
Hierarchical Reinforcement Learning with Opponent
Modeling for Distributed Multi-agent Cooperation

Zhixuan Liang, Jiannong Cao, Fellow, IEEE, Shan Jiang§, Divya Saxena, Huafeng Xu
Department of Computing, The Hong Kong Polytechnic University

Abstract—Many real-world applications can be formulated
as multi-agent cooperation problems, such as network packet
routing and coordination of autonomous vehicles. The emergence
of deep reinforcement learning (DRL) provides a promising
approach for multi-agent cooperation through the interaction
of the agents and environments. However, traditional DRL
solutions suffer from the high dimensions of multiple agents
with continuous action space during policy search. Besides, the
dynamicity of agents’ policies makes the training non-stationary.
To tackle the issues, we propose a hierarchical reinforcement
learning approach with high-level decision-making and low-level
individual control for efficient policy search. In particular, the
cooperation of multiple agents can be learned in high-level
discrete action space efficiently. At the same time, the low-level
individual control can be reduced to single-agent reinforcement
learning. In addition to hierarchical reinforcement learning, we
propose an opponent modeling network to model other agents’
policies during the learning process. In contrast to end-to-end
DRL approaches, our approach reduces the learning complexity
by decomposing the overall task into sub-tasks in a hierarchical
way. To evaluate the efficiency of our approach, we conduct a
real-world case study in the cooperative lane change scenario.
Both simulation and real-world experiments show the superiority
of our approach in the collision rate and convergence speed.

Index Terms—Multi-agent Cooperation; Deep Reinforcement
Learning; Hierarchical Reinforcement Learning

I. INTRODUCTION

Many complex real-world applications can be modeled
as multi-agent cooperation, such as network packet routing
[1], energy distribution [2], and coordination of autonomous
vehicles [3]. In these applications, the agents need to make
individual decisions considering the mutual influence. Tradi-
tional solutions of multi-agent cooperation are mostly model-
based, in which the agents and their interactions are modeled
using physical formulas and prior knowledge [4] [5]. These ap-
proaches fail to adapt to dynamic, stochastic, and complex en-
vironments. Recently, the development of deep reinforcement
learning (DRL) [6] provides a promising solution through a
trial-and-error process [7]. At each step, the agent observes
the environment, selects the optimal action, and receives
rewards as feedback signals related to the team performance.
The goal of each agent is to learn the policies maximizing the
accumulated rewards received from the environment.

Existing DRL approaches for multi-agent cooperation can
be classified into three categories: centralized reinforcement
learning, centralized training with decentralized execution, and
distributed reinforcement learning. Centralized reinforcement

§Corresponding author: Shan Jiang

Environment

High-level Layer
(𝝅𝝅𝒉𝒉𝟏𝟏)

Low-level Layer
(𝝅𝝅𝒍𝒍𝟏𝟏)

High-level Layer
(𝝅𝝅𝒉𝒉𝟐𝟐)

Low-level Layer
(𝝅𝝅𝒍𝒍𝟐𝟐)

High-level Layer
(𝝅𝝅𝒉𝒉𝒏𝒏)

Low-level Layer
(𝝅𝝅𝒍𝒍𝒏𝒏)

Agent 1 Agent 2 Agent 𝑛𝑛

𝑜𝑜1𝑠𝑠ℎ1

𝑟𝑟𝑙𝑙1

𝑟𝑟ℎ1

𝑎𝑎𝑙𝑙1

⋯

𝑠𝑠𝑙𝑙1

𝑠𝑠ℎ2

𝑠𝑠𝑙𝑙2

𝑜𝑜2

𝑟𝑟𝑙𝑙2

𝑟𝑟ℎ𝑛𝑛

𝑎𝑎𝑙𝑙2

𝑠𝑠ℎ𝑛𝑛

𝑠𝑠𝑙𝑙𝑛𝑛

𝑜𝑜𝑛𝑛

𝑎𝑎𝑙𝑙𝑛𝑛
𝑟𝑟𝑙𝑙𝑛𝑛

𝑟𝑟ℎ2

Fig. 1. Illustration of hierarchical reinforcement learning for distributed multi-
agent cooperation. Each agent maintains a high-level cooperation layer and a
low-level individual control layer.

learning aims to train a centralized value function that selects
actions for all the agents. Such a method is hard to be extended
to large-scale scenarios due to the exponential action spaces
when the number of agents increases. An alternative approach
is centralized training with decentralized execution (CTDE),
which trains a critic network to estimate state-action pairs’
values. At the same time, each agent maintains an individual
actor network for decentralized action selection. By training
such a critic network considering the states and actions of
other agents, all the agents can learn to cooperate in certain
states. Some previous works have applied CTDE for real-
world applications, such as flocking [8] and pathfinding [9].
However, the number of features in the critic network needs
to be scaled up linearly (in the best case) or exponentially (in
the worse case) as the number of agents increases. Besides,
the gain of learning a centralized critic is likely to be minimal
in the sparse interaction scenarios [10].

Recent developments in DRL address the above limitations
through decentralized training with decentralized execution
(DTDE), where each agent acts and learns to cooperate in
a distributed manner. However, it is non-trivial to learn in
a distributed way because the training is non-stationary, and
it is hard to represent individual agents’ policies. In particu-
lar, standard DRL approaches relying on end-to-end models
suffer from the curse of dimensionality of multiple agents
in continuous action spaces. It demands large-scale models
and a long time for training to learn a mapping function
from the state to the continuous action space. Furthermore,
the independence of individual policy learning leads to poor
coordination. Finally, the dynamicity of the agents’ policies
makes it nearly impossible to employ experience replay [11]
that is crucial for stabilizing DRL.

The following publication Z. Liang, J. Cao, S. Jiang, D. Saxena and H. Xu, "Hierarchical Reinforcement Learning with Opponent Modeling for Distributed
Multi-agent Cooperation," 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), Bologna, Italy, 2022, pp. 884-894 is
available at https://doi.org/10.1109/ICDCS54860.2022.00090.

This is the Pre-Published Version.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
eprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

In this paper, we propose a novel hierarchical deep rein-
forcement learning approach for distributed multi-agent coop-
eration. First, we decompose the policy space of each agent
into a high-level cooperation layer and a low-level individual
control layer, which is shown in Fig. 1. The cooperation of
multiple agents can be efficiently learned in high-level discrete
action space, while the low-level individual control can be
reduced to independent reinforcement learning. Besides, we
introduce an opponent modeling mechanism to model other
agents’ high-level decisions. The learned opponent models
will encourage cooperation behaviors and stabilize DRL. In
contrast to the standard end-to-end DRL model, we reduce the
learning complexity by decomposing the overall task into sub-
tasks that are easier to solve hierarchically. Furthermore, we
conduct a case study on cooperative lane change and present
the hierarchical decision-making model with the specific de-
sign of states, actions, and rewards. Finally, we evaluate our
approach in a simulation environment and a real-world testbed.
The main contributions of this paper are as follows:

• We study the problem of distributed multi-agent coopera-
tion in continuous action space and propose a hierarchical
deep reinforcement learning approach, which decomposes
the overall task into high-level option selection and low-
level individual control.

