables us to provide unbiased estimates.

Therefore, for each incoming edge, ABACUS calculates the

reciprocal increment based on Equation 1 and uses it to refine

the count estimates for the butterflies that it discovers with the

incoming edge (line 6,11).

IV. ACCURACY AND COMPLEXITY

We now study the accuracy of our algorithm and prove that

ABACUS consistently maintains unbiased estimates of low

variance for the butterfly count. We then present the time and

space complexity of our algorithm.

A. Accuracy Analysis

Before proving the unbiasedness of ABACUS, we first provide

the following lemma for the butterfly discovery probability.

Lemma 1 (Butterfly Discovery Probability). In ABACUS, any

three distinct edges in the bipartite graph G(t) = (V (t), E(t))
are sampled with the probability shown in Equation 1. There-

fore, assuming that p(t) is the probability of the Equation 1

and S(t) is the sample of the bipartite graph, respectively, after

the t-th element e(t) is processed by ABACUS (Algorithm 1),

then the following holds:

Pr({u, v} ∈ S(t) ∩ {w, x} ∈ S(t) ∩ {y, z} ∈ S(t)) = p(t),

∀t ≥ 1, ∀{u, v} 6= {w, x} 6= {y, z} ∈ E(t) (2)

Proof. See Appendix A.

We now formally prove that ABACUS maintains unbiased

butterfly count estimates as stated in the following theorem:

Theorem 1 (Unbiasedness). ABACUS provides unbiased but-

terfly count estimates at any point in time. Specifically, for

Algorithm 1 it holds:

E(c
(t)) = |B(t)|, ∀t ≥ 1 (3)

where |B(t)| is the true butterfly count at time t.

Proof. See Appendix B.

Theorem 2 (Variance). ABACUS provides estimates of

bounded variance at any point in time. Specifically, for Al-

gorithm 1 it holds:

V ar[c] = γE[c]− E[c]2 + 2γ2(y1

(

|E|−8
k−8

)

(

|E|
k

)
+ y2

(

|E|−7
k−7

)

(

|E|
k

)
+ y3

(

|E|−6
k−6

)

(

|E|
k

)
)

where y1, y2, y3 indicate how many pairs of butterflies that

share 0, 1, and 2 edges, respectively, exist in the graph at the

current time t (we omit time notation for simplicity), c is the

butterfly count estimation of ABACUS, whose expected value

equals the ground truth butterfly count, |E| is the number of

valid edges in the graph stream that have not yet been deleted,

k is the memory budget of S, and γ =
(

E
k

)

/
(

E−4
k−4

)

. A tight

upper bound of the variance is:

V ar[c] ≤ γE[c] + 2γ2

(

E[c]

2

)

×

(

|E|−6
k−6

)

(

|E|
k

)
− E[c]2

Proof. See Appendix C.

Corollary 1 (Concentration). ABACUS provides estimates that

concentrate around the expected value at any point in time.

Specifically, for Algorithm 1 and any constant λ > 0 it holds:

Pr[|c− E[c]| ≥ λ×
√

V ar[c]] ≤
1

λ2

where c is the butterfly estimate of ABACUS.

Proof. See Appendix D.

B. Complexity Analysis

Here, we analyze ABACUS’s complexity with respect to both

time and space when processing a bipartite graph stream.

Time Complexity. We provide the worst-case analysis in

Theorem 3. Essentially, we claim that given a fixed memory

budget k, ABACUS scales linearly with the number of elements

in the input bipartite graph stream. The time complexity

theorem is as follows:

Theorem 3 (Time Complexity of ABACUS). Algorithm 1

takes O(k2t) time to process the first t elements in the input

bipartite graph stream, where k is the maximum number of

edges maintained in the sample.

Proof. The most expensive operation in Algorithm 1, is the

per-edge butterfly counting for spotting the butterflies that each

incoming edge e(t) = ({u(t), v(t)}, δ) forms with the edges

in the graph sample. The per-edge counting process takes

Λ = O(min{
∑

x∈NS
u
min{dx, dv},

∑

x∈NS
v
min{dw, du}})

time for an incoming edge {u, v}. All the vertex degrees are

upper-bounded by k, which is the maximum number of edges

in the sample. Therefore, Λ = O(k2), and the time complexity

for processing the first t elements is O(k2t).

Space Complexity. We provide the space analysis in Theo-

rem 4. In a nutshell, given a fixed memory budget k, ABACUS

needs to store at most k elements as a sample of the input

bipartite graph stream, and a counter for the butterfly count

estimate. The theorem for the space complexity is as follows:
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Theorem 4 (Space Complexity of ABACUS). Algorithm 1 has

a space complexity of O(k).

Proof. While ABACUS processes the first t elements of the

input bipartite graph stream maintains a single estimate for

the butterfly count. Furthermore, ABACUS maintains up to k
edges that consist of the graph sample, where k is the memory

budget and a parameter of our algorithm. Therefore, the space

complexity for processing the first t elements is O(k).

V. PARABACUS: ABACUS GOES PARALLEL

We now present PARABACUS, the parallel variant of ABACUS

that processes the stream in mini-batches. The main challenge

is to process the edges in a mini-batch simultaneously while

attaining the same accuracy as ABACUS. To achieve this, we

revert ABACUS’s workflow, namely, we first perform sample

updates corresponding to each edge in the mini-batch and

create versions of the sample. Next, we conduct the per-

edge butterfly counting between an edge and its corresponding

version of the sample in parallel. Next, we first describe how

PARABACUS processes each mini-batch and, then, provide

correctness proof, and its time and space complexities.

