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Figure 1: Effective use of human motion data needs to overcome their inherent temporal bias and long-tailed distribution
(left). Our model uses a novel balanced regression technique to improve robustness and accuracy to challenging poses, de-
noise markers and solve joints using raw unstructured marker positions as input. It runs in real-time and can handle higher
noise levels (right), producing high-quality body fits even when deployed in a system using just 3 consumer-grade sensors.

Abstract

Real-time optical Motion Capture (MoCap) systems
have not benefited from the advances in modern data-driven
modeling. In this work we apply machine learning to solve
noisy unstructured marker estimates in real-time and de-
liver robust marker-based MoCap even when using sparse
affordable sensors. To achieve this we focus on a number of
challenges related to model training, namely the sourcing
of training data and their long-tailed distribution. Lever-
aging representation learning we design a technique for
imbalanced regression that requires no additional data or
labels and improves the performance of our model in rare
and challenging poses. By relying on a unified representa-
tion, we show that training such a model is not bound to
high-end MoCap training data acquisition, and exploit the
advances in marker-less MoCap to acquire the necessary
data. Finally, we take a step towards richer and afford-
able MoCap by adapting a body model-based inverse kine-
matics solution to account for measurement and inference
uncertainty, further improving performance and robustness.
Project page: moverseai.github.io/noise-tail.

1. Introduction

Human Motion Capture (MoCap) technology has ben-
efited from the last decade’s data-driven breakthroughs
mostly due to significant research on the human-centric vi-
sual understanding that focuses on unencumbered capture
using raw color inputs. The golden standard of MoCap
technology – referred to as “optical” – still uses markers
attached to the body, often through suits, for robust and ac-
curate captures, and has received little attention in the liter-
ature. These scarce works [25, 21, 20, 14, 29, 13] mainly
focus on processing (raw) archival MoCap data for direct
marker labeling [21, 20] or labeling through regression [25],
solving the skeleton’s joints [14, 13] or transforms [29],
while [13] also addressing the case of commodity sensor
captures and the noise levels associated with it.

As even high-end systems produce output with vary-
ing noise levels, be it either information- (swaps, occlu-
sions, and ghosting), or measurement-related (jitter, posi-
tional shifts), these works exploit the plain nature of raw
marker representation to add synthetic noise during train-
ing. Still, for data-driven systems, the variability of marker
placements comprises another challenge that needs to be
addressed. Some works [13, 29] address this implicitly,
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relying on the learning process, while others [14] address
this quasi-explicitly, considering them as input to the model.
Another way to overcome this involves fitting the raw data
to a parametric model after manually [25, 44, 49], or au-
tomatically [21, 20] labeling and/or annotating correspon-
dences, standardizing the underlying representation.

In this work, we explore the next logical step stem-
ming from prior work, bridging standardized representa-
tions and consumer-grade sensing, and delivering real-time
data-driven MoCap that is robust to tracking errors. Most
works [20, 14, 21, 29, 13] leverage high-end MoCap to ac-
quire training data, a process that is expensive, laborious
and difficult to scale, apart from [25] that used low-cost sen-
sor acquired data, but nonetheless, applied the model to a
high-end capturing system.

Instead, by relying on a standardized representation us-
ing a parametric human body model, we benefit from mod-
ern markerless capture technology, greatly increasing data
acquisition rates at a fraction of the costs and labor. Still,
there are certain challenges that need to be addressed, such
as the distribution of MoCap data and the input optical sens-
ing noise.

The nature of human motion, albeit high-dimensional,
instills a significant level of data redundancy in MoCap
datasets. Indeed, standing still or walking poses dominate
most captures and affect the training data distribution in two
ways. First by introducing bias in the learning process, and
second, by further skewing the long-tailed distribution. The
latter is an important problem [67] that data-driven methods
need to overcome as rare poses exist, not only due to their
reduced appearance frequency, but also due to biomechan-
ical limitations of the captured subjects in fast movements,
body balancing, and striking challenging poses. Prior work
crucially neglects this, resorting to uniform temporal down-
sampling, which only helps in reducing data samples, yet
not redundancy nor long-tailed distribution.