• To address the non-stationary training issue in distributed
multi-agent learning, we introduce an opponent modeling
mechanism to model other agents’ high-level policies.

• We conduct extensive experiments on cooperative lane
change and compare our approach with state-of-art base-
lines in simulation and a real-world testbed. The exper-
imental results show the superiority of our approach in
both task performance and convergence speed.

The rest of the paper is organized as follows. Sec. II
summarizes the previous works of multi-agent reinforcement
learning and hierarchical reinforcement learning. Sec. III in-
troduces the notations and preliminaries of deep reinforcement
learning. Sec. IV presents a novel hierarchical reinforcement
learning algorithm with an opponent modeling mechanism.
Sec. V showcases a real-world case study of hierarchical
reinforcement learning on the multi-vehicle cooperative lance
change scenario. Sec. VI shows the experimental results in
simulation and a real-world bed. Finally, Sec. VII concludes
the paper and discusses the future directions.

II. RELATED WORK

This section summarizes the previous works related to
multi-agent reinforcement learning and hierarchical reinforce-
ment learning in Sec. II-A and Sec. II-B, respectively.

A. Multi-agent Reinforcement Learning

Recent works on reinforcement learning (RL) have shifted
from single-agent reinforcement learning to multi-agent re-
inforcement learning (MARL). MARL corresponds to the
learning problem in multi-agent systems in which multiple
agents learn simultaneously in a shared environment. Existing
MARL approaches can be classified into centralized RL,

centralized training with decentralized execution (CTDE), and
distributed RL. Centralized RL trains a centralized network
mapping from the state space to all the agents’ joint action
space. Such an approach suffers from the high dimension issue
of joint state and action spaces, making it hard to be extended
to large-scale scenarios.

Some previous works adopt the paradigm of centralized
training with decentralized execution (CTDE). Lowe et al. pro-
posed a multi-agent actor-critic (MADDPG) approach and ap-
plied it for cooperative navigation [12]. Foerster et al. proposed
counterfactual policy gradient (COMA), using a counterfactual
baseline to address the credit assignment problem in MARL
[13]. Similar works of CTDE can also be found in flocking
[8] and pathfinding [9]. However, the number of features of
the centralized critic network needs to be scaled up linearly
(in the best case) or exponentially (in the worse case) with
the increases of the number of agents [10]. Besides, different
agents may have different influences, and decentralized critics
are expected to perform better in these scenarios.

Recent developments in DRL can be further divided into
two types: independent RL and decentralized critics with
decentralized actors. Independent RL is self-interested and
does not consider the states and actions of other agents [14].
Independent RL has good scalability but poor cooperation
performance. An alternative method is to use decentralized
critics with decentralized actors. For example, Zhang et al.
proposed a general decentralized MARL framework [15] and
Iqbal et al. proposed an actor-attention-critic approach for
multi-agent cooperation [16]. However, these methods either
rely on explicit information sharing or use end-to-end RL mod-
els, which are not adaptive to complex and complicated tasks.
Moreover, these end-to-end RL models lack interpretability on
the interaction among agents.

B. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) is a type of
reinforcement learning (RL) that leverages the hierarchical
structure of a given task learns a hierarchical policy [17] [18].
Dayan et al. developed the first HRL work and proposed feudal
reinforcement learning (FRL), where the high-level managers
learn how to set the tasks to the sub-managers while the sub-
managers learn how to perform the sub-tasks [19]. In this way,
a complex task can be divided into small sub-tasks that are
easier to be solved [19]. Kulkarni et al. introduced intrinsic
reward design for low-level tasks and used a deep neural
network to approximate the value function [20]. The proposed
intrinsic reward mechanism motivates the agents to explore
new behavior for its own sake.

Some previous works have applied hierarchical reinforce-
ment learning for multi-agent cooperation. For example, Di-
etterich proposed the MAXQ framework to learn the hier-
archical policy of each agent [21]. Besides, Ghavamzadeh
et al. proposed a COM-Cooperative HRL for multi-agent
communication [22]. Recently, Ahilan et al. proposed a deep
MAHRL approach, in which a central manager policy chooses
subtasks for other workers simultaneously [23]. Similar deep

MAHRL approaches can also be found in [24]. However, all
of these works either only consider the discrete action space
of each agent or rely on centralized training.

III. PRELIMINARIES

In this section, we introduce the definitions of Markov
decision process (MDP), reinforcement learning (RL), and
hierarchical reinforcement learning (HRL).

A. Markov Decision Process

Many decision-making problems can be mathematically
modeled as a Markov decision process (MDP). An MDP is
defined as a four-tuple (S,A, r, T), in which S is the set of
states, A is the set of available actions, r : S × A × S → R
is the reward function, and T : S × A × S× → [0, 1]
is the probability function of state-action-state transition. A
stochastic policy function is defined as π : S × A → [0, 1]
and a deterministic policy function µ : S → R|A| is defined to
select an action for current state. The goal of solving MDP is to
find a policy which selects actions maximizing the cumulative
rewards R =

∑N
t=0 rt.

Given a policy π and a state s, the value function V : S →
R calculates the expected sum of discounted rewards using
the following formula:

V π(s) = Eπ

[∑N

t=0
γtrt | s

]
where γ is the discount factor and rt is the reward received
at each time step. In addition, given a policy π, a state s,
and an action a, the state-action value function Q : S ×A→
R calculates the expected sum of discounted rewards from a
given state as follows:

Qπ(s, a) =
∑

π

[∑N

t=0
γtrt | s, a

]
Solving an MDP requires computing the state-value function

and state-action value function. The reward function and state
transition are entirely known, these functions can be solved
by iterating the Bellman equations, and the decision-making
problem can be solved by using dynamic programming [25].
However, the reward function and state transition are unknown
to agents in most cases.

B. Reinforcement learning

Reinforcement learning provides multiple methods for solv-
ing MDPs, classified as value-based and policy-based methods.