A. PARABACUS Algorithm

Sampling and Versioned Samples. PARABACUS processes

the bipartite graph stream in mini-batches of size M . Figure 2

shows the overview of PARABACUS’ workflow. In specific,

we process the graph stream in mini-batches that contain M
edges each, namely, {u1, v1}, {u2, v2},. . . , {uM , vM}. Recall

that in ABACUS, for each incoming edge, we first conduct

the per-edge butterfly counting to refine the butterfly count

estimates and then trigger the sample update procedure. Since

the per-edge butterfly counting is the most time-consuming

operation in ABACUS’s workflow, we ought to effectively

parallelize it when processing whole mini-batches. To achieve

this, PARABACUS sequentially processes the edges in the

mini-batch once to calculate all the sample states, which would

be created as if the edges were processed by ABACUS. Each

different state of the sample S is a distinct sample version.

For example, as shown in Figure 2, S0 indicates the state

of the sample immediately after the arrival of the mini-batch.

Assuming the edges arrive in the following sequence {u1, v1},

{u2, v2},. . . ,{uM , vM}, the edge {u1, v1} will observe the

S0 version of the sample. Subsequently, the edge {u2, v2}
would observe the version S1, which corresponds to the state

of the sample after updating S0 with incorporating the edge

{u1, v1}. Similarly, the edge {uM , vM} would observe the

SM−1 version, which corresponds to the state of the sample

after incorporating the updates due to all the edges in the

mini-batch except the M -th one. PARABACUS maintains all

the calculated versions of the samples S0, S1, . . . , SM−1 in

a single versioned sample data structure. In particular, we

use adjacency lists to store the edges that we sample. More

precisely, in the versioned sample, each vertex of the sample

stores its neighbors in its adjacency list that might change

between versions. However, from one version to another, we

store only the discrepancies between the neighboring sets

of each vertex to save space. Furthermore, along with each

sample version we cache a triplet containing the following

information: {s, cg, cb}, where s is the number of edges in the

graph stream and cg, cb are the good and bad edge deletions

that need compensation at the point of creation of the sample

version. PARABACUS utilizes that triplet to calculate the

increment using which it refines the butterfly count estimates,

as we described in Section III.

Parallel Per-edge Butterfly Counting. After assembling the

versioned sample, we have every sample state Si where

i ∈ {0, . . . ,M−1} readily available. This allows PARABACUS

to conduct the butterfly counting operations for all the M
edges in the mini-batch in parallel. Specifically, we have to

conduct per-edge butterfly counting between each edge in

the mini-batch and its corresponding sample version using

a separate thread among the available ones. For example, in

Figure 2, we have to count the butterflies formed between edge

{v1, u1} and S0, the ones formed between {v1, u1} and S1,

all the way to the ones formed between {vM−1, uM−1} and

SM−1. Assuming that there are p threads available and that we

process mini-batches of M edges where p ≤ M , PARABACUS

groups the edges into p equal-sized sets. Therefore, each

thread receives a subset of edges from the mini-batch and

has to count the butterflies that its corresponding edges form

with their corresponding sample versions. Subsequently, ev-

ery edge, e.g., {u1, v1}, extrapolates its calculated butterfly

count by multiplying it with an appropriate increment. We

compute the increment for each edge using the information

in its corresponding cached triplet {s, cb, cg}. In specific, we

use Equation 1 as in ABACUS to compute each increment

and produce the partial counts, c0, . . . , cM−1, as shown in

Figure 2. Recall that depending on whether an edge is an

insertion or a deletion its partial count can be positive or

negative, respectively. Finally, all the calculated partial counts

c0, c1, . . . , cM−1 are added to the old butterfly count so that

the final refined count c is computed. Note that two different

versions of the sample differ slightly from each other, i.e., up

to M edges. Therefore, the vertex degrees among different

sample versions are similar, and subsequently, the per-edge

butterfly computations are balanced across threads, as we show

in the experiments.

Version Consolidation. The final step when processing a



mini-batch is to consolidate the distinct sample versions

S0, S1, . . . , SM−1 into one. Specifically, PARABACUS creates

and keeps a final version of the sample that integrates all the M
edges in the mini-batch. In Figure 2, the final sample version

also incorporates the sample update due to the edge {uM , vM}
into the version SM−1, which will serve as the 0-th version

for the next mini-batch.

B. Correctness and Complexity Analysis

Here, we analyze PARABACUS’ correctness with respect to the

butterfly counts it delivers, and its complexity with respect to

both time and space when processing each mini-batch.

Theorem 5 (Correctness). PARABACUS correctly counts the

butterflies in a fully dynamic bipartite stream and provides the

same counts as ABACUS after processing each mini-batch.

Proof Sketch. PARABACUS first sequentially creates all the

versions of the sample that an edge would observe in the

order of its arrival as in ABACUS. Subsequently, PARABACUS

exactly counts the per-edge butterflies formed between each

edge in the mini-batch and its corresponding sample version.

The partial counts for each edge are the same as in ABACUS.

The associativity property of the sum of the counts guarantees

that the final refined butterfly count is equal to that of

ABACUS. Therefore, PARABACUS achieves the same accuracy

as ABACUS after processing each mini-batch.

Consequently, since PARABACUS provides the same butterfly

count estimates as ABACUS, its estimates are unbiased as well.

Time Complexity. We now analyze the time complexity of

PARABACUS in the worst case as follows:

Theorem 6 (Time Complexity of PARABACUS). Butterfly

counting per mini-batch is performed in O(M + Mk2

p ) time,

where k is the maximum number of edges maintained in the

sample, M is the number of edges in each mini-batch, and p
is the number of threads.