Another typical assumption is that the raw marker data
are relatively high quality, most common to labeling works
[20, 21] that solve using the raw positions. Even though
synthetic noise is added during training, this is mostly to
regularize training as the noisy nature of inputs is not taken
into account post-labeling. Those works that directly infer
solved estimates [13, 14, 29] solely rely on the model’s ca-
pacity to simultaneously denoise the inputs and solve for
the joints’ positions. Nonetheless, even the models’ outputs
are uncertain, a situation that will be increasingly magnified
when the raw marker input is affected by higher noise lev-
els, as common when relying on consumer-grade sensors.
This lack of solutions that increase noise robustness hinders
the adoption of more accessible sensing options.

To that end, we present techniques to address MoCap
dataset challenges as well as noisy inputs, resulting in a Mo-
Cap framework that does not necessarily require data from

high-end MoCap systems, does not require additional data
to boost long-tail performance, and does not require spe-
cialised hardware. More specifically we:

➔ Leverage representation learning to jointly oversample
and perform utility-based regression, addressing the
redundancy and long-tailed MoCap data distribution.

➔ Introduce a noise-aware body shape and pose solver
that models the measurement uncertainty region dur-
ing optimization.

➔ Demonstrate a real-time inference capable and artifact-
free MoCap solving model, running at 60Hz on a sys-
tem comprising just 3 consumer-grade sensors.

➔ Harness a human parametric representation to cold-
start data-driven optical MoCap models using data
through markerless acquisition methods.

2. Related Work
2.1. MoCap Solving

Solving the joints’ positions or transforms from marker
data is a cascade of numerous (sometimes optional) steps.
The markers need to be labeled, ghost markers need to be
removed, occluded markers should be predicted and then
an articulated body structure needs to be fit to the ob-
served marker data. Various works address errors at dif-
ferent stages of MoCap solving, with contemporary ones
relying on smoothness and bone-related (angles, offsets and
lengths) constraints [27, 66, 31, 6, 18, 53, 73]. Recent ap-
proaches started resorting to existing data for initialization
[69] or marker cleaning [5]. MoSh [44] moved one step
ahead and instead of relying on plain structures employed a
parametric human body to solve labeled marker data and es-
timate pose articulation and joint positions, even accounting
for marker layout inconsistencies and/or soft tissue motion.

Nonetheless the advent of modern – deep – data-driven
technologies have stimulated new approaches for MoCap
solving. A label-via-regression approach was employed in
[25] where a deep model was used to regress marker posi-
tions and then perform maximum assignment matching for
labeling the input. Labeling was also formulated as permu-
tation learning problem [21], albeit with constraints on the
input, which were then relaxed in [20] by adding a ghost
category. However, labeling assumes that the raw data are
of a certain quality as the raw measurements are then used
to solve for the joints’ transforms or extra processing steps
are required to denoise the input.

Consequently, end-to-end data-driven approaches that
can simultaneously denoise and solve have been a paral-
lel line of research. While end-to-end cleaning and solv-
ing is possible using solely a single feed-forward network
[29], the process naturally benefits from using two cascaded
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autoencoders [62], the first operating on marker data and
cleaning them for the subsequent joint regressor. The stag-
ing from markers to joints was also shown to be important
from a performance perspective in [13] which trained a con-
volutional network with coupled noisy and clean data cap-
tures to address noisy inputs. Recently, graph convolutional
models were employed in [14] allowing for the explicit en-
coding of marker layout and skeleton hierarchy, two cru-
cial factors of variation that were only implicitly handled in
prior end-to-end solvers.

2.2. MoCap Data

Learning to solve MoCap marker data requires supervi-
sion provided by collecting data using professional high-
end MoCap systems [29, 20, 14, 13]. SOMA [20] stan-
dardized the representation using the AMASS dataset [49]
which, in turn, relied on an extension of MoSh [44] to fit a
parametric human body model to markers. All other works
suffer from inconsistent marker layouts which is a prob-
lem that was either implicitly addressed [29, 13] or quasi-
explicitly [14] using the layouts as inputs. Marker data
can be (re-)synthesized in different layouts when higher-
level information is available (e.g. marker-to-joint offsets,
meshes) [29, 20]. Yet, it has been also shown that fitting a
synthetic hand model to depth data acquired by consumer-
grade sensors can also produce usable training data [25] for
deploying a model to a high-end marker capturing system
for data-driven MoCap. Compared to [25], we experimen-
tally demonstrate this feasibility and even extend it to noisy
inputs at run-time, something not considered in [25] as it
relied on a high-end system for live capture.