In value-based method, the state-action-value function (or
state-value function) is estimated using temporal different
(TD) methods as follows:

Q(st, at)

=Q(st, at) + α(rt + γmax
at+1

Q(st+1, at+1)−Q(st, at))

Then the greedy policy can be derived by selecting the action
with highest Q-value at each time step as follows:

π(st) = argmax
a

Q(st, at)

Such a method is referred to as the Q-learning [26].
Traditional tabular Q-learning suffers from the issue of

high dimensionality in state space. Deep Q-learning (DQN)
[27] addresses the issue by employing a deep neural network
to approximate the Q-function. Besides, DQN is a class of
off-policy reinforcement learning methods that uses a replay
memory to store the transition four-tuple (s, a, r, s′) and these
data can be sampled to train the Q-network. The loss function
of training Q-network is as follows:

L(θ) = Es,a,r,s′′

[
(Q (s, a; θ)− y)

2
]

where y = r+ γmaxa∈A (Q (s′ , a; θ−)) and γ ∈ [0, 1) is the
discount factor. In y, the variable θ− is the parameter of the
target network that is periodically copied from θ that is kept
constant for a number of iterations.

An alternative model-free approach is the policy-based
method, which directly learns a policy π parameterized by θπ .
The objective of these approaches is to adjust the parameters
θπ in order to maximize the function J(θ) = Es∼pπ,a∼πθ

[R],
where R denotes the expected accumulative rewards which are
usually approximated by Q(s, a). In the actor-critic theory, the
policy network πθ can be considered an actor network, and the
state-action value function Q(s, a) can be considered a critic
network. According to the policy gradient theorem [25], the
gradient of this objective function is defined as follows:

∇θJ (πθ) = Es∼ρπ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)]

where ρπ is the state distribution under policy πθ and πθ(a|s)
is the probability of select the action a under the state s.
At each time step, the agent samples an action from the
distribution generated from the policy network.

Deep deterministic policy gradient (DDPG) is an actor-critic
algorithm extended from stochastic policy gradient to deter-
ministic policy gradient [28] [29]. It employs a deep neural
network parameterized by θµ to approximate the deterministic
policy µθ : S → A and a neural network parameterized by
θQ to approximate the action-value function Q(s, a|θQ). The
critic network is learned using the Bellman equation as in Q-
learning, and the actor network is updated by applying the
chain rule to the objective function J :

∇θJ(θ) = Es∼D

[
∇θµθ(a | s)∇aQ

µ(s, a)|a=µθ(s)

]
C. Hierarchical Reinforcement learning with Temporal Ab-
straction

Human decision-making often involves choosing among
temporally extended courses of action over a broad range
of time scales [30]. Learning and operating over different
levels of temporal abstraction is a critical challenge in tasks
involving long-term planning. Sutton et al. [31] extended rein-
forcement learning framework to include temporally abstract
actions, representations that group together a set of interrelated
actions (for example, moving to block A, driving another
lane, passing the ball to another person). These representations
can be translated into a series of individual actions, which
are described as temporal abstraction. A recent extension of

this direction is hierarchical deep reinforcement learning with
temporal abstraction proposed by Kulkarni et al. [20]. In their
approach, the agent uses a two-level decision-making model,
i.e., a meta-controller and a controller. The meta-controller
receives a state st and chooses a goal gt ∈ G, where G denotes
the set of all possible current goals. The gt will remain for T
time steps, or the terminated state is reached. The Q-value
function for the controller is:

Ql(s, a; g) = E

[
rl + γmax

a′
Ql (s′ , a′ ; g)

]
where g is the goal and rl is low-level reward given by a goal-
driven reward function R(st, at, gt). This low-level reward is
related to performing the goal (temporal abstraction), which
is also regards as intrinsic reward. The design of intrinsic
reward and termination is still an open question in hierarchical
reinforcement learning.

Similarly, the Q-value function of the meta-controller is:

Q(s, g) = E[rh + γmax
g′

Q(s
′
, g

′
)]

where rh =
∑T

t=0 r is the accumulative reward received from
the environment during the T time steps.

IV. HERO: HIERARCHICAL REINFORCEMENT LEARNING
WITH OPPONENT MODELING

This section introduces the sequential decision-making
problem in distributed multi-agent systems. Then, we propose
HERO, a general hierarchical decision-making model with
high-level cooperative decision-making and low-level individ-
ual control. Note that, in many applications, the primitive
actions of agents are regarded as individual control.

A. Problem Formulation

Typically, multi-agent cooperation can be mathematically
modeled as multi-agent Markov games, which extends MDP to
multi-agent setting [32]. A Markov game is defined as a five-
tuple (I, S,A, r, T), where I is the set of N agents, S is the
set of states, A = A1×A2 . . .×AN is the set of actions of all
agents, and r = (r1, r2, . . . , rN) where ri : S×A×S → R is
the reward function of agent i. In the fully cooperative setting,
we have r1 = r2, ...,= rN . Given the current state and the
actions of all agents, T : S×A×S → [0, 1] is the probability
distribution over the next states. Each agent i aims to learn a
policy πi : Si × Ai → [0, 1] to select the optimal action ai
maximizing the accumulative rewards Ri =

∑T
t=0 γ

trti , where
γ is the is the discount factor and T is the time horizon. We
can formulate the joint policy of other agents as:

π−i
(
a−i
t | st

)
=

∏
j∈{−i}

πj
(
ajt | st

)
Therefore, the objective of each agent i is defined as follows:

max
πi

ηi
[
πi, π−i

]
=E(st,ai

t,a
−i
t)∼T,πi,π−i

[∑∞

t=1
γtRi

(
st, a

i
t, a

−i
t

)]

𝜋𝜋ℎ1

Env

𝑄𝑄ℎ1
𝜋𝜋𝑙𝑙1

𝜋𝜋ℎ𝑁𝑁

𝜋𝜋𝑙𝑙𝑁𝑁

𝑜𝑜1

𝑜𝑜𝑁𝑁 𝑄𝑄ℎ𝑁𝑁

∇𝐽𝐽ℎ1

∇𝐽𝐽ℎ𝑁𝑁

𝑠𝑠ℎ1

𝑎𝑎1⋮ ⋮
𝑠𝑠ℎ𝑁𝑁

𝑠𝑠ℎ1 𝑜𝑜

𝑟𝑟ℎ1

𝑟𝑟ℎ𝑁𝑁

𝑠𝑠ℎ𝑁𝑁 𝑜𝑜

𝑠𝑠𝑙𝑙1

𝑎𝑎𝑁𝑁

𝑠𝑠𝑙𝑙𝑁𝑁

𝜋𝜋𝑙𝑙1

Random
Noise

Env
𝑄𝑄𝑙𝑙1 ∇𝐽𝐽𝑙𝑙1

𝑎𝑎1

𝑠𝑠𝑙𝑙1 𝑟𝑟𝑙𝑙1

𝑠𝑠𝑙𝑙1 𝑎𝑎1

(a) Learning High-level Option Selection Policy

(b) Learning Low-level Motion Control

Fig. 2. Two-stage training structure of HERO. (a) Multiple agents learns
high-level option selection strategy in second stage. (b) A single agent learns
different individual control policy with random noise in the first stage.