Proof. When processing each mini-batch, PARABACUS se-

quentially processes all M edges to create and main-

tain a versioned sample, which takes O(M) time (O(1)

for each edge). After constructing the versioned sam-

ple, PARABACUS utilizes all p available threads to

conduct the per-edge butterfly counting, which takes

O(Mk2

p ) time. Note that per-edge counting process takes

Λ = O(min{
∑

x∈NS
u
min{dx, dv},

∑

x∈NS
v
min{dw, du}})

time for an edge {u, v}. All the vertex degrees are upper-

bounded by k, which is the maximum number of edges in the

sample, and thus, Λ = O(k2). Therefore, the time complexity

for processing each mini-batch is O(M + Mk2

p ).

Comparison with ABACUS. Note that ABACUS takes O(M +
Mk2) = O(Mk2) time to process a mini-batch with M edges.

Space Complexity. We provide the space analysis in The-

orem 7. In a nutshell, PARABACUS needs to store the k
elements as a sample of the input graph stream and up to

M elements more for the sample versions. In specific:

TABLE II: Datasets Statistics.

Graph |E| |L| |R| B Butterfly Density

MovieLens 10M 69.8K 10.6K 1.1T 1.1 ∗ 10−16

LiveJournal 112M 3.2M 10.7M 3.3T 2.1 ∗ 10−20

Trackers 140.6M 27.6M 12.7M 20.0T 5.1 ∗ 10−20

Orkut 327M 2.7M 8.73M 22.1T 1.9 ∗ 10−21

Theorem 7 (Space Complexity of PARABACUS). Butterfly

counting is performed in O(k + M) space, where k is the

number of edges maintained in the sample, and M is the

number of edges in each mini-batch.

Proof. The sample has k edges. Since we maintain a versioned

sample that stores only the deltas between versions, we have

to maintain up to M more edges. Also, we maintain a separate

partial count for each edge in the mini-batch; M in total.

Therefore, PARABACUS requires O(k +M) space.

VI. EXPERIMENTAL EVALUATION

We evaluate ABACUS/PARABACUS using four large-scale

real-world bipartite graphs and investigate: how effective it

is in terms of the error in butterfly estimation; how efficient

it is in terms of throughput; how it is affected by the amount

of edge deletions; how it scales to large graph streams; and,

how much the speedup of its parallel version, PARABACUS,

is affected by the mini-batch size and number of threads.

Overall, our major findings include that ABA-

CUS/PARABACUS: (i) achieves significantly higher (up

to 148× better) accuracy than the baselines, which

inherently cannot handle deletions majorly affecting

accuracy, (ii) it has similar throughput with its competitors

when processing edge insertions using one thread and

much higher throughput in its parallel version when

using multiple threads, (iii) it is consistently accurate

irrespective of the ratio of deleted edges, (iv) it scales

linearly to the number of edges in a graph, (v) PARABACUS

accomplishes considerable speedup that depends on the

graph characteristics. Finally, our solution delivers unbiased

estimates as proved in Section IV.

A. Experimental Setup

Hardware. We ran our experiments on a server with a 10-core

Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz with 4-way

hyper-threading and 188GB of main memory.

Implementation. We implemented ABACUS and our baselines

in Java. For the parallel version of ABACUS we used the

Callable Java Interface. Note that we store the sampled edges

using the adjacency list format.

Datasets. We used four real-world bipartite graphs from

the Koblenz Network Collection 1 (KONECT) [38], whose

characteristics we show in Table II. MovieLens contains movie

ratings by users. LiveJournal is a bipartite graph of the

1http://konect.uni-koblenz.de/

http://konect.uni-koblenz.de/
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Fig. 3: Relative Error of ABACUS with 20% of deletions while varying the sample size of edges. Discarding deletions, as in

FLEET and CAS, negatively impacts the accuracy.

LiveJournal social network with users and their group mem-

berships. Trackers is a bipartite graph of internet domains and

trackers, where each edge represents that a tracker is identified

by its domains. Orkut consists of group-user relationships

where edges represent the group memberships of users. We

preprocessed and converted the graphs to be undirected and

unweighted. Also, we removed duplicate edges, self-loops, and

zero-degree vertices. In all our datasets, we simulate the stream

assuming that an edge arrives at each discrete time t ≥ 1. All

edges arrive in their natural order as in the datasets. Deletions.

Our real datasets are insertion-only by default, and thus, we

generate fully dynamic graph streams by generating the edge

deletions from the graphs listed in Table II. In specific, we (a)

create the insertions of each edge in the input bipartite graphs

using their natural order, (b) create the deletions by selecting

α% of the edges from the input bipartite graphs, (c) place each

created deletion in a random position after its corresponding

insertion. We use α = 20% as our default value and assess

the impact of varying α in Section VI-E. These values stem

from [39] which reports up to 30% edge deletions in real-

world Twitter graphs.

Baselines. To our knowledge, no existing solution considers

estimating butterfly counts on fully dynamic graph streams,

entailing both insertions and deletions. Yet, we compare ABA-

CUS/PARABACUS with FLEET [29] and CAS [16], which

are the state-of-the-art approaches for insertion-only bipartite

graph streams and are the most relevant techniques to our

problem. We do so, first, to quantify the effect of disregarding

edge deletions on accuracy, and, second, to compare the

throughput of ABACUS and its parallel variant, PARABACUS,

with that of the best available solutions designed for insertion-

only streams. In specific, we use FLEET3, the best method

of [29], with a reservoir resizing parameter γ = 0.75 as

proposed, and CAS-R, the best method of [16], with the ratio

of memory usage of AMS sketch to total memory equal to

λ = 0.33 as proposed. For PARABACUS, we use a mini-batch

size of 500 and 40 threads unless indicated otherwise.

Evaluation Metrics. Let x be the true butterfly count and

let x̂ be the corresponding estimate obtained by the evaluated

algorithm. For evaluating the accuracy of a method, we use the

relative error metric (the lower the better), which is defined

as
|x−x̂|

x , for a true butterfly count x that is greater than zero.