Statistical parametric models [45, 61, 58, 59, 85, 87, 4,
88] are more expressive alternatives than the skinned mesh
[83] used in [25] as, apart from realistic shape variations,
deformation corrective factors can also be employed. They
have been used to synthesize standardized training data be-
fore [82, 28, 38] but crucially rely on preceeding high-end
MoCap acquisition. We also explore this path using multi-
view markerless capture [33, 15, 92] to produce paramet-
ric model fits and synthesize marker positions as a solu-
tion to the cold-start problem of data-driven MoCap solv-
ing. Even though such data can be fit to marker data as done
in AMASS [49] and Fit3D [19], the potential of acquiring
them using less expensive capture solutions is very impor-
tant, as long as it is feasible to train high quality models.

Still, one also needs to take into account the nature of
human performance data and their collection processes. As
seen in AMASS [49] and Fit3D [19], both contain signifi-
cant redundancies and suffer from the long-tail distribution
effect. Rare poses are challenging for regression models to
predict, mainly stemming from the combined effect of the
selected estimators and stochastic optimization with mini-
batches. Various solutions have been surfacing in the litera-

ture, some tailored to the nature of the problem [67], lever-
aging a prototype classifier branch to initialize the learned
iterative refinement, and others adapting works from imbal-
anced classification to the regression domain. Traditional
approaches fall into either the re-sampling or re-weighting
category, with the former focusing on balancing the fre-
quency of samples and the latter on properly adjusting the
parameter optimization process. Re-sampling strategies in-
volve common sample under-sampling [79], rare sample
over-sampling by synthesizing new samples via interpola-
tion [81], re-sampling after perturbing with noise [9], and
hybrid approaches that simultaneously under- and over-
sample [10]. Yet interpolating high-dimensional samples
like human pose is non-trivial or even defining the rare sam-
ples that need to be re-sampled.

Utility-based [80] – or otherwise, cost-sensitive – regres-
sion assigns different weights – or relevance – to different
samples. Defining a utility function is also essential to re-
sampling strategies for regression [79]. Recent approaches
employ kernel density estimation [74], adapt evaluation
metrics as losses [72], or resort to label/feature smoothing
and binning [89]. Another family of methods that are now
explored can be categorized as contrastive, with [22] regu-
larizing training to enforce feature and output space prox-
imity. BalancedMSE [64] is also a contrastive-like objec-
tive that employs intra-batch minimum error sample classi-
fication using a cross-entropy term that corresponds to an
L2 error from a likelihood perspective. However, most ap-
proaches rely on stratified binning of the output space using
distance measures that lose significance in higher dimen-
sions. Further, binning can only be used with specific net-
works/architectures (proper feature representations for clas-
sifying bins or feature-based losses). It has not been shown
to be applicable in high-performing dense networks relying
on heatmap representations. Instead, we introduce a novel
technique that can jointly over-sample and assign higher rel-
evance to rare samples by leveraging representation learn-
ing and its synthesis and auto-encoding traits.

3. Approach
The MoCap representation we use is a parametric hu-

man body model B. Different variants exist, all data-driven,
some relying on stochastic representations [87], others on
explicit ones [45, 58], with a notable exception using an
artist-made one [88] and all typically employ linear blend
skinning [34] and pose corrective factors [45, 87] to over-
come its artifacts. Generally, we consider it as a func-
tion (v, f) = B(β,θ,T), where (v, f) are the vertices
v ∈ RV×3 and faces f ∈ NF×3 of a triangular mesh surface
that is defined by S blendshape coefficients β ∈ RS , articu-
lated by P pose parameters θ ∈ SO(3)P , and globally posi-
tioned by the transform T ∈ SE(3). Using linear functions
r expressed as matrices R it is possible to extract L differ-
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Figure 2: Overview of the balanced and real-time MoCap solving training model. Starting from an existing data corpus
(bottom left), a set of encoded tail anchor poses A are selected (Sec. 3.1 - top left) and randomly blended via S and a
generator G. This oversamples the tail, adding extra synthetic rare samples during training. A UNet model (Sec. 3.2 - bottom
middle) receives two orthographic depth map renders (xy and yz planes) of augmented and corrupted marker 3D positions
ℓ⋆in extracted from the body’s B surface, producing 2 orthogonal heatmaps which are marginally fused along the y coordinate,
producing 3D positions ℓ̃est (Sec. 3.2 - bottom right). The loss for each batch item is re-weighted by its relevance ρ, computed
after calculating the joint reconstruction error of its pose’s θ generative autoencoder reconstruction (Sec. 3.1 - top right).