Most existing multi-agent reinforcement learning methods
assume that each agent can access all the other agents’
policies during the training. In this paper, we consider a
general scenario in a distributed manner, in which each agent
i has no knowledge of other agents’ policies, and can only
observe the historical states and actions of other agents,
i.e.,

{
s1:t−1, a

−i
1:t−1

}
. Such a setting is also found in other

decentralized MARL works [15] [33].

B. Hierarchical Decision-making Model for Multi-agent Co-
operation

Hierarchical Policy Representation. In this paper, we in-
troduce a hierarchical reinforcement learning model for multi-
agent cooperation, which decomposes an overall cooperation
task into a hierarchy of discrete sub-tasks. The sub-tasks
are also regarded as options, skills, or temporal abstractions
in previous studies. For simplicity, we use the notation of
option in the rest of this paper. In a two-layer hierarchical
reinforcement learning model, the policy space of each agent
is defined as follows:

πi =
[
πi
h, π

i
l

]
where πh is the high-level policy to select the options and πl

is the low-level policy to select primitive actions to perform
the selected option.

A high-level option is defined as a three-tuple o =
(Io, πh, βo), where Io ∈ Sh is the initiation set, πh: the option
selection policy, and βo : δ → [0, 1] specifies the termination
condition while executing o.

In the definition of high-level option, Sh denotes the state
space, and Ah denotes the action space of high-level policy.
The option o can also be interpreted as the high-level action
with the state set Sh. In the context of multi-agent cooperation,
each agent i cooperatively selects the option based on the
current state sih and the inferred opponent options o−i

h , which
is shown in Fig. 2.

Self Others

𝜋𝜋ℎ𝑖𝑖 �𝜋𝜋ℎ−𝑖𝑖

𝑠𝑠𝑖𝑖 , �𝑜𝑜−𝑖𝑖 𝑠𝑠𝑖𝑖

𝑜𝑜𝑖𝑖 �𝑜𝑜−𝑖𝑖

O
pt

io
n

Se
le

ct
io

n

O
pponent M

olding

…

…

High-level Layer

Fig. 3. Illustration of the high-level opponent modeling in high-level layer.
Each agent maintain a self policy network for its option selection and a
opponent modeling network for other agents’ option prediction.

Asynchronous Option Termination. There are two modes
for option termination: synchronous and asynchronous. Syn-
chronous termination requires all agents to interrupt the exist-
ing option execution and select the next option synchronously,
which is not feasible for fully distributed systems. Thus, we
consider the asynchronous termination mode for each agent.
At each time step t, the high-level layer of each agent i will
verify whether the current state sih,t satisfies the termination
condition. In particular, if βi

o is equal to 1, the existing option
will terminate, and the high-level policy will select another
option to execute until the overall task is finished.

Hierarchical Reward. Also, the reward of each agent i can
be divided into two parts for efficient training:

ri =
[
rih, r

i
l

]
where rih and ril are the high-level and low-level rewards con-
cerning team performance and individual control, respectively.

C. Learning High-level Option Selection with Opponent Mod-
eling

Option-value Function. The value function of each agent’s
option selection can be defined as follows:

Qi
h

(
sih,t, ot

)
= rih,t:t+c + γQi

h

(
sit+c, ot+c

)
−Qi

h

(
sih,t, ot

)
where ot = [oit, o

−i
t] denotes the option selected by agent i and

the options selected by other agents. Here, we assume that each
agent can observe all the previous option selections of others
agents, i.e.,

{
o−i
1:t−1

}
, at each time step. Besides, rih,t is the

high-level reward received from environment which indicates
the progress of the overall task and rih,t:t+c =

∑t+c
t rih,t

denotes the accumulated high-level reward when performs the
option oit. Thereafter, the high-level transition that will be
stored in the replay buffer Di

h is expressed as follows:

{(sih,t+k, o
i
t+k, o

−i
t+k, r

i
h,t+k, s

i
h,t+k+1)}k=c

k=0

Agent Learning. We propose a decentralized actor-critic
method for high-level policy learning. Each agent trains a
decentralized critic network Qi

h

(
sih, o

i, o−i; θQi,h

)
to approx-

imate the option-value function, while maintaining an actor
network πi

h(s
i
h, o

−i; θπi,h) for option generation. Specifically,
the critic network is trained by minimizing the loss:

L
(
θQi,h

)
= Esih,o

i,o−i,rih∼Di
h

[(
Qi

h,t

(
sih,t, o

i
t, o

−i
t

)
− yih

)2]

Algorithm 1 Training High-level Cooperative Strategy with
Opponent Modeling

1: initialize the experience replay buffer Di
h and the param-

eters θQi,h, θπi,h for each agent i
2: initialize the experience replay buffer D−i

h and the param-
eters π−i

h for opponent modeling
3: for episode ← 1 to M do
4: t ← 0
5: reset the environment and receive an initial states sih,t

and sil,t for each agent i
6: for each agent i select high-level action (option) from

the actor network πi
h

7: oit ← πi
h

8: while the task is not completed do
9: pass the high-level option oit to low-level controller

and generate low-level action ait
10: execute action ait and receive next state sih,t+1

11: compute the high-level team reward rih
12: for agent i← 1 to N do
13: if sih,t+1 is a terminal state for option oit then
14: choose next option oit+1 from actor network πi

h

15: store transition (sih,t, o
i
t, r

i
h, s

i
h,t+1) in Di

h

16: oit ← oit+1, sih,t ← sih,t+1

17: else
18: oit ← oit+1

19: end if
20: update the high-level critic network
21: update the high-level actor network
22: end for
23: store transition (sit, o

−i
t) in D−i

h

24: t ← t+ 1, st ← st+1

25: update the opponent modeling networks
26: end while
27: update the target network parameters
28: end for

yih = rih,t:t+c + γQi
h,t+c

(
si, oit+c, ô

−i
t+c)

)
where Di

h is the experience replay buffer for offline high-level
policy training. Then, the actor network can be trained with
gradient ascent where the gradient is computed as:

∇θπ
i,h

J
(
θπi,h

)
=

Esih∼pπ,oi∼πi
h

[
∇θi log π

i
h

(
oi | sih, ô−i

)
Qi

h

(
sih, o

i, o−i
)]

where pπ denotes the state transition under all agents’ policies
π = π1, ..., πn and ô−i denotes the inferred options of other
agents generated from the opponent modeling network π̂−i

h .
Opponent-modeling in Option Selection. Opponent mod-

eling is a feasible solution to the non-stationary issue in
distributed reinforcement learning. Instead of modeling other
agents’ primitive actions, we propose to model their option
selections reflecting their temporal abstraction during a few
time steps. Then, two questions arise: how to use the opponent
model and how to train the opponent model.