B. Accuracy

We first investigate the accuracy of estimating butterfly counts

in the presence of edge deletions. ABACUS and PARABACUS

demonstrate the same accuracy and, thus, we denote our

solution as ABACUS for simplicity.

We vary the sample size from 75K to 300K edges. We

run each experiment 10 times and show the average relative

error values in Figure 3. ABACUS provides 40.6−65.7× more

accurate counts than FLEET in Movielens, 4.7 − 20.3× in

Livejournal, 3.8−18.5× in Trackers, and 3.2−18.4× in Orkut.

Also, ABACUS provides 93.4− 148.4× more accurate counts

than CAS in Movielens, 7.1 − 31.9× in Livejournal, 2.81 −
16.54× in Trackers, and 2.57− 12.03× in Orkut.

This clearly indicates that edge deletions have a significant

impact on butterfly counts if they are ignored, and therefore,

it is essential to handle them carefully in order to achieve

optimal performance. Furthermore, ABACUS is capable of

maintaining quite accurate counts on all datasets and achieves

on average 0.52% relative error on Movielens, 3.54% on

Livejournal, 8.25% on Trackers, and 3.05% on Orkut.

Additionally, we observe that the relative error decreases as the

sample size increases. For instance, in Livejournal ABACUS

achieves 6.06% error for a sample size of 75K edges, and

only 1.36% error when maintaining 300K edges. We observe

a similar pattern across the remaining datasets. As the sample

size grows, ABACUS can more precisely calculate the number

of butterflies that each incoming edge forms with the edges in

the sample, allowing for a more accurate estimation. This is

not the case for the baselines, because they discard the edge

deletions. Consequently, their samples are not representative

of the fully dynamic graph streams irrespective of the sample

size. Therefore, we conclude that (i) it is imperative to account

for edge deletions when estimating butterfly counts, and (ii)

ABACUS accurately estimates the butterfly counts in bipartite

graph streams containing both edge insertions and deletions.

C. Throughput

We now compare ABACUS/PARABACUS with FLEET and

CAS in terms of throughput, i.e., the number of edges pro-

cessed per second. For both FLEET and CAS, we set the reser-

voir size equal to the sample size in ABACUS/PARABACUS.

For calculating the throughput, we measure the running time
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Fig. 4: Throughput for all datasets with 20% of deletions, while varying the sample size of edges. Notably ABACUS achieves

a similar throughput with the baselines when processing either insertions only (Ins-only) or both insertions and deletions

(Ins+Del). PARABACUS achieves a significantly higher throughput for a small mini-batch size of 500 edges.
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Fig. 5: Relative Error of ABACUS on insertion-only streams (α = 0%), while varying the sample size k of edges maintained.

of each method independently of the ingestion rate of the input

graph stream ignoring the waiting time for each edge’s arrival.

Figure 4 illustrates the throughput that ABACUS, PARABA-

CUS, FLEET, and CAS achieve when processing input graph

streams with insertions and deletions (α = 20%). For ABA-

CUS/PARABACUS, we show the throughput it achieves for

processing both insertions and deletions. For a fair comparison

with the baselines that do not support deletions, we also show

the throughput of ABACUS for processing the insertions only

(Ins-only). In general, we observe that ABACUS achieves a

throughput close to that of FLEET and CAS, not only in

the case of insertions-only but also in the case where ABA-

CUS handles deletions. In addition, we see that PARABACUS

significantly enhances the throughput and by far surpasses

the baselines in the majority of cases, even with a relatively

small mini-batch size of 500 edges. In specific, PARABACUS

achieves up to 4.85× higher throughput than FLEET, and up

to 12.26× higher throughput than CAS, without sacrificing the

accuracy. The throughput enhancement increases when using

a larger mini-batch size, as we show later in Section VI-G.

In more detail, we observe that ABACUS’ throughput when

processing insertions is similar to the throughput of FLEET

for sample sizes of 150K and 300K edges. However, for

smaller sample sizes such as 75K edges, FLEET attains

approximately up to 1.5× higher throughput than ABACUS.

This happens because FLEET always maintains a non-full

sample as it resizes its sample and keeps only the 75% of it

every time it reaches its maximum capacity. Therefore, the per-

edge butterfly counting after each edge’s arrival is conducted

using a consistently smaller sample than in ABACUS. Another

reason for this corner case is the low density of Orkut, which

leads to even less number of butterlies to be formed in the
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Fig. 6: Impact of deletions α on accuracy and throughput.

maintained sample. In addition, we see that ABACUS achieves

a similar throughput to CAS, except in Trackers graph where

CAS attains a lower throughput. We found out that around

half of the time in CAS is attributed to the update of the

sketch it reserves. Finally, for all approaches, we see that,

in general, the more edges their sample has the lower the

achieved throughput. This is reasonable since more work

related to butterfly counting is required for processing the same

bipartite graph stream.

We conclude that ABACUS achieves a throughput very close

to that of FLEET and CAS and PARABACUS can achieve an

order of magnitude higher throughput even when using a small

mini-batch size of 500 edges. Consequently, performance is not

sacrificed when processing edge deletions.

D. Accuracy for Insertion-only Streams

We now compare ABACUS with FLEET and CAS in terms of

accuracy (i.e., relative error) when processing insertion-only

bipartite graph streams, i.e., α = 0%.

Figure 5 shows the accuracy in terms of relative error

that ABACUS, FLEET, and CAS achieve over bipartite graph



streams that contain no deletions. We vary the sample size

from 75K to 300K edges. We run each experiment 10 times

and show the average relative error values in Figure 5. We

observe that ABACUS maintains accuracy comparable to that

of FLEET, and is even more accurate in Movielens and

Livejournal bipartite graph streams. We attribute this to the

fact that ABACUS maintains a sample that has a maximum

size equal to its memory budget and always strives to keep

its sample full, whereas FLEET resizes its sample every time

it becomes full and keeps only 75% of the edges it contains.