ent body landmarks ℓ := r(v) = R × v, with ℓ ∈ RL×3

and R ∈ RL×V . This way, surface points ℓv can be ex-
tracted using delta (vertex picking) or barycentric (triangle
interpolation) functions and joints ℓj using weighted aver-
age functions. Since markers are extruded by the marker
radius d they correspond to ℓm = ℓv + d(R × n), with n
being the vertices’ normals.

Following prior art [20], the input data are the param-
eters of a body model that synthesize markers, which due
to their synthetic nature can be augmented, and corrupted
with artifacts and noise [29, 14, 13]. Fig. 2 illustrates our
model’s training framework which is followingly explained
starting with the technique addressing the redundancy and
long-tailed nature of the data (Sec. 3.1), the marker denois-
ing and joint solving model’s design choices (Sec. 3.2), and
finally the noise-aware body parameter solver (Sec. 3.3).

3.1. Balancing Regression

Relevance functions drive utility regression and guide
the re-/over-/inter-sample selection/generation [10, 79, 80,
81]. Instead of defining relevance or sample selection based
on an explicit formula or set of rules, we employ represen-
tation learning to learn it from the data. Autoencoding syn-
thesis models [41, 65] jointly learn a reconstruction model
as well as a generative sampler:

θ‡ = G(E(θ)), θ⋆ = G(S(·)), (1)

with varying constraints on the input θ and latent z =
E(θ), z ∈ RZ spaces. An encoder E(θ) maps input θ to

a latent space z which gets reconstructed to θ‡ by a genera-
tor G(z). Using a sampling function S to sample the latent
space it is also possible to generate novel output samples
θ⋆. We exploit the hybrid nature of such models to design
a novel imbalanced regression solution that simultaneously
over-samples the distribution at the tail and adjusts the op-
timization by re-weighting rarer samples. Our solution is
based on a deep Variational AutoEncoder (VAE) [41].

Relevance via Reconstructability. Autoencoding mod-
els are expected to reflect the bias of their training data, with
redundant/rare samples being easier/harder to properly re-
construct respectively. This bias in reconstructability can
be used to assign relevance to each sample as those more
challenging to reconstruct properly are more likely to be
tail samples. We define a relevance function ρ (see Fig. 2
re-weighting) using a reconstruction error ϵ:

ρ(θ) = 1 + exp(ϵ/σ), ϵ =

√√√√ 1

J

J∑
i=1

|| ¯ℓji −
¯
ℓji

‡
||2, (2)

with (̄·) denoting unit normalization using the input joints’
bounding box diagonal, ϵ the normalized-RMSE over the
reconstructed and original joints, and σ a scaling factor
controlling the relevance ρ. Using landmark positions we
can preserve interpretable semantics in ρ and σ as they are
unidirectionally interchangeable (linear mapping) with the
pose θ given fixed shape β. Fig. 3 shows exemplary poses
as scored by our relevance function.

Balance via Controlled Synthesis. Even though the
tail samples are not reconstructed faithfully, the generative
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Figure 3: Color-coded (turbo colormap [54] at the bottom)
autoencoding relevance ρ of various poses.

and disentangling nature of modern synthesis models shape
manifolds that map inputs to the underlying factors of data
variation, effectively mapping similar poses to nearby la-
tent codes which can be traversed across the latent space
dimensions. Based on this, we define a controlled sampling
scheme for synthesizing new tail samples (see Fig. 2 over-
sampling). Using the relevance function from Eq. (2), it
is possible to identify tail samples θ† via statistical thresh-
olding that serve as anchor latent codes A = { z† | z† =
E(θ†) }. This process adapts to the training data distribution
instead of risking a mismatch via empiric manual picking
when using a purely generative model (e.g. [78]). We then
sample using the following function:

Si,j(·) = ς(N (ai, s),N (aj , s), b), ai,j ∈R A. (3)

Specifically, we sample from a normal distribution centered
around two random anchors i and j, i ̸= j, from A using
a standard deviation s, and blend them using spherical lin-
ear interpolation [70] ς with a uniformly sampled blending
factor b ∈ U(0, B), B ∈ [0, 1]. Non-linear interpolation be-
tween samples avoids dead manifold regions as not all di-
rections lead to meaningful samples [35, 37] and increases
our samples’ plausibility [86], as illustrated in Fig. 4.