Algorithm 2 Training Low-level Driving Skills with Intrinsic
Reward Functions

1: initialize the experience replay buffer Dl and the param-
eters θlQ, θlµ for low-level controller

2: for episode ← 1 to M do
3: reset the environment and receive an initial state s0
4: t ← 0
5: while st is not a terminal state do
6: select action from low-level actor network
7: at ← πl(· | st)
8: execute action at and receive next state st+1 and

intrinsic reward rl
9: store transition (st, at, rt, st+1) in Dl

10: t ← t+ 1
11: st ← st+1

12: update the low-level critic network
13: update the low-level actor network
14: end while
15: update the target network parameters
16: end for

For the model usage, we use the opponent model in the
individual option selection to encourage the coordination be-
haviors. Each agent i makes a decision based on both the
current state sih and the inferred opponent options ô−i, which
is shown in Fig. 3. Additionally, we use the latest opponent
model to update the TD-target yih:

yih = rih,t:t+c + γQi
h,t+c

(
sih, π

i
h(s

i
h,t+c), π

−i
h (sih,t+c))

)
Note that we input the option log probabilities of other

agents directly into Qi
h,t+c, rather than sampling.

For the opponent model training, we use a deep neural
network to approximate the option selection policies of other
agents and train the network by maximizing the log probability
from the recent observation histories:

L
(
θ−i
π,h

)
= −Esih,o

−i
h

[
log π−i

h

(
o−i
h | s

i
h

)
+ λH

(
π−i
h

)]
where π−i

h

(
o−i | sih

)
is the predicted probability of selected

action o−i given the observation of agent i and H
(
π−i
h

)
is

the entropy of the policy distribution which is used to solve
the over-fitting problem in deep learning.

D. Learning Low-level Policies with Intrinsic Reward Func-
tions

Given the option, the objective of the low-level layer is to
perform the option by selecting optimal primitive actions. The
low-level individual control policy πi

l is represented by an
individual deep neural network θil and trained with indepen-
dent and parallel deep reinforcement learning. To successfully
learn to perform the option, the intrinsic reward function ril
is used for efficient training. In this paper, we adopt the
soft actor-critic method. According to the maximum entropy

reinforcement learning theorem [34], the objective function of
low-level policy is defined as follow:

J(πi
l) =

c∑
t=0

E(sil ,ai)
[
ril
(
sil, a

i
)
+ αH

(
πi
l

(
· | sil

))]
where H is the regulation term to encourage exploration and
learn diverse policies to perform the specific option and α is
the hyperparameter denote the weight of action exploration.
Consequently, the gradient of each agent is:

∇θi
l
J
(
θil
)
= E

[
∇θi

l
ϵ
[
−αϵ+Qi

l

(
sil, a

i; oih
)]]

where ϵ = logπi
l

(
ai | sil

)
In practice, the training of critic can be realized by parame-

ter sharing among distributed agents. Then, the critic network
Qi

l

(
sil, a

i; θil , o
i
h

)
can be trained with deep Q-learning and the

loss function is:

L(θil) = E
sil ,a

i,ril ,s
i,′
l ∼Di

l

[(
Qi

l

(
sil, a

i; θil , o
i
h

)
− yil

)2]
yil = ril + γQi

l

(
si,

′
, a

′

i; θ
i
l ; o

i
h

)
where Di

l is the experience reply buffer for off-policy training
and ril is the intrinsic reward designed for the option learning.

V. CASE STUDY: HERO FOR MULTI-VEHICLE
COOPERATIVE LANE CHANGE

In this section, we present a case study of HERO on
cooperative lane change to demonstrate the practicability of
HERO in real-world applications.

A. Cooperative Lane Change

Lane change is one of the most essential and fundamental
behaviors in autonomous driving, which involves the in-
teraction of multiple vehicles in different lanes. Successful
lane changes require drivers to account for several safety-
related factors, including the road geometries, positions of
ego vehicles, and cooperation with other vehicles. Inaccurate
lane change leads to car accidents, congestion, and waste of
energy. This paper aims to solve decision-making problems
under different lane change scenarios. Many existing works
only consider the single-agent driving scenario, while this
work aims to leverage the cooperativeness of multiple vehicles
to improve road safety and efficiency.

In this paper, we propose a two-layer hierarchical decision-
making model, which includes a high-level controller and
a low-level controller for cooperative driving. As shown in
Fig. 4, we first decompose the driving task into several sub-
tasks, i.e., lane change, lane-keeping, and slow down. Each
sub-task can be regarded as an option that the low-level
controller can perform. It takes several time steps for the low-
level controller to finish the option successfully. The objective
of the high-level controller is to learn to select different options
according to the current state that can maximize the traffic
throughput while avoiding collisions. Specifically, the high-
level controller’s state, option, and reward function are defined
in the following subsection.

High-level
Controller

Low-level
Controller

Low-level
Controller

Low-level
Controller

𝑠𝑠𝑡𝑡

𝑄𝑄ℎ(𝑠𝑠𝑡𝑡 ,𝑂𝑂𝑡𝑡;𝜃𝜃ℎ)

𝑂𝑂𝑡𝑡

𝑠𝑠𝑡𝑡 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡+𝑐𝑐

• • •

• • •

𝑄𝑄𝑙𝑙(𝑠𝑠𝑡𝑡,𝑎𝑎;𝜃𝜃𝑙𝑙 ,𝑂𝑂𝑡𝑡)

𝑎𝑎𝑡𝑡 𝑎𝑎𝑡𝑡+1 𝑎𝑎𝑡𝑡+𝑐𝑐

𝑄𝑄𝑙𝑙(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝜃𝜃𝑙𝑙 ,𝑂𝑂𝑡𝑡) 𝑄𝑄𝑙𝑙(𝑠𝑠𝑡𝑡+𝑐𝑐 ,𝑎𝑎;𝜃𝜃𝑙𝑙 ,𝑂𝑂𝑡𝑡)

High-level Controller
High-level Policy

Network

Low-level Controller

Slow
Down

Lane
Keeping

Lane
Change

Environment

Vehicle

State

State

Option

Action

Reward

Reward

Fig. 4. Hierarchical decision-making model for each vehicle.