Furthermore, ABACUS achieves similar accuracy to CAS in-

dicating that it does not exhibit deficiencies in the absence

of deletions. In addition, we observe that the relative error

decreases as the sample size increases. For instance, ABACUS

achieves 11.9% relative error in Trackers for a sample size of

75K edges, and only 3.35% error when maintaining 300K
edges in its sample. We observe a similar trend in the rest

of the datasets. This holds for ABACUS, FLEET, and CAS

because the more edges stored in their sample, the more

precisely they estimate the butterfly counts. We conclude that

ABACUS provides butterfly count estimations on insertion-only

streams that are at least as accurate as the methods designed

specifically for processing insertion-only streams.

E. Impact of Deletions

We proceed in exploring the impact of deletions ratio, α, on

the accuracy (i.e., relative error) and throughput (i.e., number

of edges processed per second) of our approach. We use a

sample size of 150K edges and vary α from 5% up to 30%.

Figure 6a illustrates the relative error for the butterfly

count that ABACUS entails when varying the actual ratio of

deletions α. We observe that ABACUS produces relatively

accurate butterfly counts by maintaining a sample of only

150K edges irrespective of the size of the graph stream.

Specifically, the relative error in all of our datasets is less

than 8%. Furthermore, we observe that the relative error of

ABACUS is consistent across datasets and is unaffected by

the ratio α, indicating that ABACUS maintains a small error

in the presence of deletions regardless of their number. In

addition, Figure 6b shows the effect of α on the overall

throughput of ABACUS when processing an input bipartite

stream with deletions. Note that the bigger the deletions ratio

α the more edges exist in a graph stream in total. Despite

this, ABACUS maintains a constant throughput for a given

dataset, regardless of the deletions ratio α. Also, note that the

throughput of ABACUS varies based on the dataset. The graph

characteristics, such as the butterfly density of a graph affect

the number of butterflies observed after the arrival of each

edge and, thus, lead to different throughput for each distinct

graph stream. Therefore, we conclude that ABACUS provides

consistently accurate butterfly count estimations and maintains

steady throughput regardless of the ratio of deletions in the

bipartite graph stream.
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Fig. 7: ABACUS scales linearly with the input stream size.

F. Scalability

We now demonstrate the scalability of ABACUS with respect to

the input graph size. Specifically, we measure the elapsed time

that ABACUS needs to fully process bipartite graph streams

with varying numbers of edges. Note that we do not consider

the waiting time for the arrival of each edge, but we only

measure the actual time that ABACUS needs to process the

edges of a stream (with a default deletions ratio α = 20%).

We use different values for the sample size k, i.e., 75K , 150K ,

and 300K edges. We measure the elapsed times each time we

process another 10% of edges from the entire graph stream.

Figure 7 illustrates the elapsed time to process the whole

graph stream. Specifically, Figure 7a shows that ABACUS

scales linearly to the input graph size for the Trackers graph.

As expected, a larger sample size leads to increased elapsed

times; however, the linearity effect is preserved. In addition,

we observe a similar scalability trend in the Orkut graph

stream as shown in Figure 7b. Note that we received linear

scalability trends on the other real bipartite graph streams,

yet we omit the results for the sake of space. Therefore, we

conclude that ABACUS scales linearly to the graph input size,

which is in accordance with the Theorem 3.

G. Parallelization In-depth

We now analyse in depth the performance of PARABACUS. To

this end, we consider the impact of the mini-batch size and

the number of threads when processing of the entire bipartite

graph stream. Specifically, we measure the speedup in runtime

that PARABACUS achieves over ABACUS.

Mini-batch Size. Figure 8 illustrates the speedup that our

algorithm achieves when we vary the mini-batch size. We

illustrate the speedup for three different sample sizes k,

namely, 75K , 150K , and 300K edges for each dataset. Note

that we use all 40 available threads in this experiment. We see

that the larger the mini-batch size, the greater the speedup

we achieve. When the mini-batch size increases, the work

assigned to each thread also increases, and consequently,

parallelism is more beneficial. For instance, we see that for

a mini-batch size of 10K edges, in Movielens in Figure 8a

we achieve up to 17.6× speedup when the sample size is

300K edges, 12.9× speedup when the sample size is 150K
edges, and 6.84× speedup when the sample size is 75K edges.

In Figure 8c on Trackers we achieve up to 8.1× speedup

when the sample size is 300K edges, 7.4× speedup when
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Fig. 8: Speedup of PARABACUS when varying the mini-batch size and using all 40 threads and with a fixed sample size.
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Fig. 9: Speedup of PARABACUS when varying the number of threads and using mini-batches of 10K edges.

the sample size is 150K edges, and 4.85× speedup when

the sample size is 75K edges. Interestingly, we observe that

the speedup ranges that we achieve differ across different

datasets. To validate this empirically, we additionally counted

the number of vertices examined due to the set intersection

operations for a sample size of 150K for each dataset. We

found that the total number of vertices examined was 2.21B
in Movielens, 0.45B in Livejournal, 0.84B in Trackers, and

0.30B in Orkut. This also correlates with the density of

butterflies in each dataset, with Movielens having the highest

density and Orkut having the lowest (as shown in Table II).

As we maintain uniform random samples, the denser the graph

in terms of butterfly containment, the denser the sample, and

consequently, more work is done for every set intersection to

identify butterflies. Therefore, in graphs with higher density,

such as Movielens, we observe a relatively higher speedup due

to the larger workload assigned to each thread. Conversely,

in sparser graphs like Orkut, the speedup achieved is still

significant but comparatively lower. Also, note that the larger

the sample size, the more significant the overall speedup

PARABACUS achieves. Parallelism is more beneficial in this

case because the set intersection operations related to the per-

edge butterfly counting are performed between neighboring

sets of a bigger size.