3.2. Real-time Landmark Estimation

Compared to pure labeling [20, 21] or pure solving ap-
proaches [29, 14] we design our model around simultaneous
denoising, solving and hallucination.

While some approaches use the raw marker positions as
input, we opt to leverage the maturity of structured heatmap
representations and employ a convolutional model, similar
to [25, 13] instead of relying on unstructured regression
[14, 29] using MLPs. This improves the convergence of
the model and by using multi-view fusion we can also im-
prove accuracy via robust regression. First, we augment
and corrupt the input markers ℓgt into ℓ̃

⋆

in. Then, we nor-
malize and render ℓ̃

⋆

in from two orthographic viewpoints as
in [13], but with a notable difference when processing the
model’s output; instead of predicting the 3rd dimension, we
manage to predict normalized 3D coordinates by learning to

Figure 4: Tail oversampling using latent anchors A. Ran-
dom latent vector blending using non-linear interpolation
generates diverse and realistic tail samples, compared to the
linear one which produces less diverse or unrealistic sam-
ples, or to random sampling which produces more biased
samples.

solve a single 2D task. To achieve that, we use the two ren-
dered views as input to the model, predict the corresponding
view’s heatmaps, and fuse them with a variant of marginal
heatmap regression [56, 90] (see Fig. 2 fusion). We assume
the gravity direction along the y axis and use the orthogonal
and orthographic views denoted as xy and yz which share
the y axis. To estimate the landmarks’ normalized positions
ℓ̃est, we employ center-of-mass regression [48, 75, 55, 77]
taking the average expectation [56, 90] for y from the two
views. The model is supervised by:

L = ρ(λLJS(Hgt,Hest) + Lν
w(ℓ̃gt, ℓ̃est)), (4)

where LJS is the λ−weighted Jensen-Shannon divergence
[52] between the normalized ground truth and soft-max nor-
malized predicted heatmaps, while Lν

w is the robust Welsch
penalty function [30, 17], with the support parameter ν, be-
tween the normalized landmark ground-truth ℓ̃gt and es-
timated ℓ̃est coordinates. Overall, LJS accelerates train-
ing while Lν

w facilitates higher levels of sub-pixel accuracy
since even though we reconstruct the heatmaps H using the
normalized – un-quantized – coordinates [93], discretiza-
tion artifacts can never be removed entirely.

Note that the fusion outcome ℓ̃est comprises both marker
and joint estimations, essentially estimating a complete, la-
beled, and denoized marker set, as well as solving for the
joints’ positions.

Finally, we use U-Net [68] as a regression backbone for
its runtime performance and its efficiency in high-resolution
regression.
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3.3. Noise-aware Fitting

Given the denoised and complete set of landmarks ℓ̃est ∈
RL×3, we can fit the body to these estimates and obtain the
pose θ and shape β which implies an articulated skeleton
and mesh surface. This is a non-linear optimization prob-
lem with the standard solution being MoSh [44] and its suc-
cessor MoSh++ [49]. However, MoSh(++) also solves for
the marker layout which in our case is known apriori as
the model was trained with a standard 53 marker config-
uration. Compared to prior works that assume the estimates
are of high-quality or low signal-to-noise ratios, we seek
to relax this assumption to support additional sensing op-
tions. The solution to this is robust optimization but typ-
ical approaches that involve robust kernels/estimators re-
quire confident knowledge about the underlying data dis-
tribution. This is not easily available in practice, and more-
over, it varies with different sensing options but more im-
portantly, when involving a data-driven model, it is skewed
by another challenging-to-model distribution. The Barron
loss [7] is a robust variant that also adapts to the underlying
distribution and interpolates/generalizes many known vari-
ants by adjusting their shape and scale jointly.