B. High-level State, Option and Reward Function Design

High-level State Space. Here, we separate the state space of
each vehicle into sih and sil , which are the state for high-level
controller and low-level controller, respectively. The high-level
state sih is defined as follows:

sih =
[
silidar, s

i
speed, s

i
laneID

]
where silidar is the raw observation from the lidar sensor,
which denotes the distance with other vehicles from 360
degrees, sispeed is the vehicle’s speed, and silaneID is the
vehicle’s current lane identifier.

High-level Option Space. The action space of high-level
controller is to choose which option to execute. Here, we
consider the discrete action space defined as follow:

Ai
h = [keep lane, slow down, accelerate, lane change]

We define four types of high-level options according to
human driving behaviors, where each option corresponds to
a learned low-level control policy.

High-level Team Reward. The design of high-level team
reward is related to the overall objective. Typically, safety
and efficiency are two main concerns in cooperative merge
scenarios. In terms of safety, each vehicle should not only
avoid collision with the front vehicle when driving in the
current lane but also pay attention to the vehicles in the merged
lane. Once the collision happens, we will assign a negative
reward rcol to the vehicles as the penalty, and the current
training episode will be ended and restarted. To avoid traffic
congestion, we encourage the vehicle to run as fast as possible
by giving a positive reward rtravel to vehicles. Hence, the total
reward of each vehicle is designed as follows:

rih = αrcol + (1− α)ritravel

where rcol is the penalty of collision, rtravel is the reward
for moving forward, and α is a hyperparameter to control the
weight of collision avoidance and move forward.

C. Low-level State, Action and Intrinsic Reward Function
Design

Low-level State Space. Previous works rely on the given
waypoint data of the vehicles and use PID controller to drive.

𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖

𝐷𝐷𝑖𝑖

𝑡𝑡 = 𝑡𝑡0

𝑡𝑡 = 𝑡𝑡0 + 𝑐𝑐
𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖

Fail

Success

𝑡𝑡 = 𝑡𝑡0 + 𝑐𝑐

Fig. 5. The left side of this figure shows the reward calculation for the
training of driving in lane, while the right side shows the reward calculation
for training of lane change.

In this paper, we consider learning driving skills based on
vision, which is similar to how human drive. Therefore the
low-level state space sil is defined as follows:

sil =
[
siimg, s

i
speed, s

i
laneID

]
where siimg denotes the captured image, sispeed represents the
speed, and silaneID is the identifier of current lane.

Low-level Action Space. Because the low-level controller
directly determines the motion of the vehicle, the action space
of the low-level controller is the continuous linear speed
and angular speed. If the high-level option selection is lane-
keeping, then the linear and angular speeds will remain the
same compared to the last step. Otherwise, the action spaces
of different skills are defined as follows:

Ai
linear =

0.04 : 0.08 slow down
0.08 : 0.14 accelerate
0.1 : 0.2 lane change

Ai
angular =

−0.1 : 0.1 slow down
−0.1 : 0.1 accelerate
0.12 : 0.25 lane change

where Ai
linear denotes the action space for linear speed and

Ai
angular is the action space for angular speed. To prevent

Slow down Lane change

At a normal speed

At a normal speed

Vehicle 1

Vehicle 2

Fig. 6. Illustration of the cooperative lane change scenario, where the vehicle
1 should coordinate with vehicle 2 to avoid the collision when vehicle 2 is
performing lane change

unsafe actions and improve exploration efficiency, we set
different lower and upper bounds of the linear speed and
angular speed during the training.

Low-level Intrinsic Reward Functions. In contrast to
the high-level team reward which directly related to the
success of the overall task, the principle of intrinsic re-
ward is to provide feedback for learning different skills.
Here, we categorize the intrinsic rewards into two types:
ridriving in lane and rilane change. An illustration of reward calcu-
lation is shown in Fig. 5. In particular, ridriving in lane is used for
oih = [slow down, accelerate, keep lane] calculated as follows:

ridriving in lane = β ·Di + (1− β) · ritravel

where Di denotes the distance deviated from the center of
current lane, ritravel is the travel distance used to encourage
the movement of each vehicle, and β is a hyper parameter con-
trolling the weights of deviated distance and travel distance.

Similarly, the intrinsic reward for lane change skill is
designed as follows:

rilane change =

20 success
−20 fail
ritravel else

For the lane change skill, we assign a positive reward of
20 when the vehicle successfully changes the lane and assign
a negative penalty if the vehicle fails to change lane within a
predefined maximum time step.

VI. PERFORMANCE EVALUATION

This section presents the results of applying our approach in
cooperative lane change scenarios, which is shown in Fig. 6.
We first create a simulation environment for training and then
build a real-world testbed for further evaluation. We compare
the performance of our approach with several well-known
reinforcement learning approaches.

A. Baseline Approaches

In this paper, we apply different MARL approaches to coop-
erative lane change scenarios, including distributed approaches
(DTDE) and centralized training with decentralized execution
(CTDE) approaches. Specifically, the considered methods for
comparison include:

TABLE I
HYPERPARAMETERS FOR TRAINING

Hyperparameter Value
Training episode 14, 000
Episode length 30
Buffer capacity 100, 000

Batch size 1024
Learning rate 0.01

Discount factor γ 0.95
Dimension of the hidden layer 32

Target network update rate 0.01

• Independent Deep Q-learning (DQN). It is a distributed
learning approach, in which each agent trains a Q-
network using its local observation and shared team
reward. Each agent applies the ϵ-greedy strategy for
action exploration during the training.

• Counterfactual policy gradient (COMA). It is a standard
CTDE approach where the centralized critic is trained
with Q-learning. The actor network is trained with the
counterfactual policy gradient theorem.

• Multi-agent mixed actor-critic (MADDPG). It is another
approach adopting the framework of CTDE. Unlike
COMA, it considers the environment with explicit com-
munication and trains a centralized critic for each agent,
allowing each agent to have different reward functions.

• Multi-Actor-Attention-Critic (MAAC). It is the state-of-
the-art approach that extends the attention mechanism,
which is widely used in image processing and natural
language processing tasks, to multi-agent reinforcement
learning. It trains an actor-attention-critic network for
each agent and allows parameter sharing to improve the
learning efficiency. Noted that, MAAC uses decentralized
critics with a decentralized actor with parameter sharing.