Number of Threads. Figure 9 shows the speedup that

PARABACUS achieves when we vary the number of threads

for a mini-batch size fixed to 10K edges. For each dataset, we

illustrate the speedup for three different sample sizes, namely,

75K , 150K , and 300K edges. We observe that the more

threads we utilize, the greater the speedup that PARABACUS

attains. Furthermore, as the sample size increases from 75K to

300K edges, we see the workload increase, and having many

threads working in parallel pays off. As shown in Figures 9a-

9d, we achieve up to 18× speedup in Movielens, up to 6.65×
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Fig. 10: Workload per thread.

in Livejournal, up to 8.1× in Trackers, and up to 5× in Orkut.

Similar to the mini-batch experiments, the observed speedup

in our experiment varies across different datasets due to their

individual density characteristics. Consequently, the overall

computation performed by the set intersections also varies

across datasets. Additionally, the larger the sample size the

bigger the performance gains are as we increase the number of

threads. For instance, in Movielens for a sample size of 75K
edges as we increase the threads from 8 to 40 the speedup

we achieve ranges from 3.8 − 6.85×, for a sample of 150K
edges it ranges from 6.9 − 12.91×, and for sample of size

300K edges it ranges from 8.13− 17.91×.

Balanced Load. Figure 10 illustrates the workload per thread,

i.e., the number of checks that happened within the set inter-

section operations that take place during the butterfly counting.

In this experiment, we use a sample size of 150K edges, a

mini-batch size of 10K edges, and set the number of threads

to 32. Specifically, in Figure 10a we illustrate the workload

per thread for the densest graph, Movielens, and in Figure 10b

we show the workload per thread for the sparsest graph, Orkut,

in terms of butterfly density. We observe that all threads are

assigned similar workloads, which indicates that the computa-



tions of PARABACUS are load-balanced. Additionally, we see

that in Movielens the average per-thread load is 90M element

comparisons, whereas in Orkut it is 12.5M element checks.

This is in accordance with our previous observation that the

work that is needed to process dense graphs is more than that

for sparse ones. Same observations hold for the other datasets;

however, we do not show the results for the sake of space.

We conclude that PARABACUS achieves significant speedup

using multi-threading, which allows for load-balanced pro-

cessing of highly volatile bipartite graph streams that may

receive thousands of updates per time unit.

VII. RELATED WORK

A. Triangles in Fully Dynamic Graph Streams

Kutzkov et al. [40] present the first method for counting

triangles in fully dynamic graph streams, which adapts colorful

triangle sampling [41] to obtain a sparsified graph on which

the ratio of two-paths that form triangles is estimated and is

afterward scaled to the whole graph. However, [40] is not a

real-time streaming algorithm as it only computes an estimate

once at the end of the stream, and requires more memory than

that for storing the whole input graph in the worst case. Han

et al. [42] present ESD, which maintains the current snapshot

of a fully dynamic input graph stream. For every incoming

edge, ESD tosses a biased coin, and iff it lands on heads,

it updates the triangle counts by approximating the estimate

changes, rather than calculating them precisely. Yet, ESD is

not scalable as it has to maintain the whole graph in memory.

TriestFD [37] maintains a uniform sample given a specific

memory budget, and derives its estimates by multiplying the

triangle counts it obtains from the sampled graph and the

reciprocal of the probability that each triangle is sampled.

While TriestFD plainly discards the edges that are not sam-

pled without using them for updating its count estimates,

ThinkD [43], [15] also leverages the non-sampled edges to

update its triangle estimates before discarding them.

B. Butterflies in Static Graphs

Wang et al. [27] present the first technique for exact butterfly

counting in static bipartite graphs through wedge enumeration.

Sanei-Mehri et al. [28] improve [27] by selecting the cheapest

bipartition to traverse when computing exact butterfly counts.

Also, the authors proposed randomized algorithms based on

sampling and sparsification for computing approximate but-

terfly counts. Wang et al. [1] propose a vertex ordering-

based method, which considers the vertex degrees such that it

enumerates fewer wedges throughout the process of butterfly

counting. PARBUTTERFLY [44] is a framework that con-

ducts parallel butterfly counting with work-efficient guarantees

in static bipartite graphs by exploring various vertex priority

functions. Besides vertex ordering, PARBUTTERFLY also of-

fers other type of orderings (or rankings) such as side, approxi-

mate degree, log-degree, degeneracy, complement degeneracy,

and approximate complement degeneracy orderings. However,

adapting the vertex-ordering technique to the streaming setting

is infeasible as the priorities continuously change after each

incoming edge and sorting becomes a huge overhead. Zhou et

al. [45], [46] build on the techniques of [1] and design methods

for counting butterflies in uncertain bipartite graphs. Xu et

al. [47] propose a GPU-based butterfly counting algorithm

that uses an adaptive strategy, which balances the workload

among GPU threads for maximizing efficiency. All the afore-

mentioned methods are tailored to static graphs and, thus, are

unsuitable for the streaming setting.

C. Butterflies in Insert-Only Graph Streams

Wang et al. [20] extend [1] for dynamic graphs. Similarly,

adapting the vertex-ordering approach to the streaming setting

is infeasible as the priorities continuously change after each

incoming edge and sorting becomes a huge overhead – be-

sides [20] must store the whole graph in main memory, which

is prohibitive for streaming algorithms that maintain only a

sample of the graph in main memory. Sanei-Mehri et al. [29]

propose FLEET, which utilizes adaptive sampling for counting

butterflies in bipartite streams using a fixed memory. Li et

al [16] present a Co-Affiliation Sampling (CAS) approach,

which uses sampling and sketching to provide accurate esti-

mates of butterfly counts in bipartite graph streams. Shesh-

bolouki et al. [5] propose sGrapp, an approximate adaptive

window-based algorithm for counting butterflies after conduct-

ing a data-driven empirical analysis to reveal the temporal

organizing principles of butterflies in real-time streams. All

the above-mentioned streaming methods are tailored to insert-

only bipartite graph streams. To the best of our knowledge,

ABACUS is the first method that provides accurate butterfly

counts in fully dynamic bipartite graph streams.