Following likelihood-based formulations [39, 24] that
have been presented for multi-task/robust stochastic opti-
mization, we formulate a noise-aware fitting objective that
is adaptive and optimizes the Gaussian uncertainty region
σ ∈ RL jointly with the data and prior terms:

argmin
θ∗,β∗,T∗,σ∗

Edata + Eprior. (5)

We use standard prior terms [44, 49, 61] Eprior =
λβ

∑
||β||2 + λz

∑
||z||2, and a data term formulated as:

Edata =

L∑
i

1

2σ2
i

||ℓ̃est,i − ℓ̃∗i ||2 + logσi. (6)

As in MoSh(++) we perform staged annealed optimiza-
tion but with only 2 stages as there is no marker layout op-
timization. The first stage optimizes over β∗,θ∗,T∗, while
the second stage fixes β and T and optimizes θ∗,σ∗.

4. Results
We base our implementation on the SMPL(-X) body

model B [45, 61]. Our models are implemented using
PyTorch [60], optimized with Adam [40], initialized with
Kaiming init. [26], and trained for a fixed number of epochs
and with a fixed seed, with the best parameters selected us-
ing the performance indicators presented in Sec. 5 of the
supplement. UNet receives 160× 160 depth maps and out-
puts heatmaps of the same resolution for all landmarks (53
markers and 18 joints in all cases apart from the experiments
in Tab. 3 where 56 markers and 24 joints are used for con-
sistency). The autoencoding generator is implemented as a

RMSE↓ PCK1↑ PCK3↑ PCK7↑
Optical#1 50.4 mm 36.14% 84.89% 90.90%
Optical#2 89.9 mm 41.11% 81.18% 86.24%
Optical#3 92.9 mm 39.16% 79.74% 86.08%
Markerless 59.4 mm 21.70% 79.96% 90.08%

Table 1: Markerless vs optical data tested on ACCAD.

robust variant of VPoser [61]1. To fit the body to the esti-
mated landmarks we use quasi-Newton optimization [57].
For the evaluation, the ℓ̃est are denormalized to ℓest. Fi-
nally, the Tables are color-coded with the best result being
visualized in pink and bolded, the second in green, and the
third (where it is needed) in yellow.

We use a variety of datasets that provide corresponding
parametric body B parameters from which we can extract
input (markers) and ground truth (joints and markers). We
additionally curate a custom test set comprising 4 categories
of tail samples. Note that all models’ performance is vali-
dated using unseen data comprising entire datasets, thus,
ensuring different capturing contexts. For a lack of space,
we moved all preprocessing (see supp. Sec. 3), datasets (see
supp. Sec. 4), and metrics (see supp. Sec. 5) details in the
supplement, as well as an in-the-wild supp. video.

Are high-end MoCap data necessary?

Relying on an intermediate body model B representa-
tion opens up new opportunities for data acquisition.
We seek to validate the hypothesis that training an op-
tical MoCap model does not necessarily require data
acquired by high-end optical MoCap systems. Recent
multi-view datasets [92, 15, 63] rely on markerless
capturing technology to fit parametric body models to
estimated keypoint observations. We train our model
(without the imbalanced regression adaptation) on the
combined GeneBody [15] and THuman2.0 (TH2) [92]
multi-view marker-less data (Markerless), and on 3
high-end MoCap dataset combinations from AMASS
[49], specifically, EKUT [50], HumanEva [71], MoSh
[44], and SOMA [20] (Optical #1); CNRS and Hu-
manEva (Optical #2); and, solely HumanEva (Optical
#3) to progressively reduce the diversity of the sam-
ples. We equalize the different markerless and opti-
cal training data via temporal downsampling to a total
of 9mins of MoCap. By evaluating these models us-
ing ACCAD [2] (see Tab. 7), we observe a correlation
between pose diversity and performance, and that the
markerless data result in comparable performance to
the high-end MoCap data. The latter indicates that it
is possible to acquire data for optical MoCap without
having access to any high-end system.