B. Training Environment and Evaluation Metrics

To evaluate our approach, we first create a simulation
environment based on Gazebo, a popular physical simulation
engine in robotics [35]. The simulation environment includes
the lane scenario and multiple vehicles equipped with cameras
and lidar sensors. Besides, we provide several RL-friendly
APIs that are convenient for algorithm implementation. Fig. 12
shows the simulation scenarios of the cooperative lane change.
When the vehicle in front of vehicle 2 stops or moves slowly,
vehicle 2 needs to control itself to perform lane change which
needs the coordination among vehicle 1 and vehicle 2. We use
a conventional network to encode the image data and a multi-
layer fully-connected neural network as the critic network for
policy implementation. The dimension of the hidden layer is
set to 32 in all the algorithms.

At the beginning of each episode, we randomly initialize
several positions of the vehicles and set the same initial speed
to them. Besides, the episode length is set to 18 time steps.
The hyper-parameters of our network architecture and learning

(a) Mean episode reward (b) Collision rate (c) Lane change successful rate

Fig. 7. Comparison of the learning curve of different approaches in the cooperative lane change scenarios.

(a) Episode reward for training of lane keeping (b) Episode reward for training of lane change

Fig. 8. Episode reward of learning different low-level skills.

algorithms are presented in Tab. I. When the vehicles get
collision, or the max episode length is reached, the program
will call the reset function provided by our testbed to reset the
environment and continue the training.

In this paper, we consider four evaluation metrics to measure
the performance of different approaches, including:

• Mean episode reward: the average reward of each time
step when sampling the replay buffer from the different
episodes.

• Collision rate: the collision ratio of the vehicles in each
episode.

• Lane merge successful rate: the proportion of vehicles
that successfully merge in each episode.

• Mean speed: the average of the vehicle’s speeds at each
time step.

C. Learning Low-level Skills

Before training cooperative strategies, we first train the
low-level skills, including lane tracking and lane change. We
create parallel training environments with different intrinsic
reward functions so that the low-level learned skills can be
further shared. To improve learning efficiency, we set a lower
angular speed in training the lane-keeping skill and set a higher
angular speed when training the lane change skill. Fig. 8
shows the episode rewards during the training process. The
experimental results imply that the soft actor-critic algorithm
can successfully converge in training the lane tracking and lane
change tasks. To be noticed, the episode reward of learning
lane change policy remains a low value before 5, 000 episodes.

(a) Detect the obstacle and decide lane-change

(b) Lane-change completed

Cooperative

lane change

Fig. 9. Real-world evaluation

(a) Policy modeling loss of vehicle1 (b) Policy modeling loss of vehicle2

Fig. 10. Learning loss of modeling other partners’ policies.

The reason is that the agent will explore the action space at the
beginning to maximize the entropy of action probability. The
exploration strategy makes the low-level skill model robust.

D. Learning High-level Cooperative Policy

After training the low-level skills in the single-vehicle
environment, we gradually increase the number of vehicles to
learn the coordination policy. As shown in Fig. 9, we set up
four vehicles in a double-lane track scenario. Vehicle 4 is set

Fig. 11. Learning high-level cooperative policy in the simulation environment
we created.

vehicle 1

vehicle 2
vehicle 4

vehicle 3

Fig. 12. Training in the Gazebo simulator.

with a plodding speed to simulate traffic congestion or traffic
accident. The other vehicles are initialized with an average
speed and random positions. Once the collision happens during
lane-changing or lane-keeping, each vehicle will receive a
negative reward of −20, and the episode will end and restart.

During the training, each vehicle will train opponent models
to predict others’ actions and use the opponent model to
stabilize the offline training of the Q-value network. Fig. 10
shows the loss of modeling other vehicles’ policies from
vehicle 2’s perspective. As we can see, the vehicle 1’s action
prediction model become converged at a fast speed while the
vehicle 3’ action prediction model become converged after
12000 episodes. The difference in convergence speed also
illustrates the different interactions among vehicles.

Fig. 7 shows the performance of different RL approaches
in terms of mean episode reward, collision rate and lane
change successful rate. As shown in Fig. 7(a), our method
achieved the highest episode reward than other baselines.
Besides, the lower bound of our method is highest than others
which also implicitly shows the stability of our approach.
Fig. 7(b) and Fig. 7(c) shows the collision rate and lane
change successful rate among different approaches. Almost all
the RL approaches can reduce the collision rate after 14000
training episodes except MADDPG. We found that MADDPG
has a lower learning efficiency as it still maintains a higher
collision rate than others. Both DQN and our method reach
the lowest collision rate. However, the lane change success
rate is near 0. We found that vehicle 2 learn a policy to
drive slowly instead of changing the lane during the training.

(b) Smartbot-beta(a) Smartbot-alpha

Lidar

Camera
Raspberry
pi 3B+

TPU OpenCR

Lidar
Jetson Nano

Camera

OpenCR

Fig. 13. We develop two prototypes of vehicles in the real-world testbed. In
this experiment, we use the first prototype in the testing.

TABLE II
PERFORMANCE EVALUATION IN REAL-WORLD PLATFORM

Method
Metrics Collision Rate Successful

Rate
Mean
Speed

COMA 0.35 0.65 0.06344
Independent DQN 1.0 0.0 0.05395

MAAC 0.25 0.65 0.0625
MADDPG 0.95 0.5 0.07029

Ours 0.2 0.8 0.072

Instead, the vehicle trained with our method can successfully
perform cooperative lane change without collision with others.
Moreover, Fig. 11 shows that our method achieves the highest
mean speed, which is 0.08, and the vehicles trained with
MAAC received the lowest speed of 0.048. In general, our
method shows advantages in terms of safety and efficiency.

E. Real-world Experiments

To investigate the gap between simulation and reality, we
deploy the learned policies in simulation to a real-world
testbed, which consists of a two-lane track and multiple
vehicles shown in Fig. 13. Each vehicle is equipped with a
camera, lidar, and edge server. We run 20 episodes for each
MRRL method with several random initial positions. Besides,
we run a master node on the server to monitor the state of
each vehicle and calculate the collision rate, lane-merging
successful rate, and mean speed.

As shown in Tab. II, our approach reaches a low collision
rate and high speed than others, which is 0.2 and 0.07,
respectively. Besides, the collision rate of MAAC is lower than
other baselines such as COMA and MADDPG. However, the
performance of Independent DQN is different in simulation.
We argue that the diversity and robustness of DQN are poor
than other policy-based approaches.