VIII. CONCLUSIONS

We proposed ABACUS, the first algorithm that estimates but-

terfly counts in fully dynamic graph streams, which entail both

insertions and deletions of edges. We showed that ABACUS

is: (a) accurate in estimating butterfly counts as it achieves

up to 148× smaller error than the baselines; (b), efficient

as it performs butterfly counting with similar throughput as

the competitors while also attaining linear scalability; and (c)

theoretically sound as it consistently and provably provides

unbiased estimates of low variance at any time as the input

bipartite graph evolves. Additionally, we presented PARABA-

CUS, the parallel version of ABACUS, which processes a

graph stream in mini-batches and counts butterflies in a

load-balanced manner using versioned samples. We showed

that PARABACUS achieves considerable speedup and is thus

suitable for applications in the streaming setting.
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APPENDIX A

PROOF FOR LEMMA 1 (BUTT. DISCOVERY PROBABILITY)

Proof. The probability p(t) that a specific set of three edges,

namely, e1 = {u, v}, e2 = {w, x}, and e3 = {y, z} being

selected in the sample S(t) can be written using condi-

tional probabilities as P (e1) ∗ P (e2|e1) ∗ P (e3|e1, e2), where

P (e2|e1) is the probability that edge e2 exists in the sample

given that edge e1 already exists in the sample. Similarly,

P (e3|e1, e2) is the probability that edge e3 exists in the sample

given that the edges e1 and e2 exist in the sample. As the

sample is uniform, the probability of containing edge e1 is

P (e1) =
y
T , where y = min(k, |E| + cg + cg) is the size of

the sample, and T = |E|+cg+cg is the size of the stream with

all the edges in the stream that are not yet deleted. Given that

edge e1 exists in the sample, the probability of edge e2 existing

in the sample is P (e2|e1) =
y−1
T−1 since there are only T − 1

edges remaining after edge e1 is selected, and y−1 of them can

be selected to form the sample. Similarly, given that edges e1
and e2 exist, the probability of edge e3 existing in the sample

is P (e3|e1, e2) =
y−2
T−2 . Therefore, Equation 1 represents the

probability of selecting a uniform random sample of y edges

from the graph stream containing the edges e1, e2, and e3.

APPENDIX B

PROOF OF THEOREM 1 (UNBIASEDNESS)

Proof. Let us assume a butterfly ({u, v, w, x}, s) ∈ C(t), for

an insertion e(s) = ({u, v},+) without loss of generality,

where C(t) is the set of created butterflies at time t or earlier.

Furthermore, the increment amount of change, c
(s)
uvwx, in the

butterfly count c that is attributed to the creation of the butterfly

({u, v, w, x}, s) (Algorithm 1, lines 6,11) is as follows:

c(s)uvwx =











1
p(s−1) = 1

Pr({u,x}∈S(s−1)∩{v,w}∈S(s−1)∩{w,x}∈S(s−1))

, if {u, x}, {v, w}, and {w, x} ∈ S(s−1)

0, otherwise

which holds from Equation 2. Therefore, it trivially holds that

E(c
(s)
uvwx) = 1. Similarly, assume a butterfly ({u, v, w, x}, s) ∈

D(t), for an edge deletion e(s) = ({u, v},−) without loss of

generality, where D(t) is the set of deleted butterflies at time

t or earlier. Furthermore, the amount of change, d
(s)
uvwx, in the

butterfly count c that is attributed to the deletion of the butterfly

({u, v, w, x}, s) (Algorithm 1, lines 6,11) is as follows:

d(s)uvwx =











−1
p(s−1) = −1

Pr({u,x}∈S(s−1)∩{v,w}∈S(s−1)∩{w,x}∈S(s−1))

, if {u, x}, {v, w}, and {w, x} ∈ S(s−1)

0, otherwise

which holds from Equation 2. Thus, it holds that E(d
(s)
uvwx) =

−1. Therefore, for the butterfly count, c, it holds that:

c(t) =
∑

({u,v,w,x},s)∈C(t)

c(s)uvwx +
∑

({u,v,w,x},s)∈D(t)

d(s)uvwx

By linearity of expectation the following equality holds:

E(c
(t)) =

∑

({u,v,w,x},s)∈C(t)

E(c
(s)
uvwx) +

∑

({u,v,w,x},s)∈D(t)

E(d
(s)
uvwx)

=
∑

({u,v,w,x},s)∈C(t)

(+1) +
∑

({u,v,w,x},s)∈D(t)

(−1)

= |C(t)| − |D(t)| = |B(t)| (4)

APPENDIX C

PROOF OF THEOREM 2 (VARIANCE)

Proof. As we described in Algorithm 1, ABACUS maintains

a uniform random sample at all times, which has size 0 ≤
|S| ≤ k, where k is our memory budget or the maximum

sample size. In the beginning of the bipartite graph stream

ABACUS’s sample is empty and ABACUS keeps the first k
edges (attaining zero variance and conducting exact estima-

tion). Later on, ABACUS always maintains a sample that has

size k. The only case where the sample size will get smaller

than k is when an edge deletion arrives and that edge is

specifically stored in S, which is later compensated directly by

the subsequent insertions such that the sample size becomes

k again. Therefore, we assume that the sample S has k edges.