1Description and comparison can be found in Sec. 7.1 of the suppl.
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RMSE↓ PCK1↑ PCK3↑ PCK7↑
T

H
2 Base 21.4 mm 28.69% 92.08% 98.60%

[64] 22.0 mm 25.51% 91.90% 98.62%
Ours 19.1 mm 32.38% 93.55% 99.11%

Ta
il Base 35.8 mm 22.04% 80.27% 94.31%

[64] 32.9 mm 27.66% 81.98% 94.92%
Ours 29.3 mm 23.42% 84.70% 97.24%

Table 2: Imbalanced regression results.

RMSE↓ JPE↓ PCK1↑ PCK3↑ PCK7↑
[14] 21.1 mm 17.4 mm 38.11% 84.70% 99.17%
[13] 27.0 mm 17.5 mm 51.08% 89.39% 97.24%
Ours 20.1 mm 15.9 mm 50.14% 92.23% 98.14%

Table 3: Direct joint solving on CMU test set [11].

Addressing the bias and long-tail

To evaluate our novel imbalanced regression dis-
cussed in Sec. 3.1, we design an experiment simulat-
ing a progressive data collection process by aggregat-
ing the DFaust [8], EYES [47], EKUT, HumanEva,
MoSh, PosePrior [3], SFU [91], SOMA, SSM, and
Transitions parts from AMASS, captured with vary-
ing acquisition protocols and settings. Tab. 2 presents
the results compared to a baseline model trained with-
out re-weighting/oversampling, and the BMSE [64]
imbalanced regression loss, which is properly adapted
to consider joint distances and not scalars.

Tab. 2 (top) presents the results on TH2, a dataset
of diverse static poses that also includes challeng-
ing poses (e.g. extreme bending, inversion, etc.),
where our approach improves overall performance
compared to BMSE that presents inferior results to
the baseline model. Tab. 2 (bottom) presents the
results on our “tail” (rare) poses that include “high
kicks”, “crouching”, “crossed arms”, and “crossed
legs”. Both imbalanced regression approaches im-
prove the long-tail performance, with our oversam-
pling and re-weighting method achieving the best re-
sults almost horizontally. These results highlight that
our approach overcomes the known weakness of the
BMSE balancing the data distribution at the expense
of performance on more common poses. Ablation ex-
periments showcasing the orthogonality of oversam-
pling and re-weighting can be found in the supple-
mentary material (Sec. 7.2, Tab. 4).

Direct joint solving

We proceed with evaluating our model’s ability to
accurately estimate the skeleton joints ℓj from the

Figure 5: Fits to our regressed vs SOMA labeled markers.
Incorrect labeling results in highly erroneous fits.

input markers (i.e. joint-solving). We compare our
model against two SotA joint-solving approaches: a)
MoCap-Solver [14] that uses graph convolutions and
temporal information, and b) DeMoCap [13] that em-
ploys an HRNet [84] backbone and frontal-back fu-
sion. All models are trained and evaluated on the
CMU [11] dataset as in [14]. For MoCap-Solver we
rerun the evaluation without normalizing the markers
and the skeletons as this information should be un-
known during testing. At the same time, we employ
the joint position error (JPE) from [14] for a more fair
comparison. From the results in Tab. 3 we observe
that our model outperforms the SotA in both posi-
tional metrics (RMSE, JPE) while having the best or
the second-best accuracy for different PCK.

Explicit vs implicit labeling

Our next experiment aims to showcase the advances
of fitting a parametric body model on landmarks es-
timated with regression instead of explicitly labeling
them. We compare our model that de-noises, com-
pletes, and implicitly labels landmarks via regres-
sion with SOMA, a SotA explicitly labeling method,
by fitting the body to the markers similar to [44].
Note that in order to have a fair comparison we solve
only for markers and not for markers & joints (as
discussed in Sec. 3.2). We train our model using
the same datasets that SOMA was trained on, and
then test on TH2 and our “Tail” test set using the
clean body-extracted markers, and the same MoSh-
like fitting without uncertainty region optimization
and without considering latent markers as the marker
layout is fixed to the nominal one. Tab. 4 showcases
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RMSE↓ MAE↓ PCK1↑ PCK3↑ PCK7↑

T
H

2 [20] 29.7 mm 3.49◦ 28.33% 87.78% 96.11%
Ours (ℓm,∗) 19.1 mm 2.68◦ 26.49% 93.72% 99.26%

Ours (ℓ) 17.6 mm - 33.92% 95.13% 99.35%

Ta
il [20] 68.6 mm 6.76◦ 11.78% 60.87% 84.84%

Ours (ℓm,∗) 30.1 mm 2.89◦ 12.11% 73.13% 96.87%
Ours (ℓ) 28.3 mm - 27.31% 83.12% 95.35%

Table 4: Explicit (SOMA [20]) vs implicit (Ours) labeled
marker fits and direct landmarks’ ℓ solving comparison.