VII. CONCLUSION AND FUTURE DIRECTIONS

This paper studies how distributed multiple agents learn to
cooperate in continuous action space and the non-stationarity
issue. Unlike the traditional end-to-end RL methods, we
propose a hierarchical reinforcement learning approach for
distributed multi-agent cooperation. The agent cooperation is
efficiently learned in high-level discrete action space, while
the low-level individual control is handled by independent
reinforcement learning. We incorporate opponent modeling in

the high-level layer to encourage cooperation and stabilize Q-
learning. Then, we present a case study of cooperative lane
change and conduct extensive experiments via simulation and
a real-world testbed. In the future, we will investigate deeper
hierarchy discovery and the theoretical guarantee. Currently,
the design of task decomposition and state-action space in
different layers still requires human knowledge. It is still an
open question how to discover the hierarchical architecture
automatically. Besides, most existing MARL approaches are
trained and evaluated in simulation. The gap between simula-
tion and reality also deserves more investigation.

VIII. ACKNOWLEDGMENT

The research is supported by Hong Kong RGC TRS
(project T41-603), RIF (projects R5009-21 and R5060-19),
CRF (projects C5026-18G and C5018-20GF), GRF (project
15204921).

REFERENCES

[1] M. A. L. Silva, S. R. de Souza, M. J. F. Souza, and A. L. C. Bazzan, “A
reinforcement learning-based multi-agent framework applied for solving
routing and scheduling problems,” Expert Systems with Applications,
vol. 131, pp. 148–171, 2019.

[2] P. Zhao, S. Suryanarayanan, and M. G. Simoes, “An energy management
system for building structures using a multi-agent decision-making
control methodology,” IEEE Transactions on Industry Applications,
vol. 49, no. 1, pp. 322–330, 2012.

[3] S. Jiang, J. Liang, J. Cao, and R. Liu, “An ensemble-level program-
ming model with real-time support for multi-robot systems,” in IEEE
International Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops), 2016, pp. 1–3.

[4] L. Ma, Z. Wang, and H.-K. Lam, “Event-triggered mean-square consen-
sus control for time-varying stochastic multi-agent system with sensor
saturations,” IEEE Transactions on Automatic Control, vol. 62, no. 7,
pp. 3524–3531, 2016.

[5] Y. Sahni, J. Cao, and S. Jiang, “Middleware for multi-robot systems,”
in Mission-oriented Sensor Networks and Systems: Art and Science.
Springer, 2019, pp. 633–673.

[6] J. Wang, J. Cao, M. Stojmenovic, M. Zhao, J. Chen, and S. Jiang,
“Pattern-rl: Multi-robot cooperative pattern formation via deep rein-
forcement learning,” in 18th IEEE International Conference on Machine
Learning And Applications (ICMLA), 2019, pp. 210–215.

[7] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique of
multiagent deep reinforcement learning,” Autonomous Agents and Multi-
Agent Systems, vol. 33, no. 6, pp. 750–797, 2019.

[8] P. Zhu, W. Dai, W. Yao, J. Ma, Z. Zeng, and H. Lu, “Multi-robot flocking
control based on deep reinforcement learning,” IEEE Access, vol. 8, pp.
150 397–150 406, 2020.

[9] M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti, “Primal 2: Pathfind-
ing via reinforcement and imitation multi-agent learning-lifelong,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 2666–2673, 2021.

[10] X. Lyu, Y. Xiao, B. Daley, and C. Amato, “Contrasting centralized
and decentralized critics in multi-agent reinforcement learning,” in
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS). ACM, 2021, pp. 844–852.

[11] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in International Conference on Learning Representations (ICLR)
Posters, 2016.

[12] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Advances in Neural Information Processing Systems (NeurIPS), 2017,
pp. 6379–6390.

[13] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in AAAI Conference on
Artificial Intelligence (AAAI), 2018, pp. 2974–2982.

[14] K. Sivanathan, B. Vinayagam, T. Samak, and C. Samak, “Decentralized
motion planning for multi-robot navigation using deep reinforcement
learning,” in International Conference on Intelligent Sustainable Systems
(ICISS). IEEE, 2020, pp. 709–716.

[15] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Interna-
tional Conference on Machine Learning (ICML), 2018, pp. 5872–5881.

[16] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in International Conference on Machine Learning (ICML),
2019, pp. 2961–2970.

[17] T. G. Dietterich, “The maxq method for hierarchical reinforcement
learning,” in International Conference on Machine Learning (ICML),
vol. 98. Citeseer, 1998, pp. 118–126.

[18] N. K. Jong and P. Stone, “Hierarchical model-based reinforcement learn-
ing: R-max+ maxq,” in International Conference on Machine Learning
(ICML), 2008, pp. 432–439.

[19] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” in Ad-
vances in Neural Information Processing Systems (NeurIPS). Morgan
Kaufmann, 1992, pp. 271–278.

[20] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hi-
erarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” in Advances in Neural Information Processing
Systems (NeurIPS), vol. 29, 2016, pp. 3675–3683.

[21] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq
value function decomposition,” Journal of Artificial Intelligence Re-
search, vol. 13, pp. 227–303, 2000.

[22] M. Ghavamzadeh and S. Mahadevan, “Learning to communicate and
act using hierarchical reinforcement learning,” in International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2004, pp. 1114–1121.

[23] S. Ahilan and P. Dayan, “Feudal multi-agent hierarchies for cooperative
reinforcement learning,” in Multidisciplinary Conference on Reinforce-
ment Learning and Decision Making (RLDM), 2019, p. 57.

[24] J. Chakravorty, P. N. Ward, J. Roy, M. Chevalier-Boisvert, S. Basu,
A. Lupu, and D. Precup, “Option-critic in cooperative multi-agent
systems,” in International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), 2020, pp. 1792–1794.

[25] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in Neural Information Processing Systems (NeurIPS),
2000, pp. 1057–1063.

[26] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 2,
pp. 156–172, 2008.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[28] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International Conference
on Machine Learning (ICML), 2014, pp. 387–395.

[29] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in International Conference on Learning Representations
(ICLR) Posters, 2016.

[30] S. Pateria, B. Subagdja, A.-h. Tan, and C. Quek, “Hierarchical rein-
forcement learning: A comprehensive survey,” ACM Computing Surveys,
vol. 54, no. 5, pp. 1–35, 2021.

[31] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning,” Artificial
Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[32] M. L. Littman, “Markov games as a framework for multi-agent reinforce-
ment learning,” in Machine Learning Proceedings (ICML). Elsevier,
1994, pp. 157–163.

[33] C. Qu, S. Mannor, H. Xu, Y. Qi, L. Song, and J. Xiong, “Value
propagation for decentralized networked deep multi-agent reinforce-
ment learning,” in Advances in Neural Information Processing Systems
(NeurIPS), 2019, pp. 1182–1191.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning (ICML), 2018,
pp. 1861–1870.

[35] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), vol. 3, 2004, pp. 2149–
2154.