It shall be clear from the proof that our analysis is robust and

would give nearly the same bounds even if S has size close

to k but not exactly k.

Consider a particular moment in time denoted by t, where

the sample S contains k edges. At the given time t, let |B(t)|
denotes the true count of butterflies (the ground truth) observed

in the graph stream so far, while |B
(t)
S | represents the number

of butterflies present in the sample. In the sequel, we omit

the time t notations from our formulas for the sake of clarify.

Figure 11 illustrates an instance of sample S, where the edges

that appear in the graph stream are depicted with black color,

while the edges that are present in the sample S are highlighted

in red. We see that at time t the true number of butterflies

is 3, i.e., B1, B2, and B3, but using the red edges in the

sample we count only 1, namely, B1. Therefore, we observe

that through the sample S, ABACUS can either spot a formed

butterfly pattern or not. To facilitate our variance analysis, we

introduce indicator random variables Xi, which equals to 1
if the butterfly Bi ∈ S, and 0 if Bi /∈ S. Subsequently,

the total number of butterflies that ABACUS spots in the

sample S is |BS | =
∑

i Xi, whereas after extrapolating

(as we described in Algorithm 1) the actual butterfly count

that ABACUS returns is c = γ
∑

i Xi, where γ is equal

to groundTruth

groundTruth×(E−4
k−4)/(

E

k)
=

(

E
k

)

/
(

E−4
k−4

)

since we already

proved in Theorem 1 that ABACUS is an unbiased estimator.

From the definition of variance, the following equality holds:

V ar[c] = E[(c − E[c])2]

= E[c2]− E[c]2 (5)



B
1

B
2

B
3

Fig. 11: Instance of the graph stream (black edges) and of the

graph sample (red edges) ABACUS maintains at timestamp t.

In Theorem 3, we showed that E[c(t)] = |B(t)| is unbiased.

Therefore, we must calculate the other portion of Equation 5.

In specific, we unfold the E[c]2 as follows:

E[c2] = γ2
E[(

∑

i

Xi)
2]

= γ(E[γ
∑

i

Xi]) + 2γ2(E[
∑

i,j

XiXj ])

= γ(E[c]) + 2γ2(E[
∑

i,j

XiXj])

= γ(E[c]) + 2γ2
∑

i,j

E[XiXj ]

= γ(E[c]) + 2γ2
∑

i,j

pi,j

where pi,j = E[XiXj] is the probability that the graph sample

S contains both the butterfly Bi and the Bj . In order to

calculate the probability pi,j we distinguish the following three

cases as shown in Figure 12. Specifically, Figure 12i describes

the case where the butterflies Bi and Bj exist in the sample

S, but they do not share any edge. Figure 12ii describes the

case where the butterflies Bi and Bj exist in the sample S,

and they share one edge. Figure 12i describes the case where

the butterflies Bi and Bj exist in the sample S, and they

share two edges. Notice that it is not possible for two distinct

butterflies to share three edges, because then they would be

the same butterfly. The probability that ABACUS encounters

case i is
(|E|−8

k−8 )
(|E|

k )
, where |E| is the number of edges that are

still valid in the graph stream (have not been deleted), and k
is the memory budget of ABACUS that indicates the maximum

number of edges in the maintained graph sample S. Similarly,

the probability that ABACUS encounters case ii is
(|E|−7

k−7 )
(|E|

k )
, and

the probability that it encounters case iii is
(|E|−6

k−6 )
(|E|

k )
. The above

probabilities stem from the fact that ABACUS always maintains

a uniform random sample. Consequently, the probability of the

equation above is as follows:

∑

i,j

pi,j = y1

(

|E|−8
k−8

)

(

|E|
k

)
+ y2

(

|E|−7
k−7

)

(

|E|
k

)
+ y3

(

|E|−6
k−6

)

(

|E|
k

)
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Fig. 12: Cases where the probability pi,j is non-zero.

where y1, y2, y3 indicate how many pairs of butterflies of

case i, ii, iii exist in the graph at the current time t (which we

omit for simplicity). By combining the two equations above,

we get the following closed form for the variance of ABACUS:

V ar[c] = E[c2]− E[c]2

= γE[c] + 2γ2
∑

i,j

pi,j − E[c]2

= γE[c]− E[c]2

+2γ2(y1

(

|E|−8
k−8

)

(

|E|
k

)
+ y2

(

|E|−7
k−7

)

(

|E|
k

)
+ y3

(

|E|−6
k−6

)

(

|E|
k

)
)

where by upper bounding
∑

i,j pi,j as follows:

∑

i,j

pi,j ≤ (y1 + y2 + y3)×

(

|E|−6
k−6

)

(

|E|
k

)
=

(

E[c]

2

)

×

(

|E|−6
k−6

)

(

|E|
k

)

we can upper bound the the variance as follows:

V ar[c] ≤ γE[c] + 2γ2

(

E[c]

2

)

×

(

|E|−6
k−6

)

(

|E|
k

)
− E[c]2

where c is the butterfly count estimation of ABACUS, whose

expected value equals the ground truth, |E| is the number of

valid edges in the graph stream that have not yet been deleted,

and k is the memory budget or equivalently the maximum

number of edges in the sample S that ABACUS maintains. We

observe that ABACUS’ variance is bounded, and it provably

gives accurate estimates. Tightness. The upper bound we de-

rived on the variance of ABACUS is tight. In specific, consider

the 2, 3-bipartite graph that is a clique. There, the variance

satisfies the above inequality on the equality condition.

APPENDIX D

PROOF OF COROLLARY 1 (CONCENTRATION)

Proof. The proof stems directly from applying the Chebysev’s

inequality since we know the variance (we proved a closed

form) and the expected value of ABACUS’s estimation.
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