RMSE↓ MAE↓ PCK1↑ PCK3↑ PCK7↑
[44, 49] 30.1 mm 3.49◦ 11.79% 66.85% 98.34%

[7] 30.8 mm 3.10◦ 12.71% 67.06% 97.71%
Ours (ℓm) 28.9 mm 2.98◦ 14.71% 69.86% 98.18%

Table 5: Noisy landmark fits comparison on TH2.

that the fits on our model’s markers ℓm deliver bet-
ter performance, a fact that is mainly attributed to the
robustness of regression compared to the larger er-
ror margin of fitting to incorrectly labeled markers.
This is evident in all test sets but more pronounced in
the tail (rare) poses. Indicative qualitative examples
are depicted in Fig. 14. For completion (not direct
comparison with SOMA), we include the results for
solving both markers and joints (ℓ) estimated by our
model, which clearly achieves the best overall perfor-
mance.

Addressing input noise

Finally, we design an experiment for showcasing our
model’s fitting robustness to noisy marker input as
discussed in Sec. 3.3. Tab. 12 presents results when
fitting to noisy landmarks between the uncertainty
optimization method and MoSh(++) like fitting (ig-
noring the latent marker optimization as the markers
are extracted from the body’s surface and placed us-
ing the nominal layout). The TH2 dataset is used
for evaluation, with the body extracted input mark-
ers corrupted with high levels of noise (see Sec. 3.2
of the supp. for the applied types of noise) prior to
fitting the body model to them. Naturally, optimizing
the uncertainty region improves fitting performance
to noisy observations. Compared to a more complex
optimization objective that also considers the shape
of the data distribution [7] we find that the proposed
Gaussian uncertainty region optimization delivers im-
proved fits. This can be attributed to the complexity
of tuning it, as well as the increased parameter count.
Fig. 6 depicts qualitative examples with body fits in
the noisy inputs acquired with just 3 viewpoints (same
capture session as Fig. 1) and shows that jointly opti-

Figure 6: Plain vs uncertainty-based fit. Input markers
from the consumer-grade system and the model inferred
ones are colored with with green, and violet respectively.

mizing the uncertainty region allows for robustness to
input-related measurement noise, as well as model-
related information noise. Some interesting noise-
aware fitting ablations along with visualizations can
be found in Sec. 9 of the supplementary material.

Real-time performance. We validate our end-to-end
method by implementing a real-time system using sparse
consumer-grade sensors (see details in Sec. 11 of the supp.).
Leveraging the orthogonal view two-pass approach we de-
ploy an optimized ONNX [1] model where we flatten the
two passes across the batch dimension, performing only
the light-weight marginal heatmap fusion in a synchro-
nized manner. Our system achieves under 16ms inference
even on a laptop equipped with a mobile-grade RTX 2080.
Nonetheless, we understand that high-quality MoCap re-
quires greater efficiency to achieve processing rates of at
least 120Hz and we set this rate as the next goal.

5. Conclusion
MoCap data are highly imbalanced and in this work we

have presented a novel technique for imbalanced regression.
Still we believe we have but scratched the surface of ex-
ploiting representation learning for addressing the long-tail
and bias, as different architectures, samplers and relevance
functions can be explored. At the same time, this work con-
tributes to integrating machine learning in real-time optical
MoCap, while also making it more accessible. However,
there is room for improvements, as temporal information is
not integrated in our approach, and a single, fixed marker
layout is only supported.

8



References
[1] Open Neural Network Exchange (ONNX). https://

github.com/onnx/onnx. 8
[2] Advanced Computing Center for the Arts and Design. AC-

CAD MoCap Dataset. 6, 14
[3] Ijaz Akhter and Michael J Black. Pose-conditioned joint

angle limits for 3D human pose reconstruction. In Proc.
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1446–1455, 2015. 7, 14

[4] Thiemo Alldieck, Hongyi Xu, and Cristian Sminchisescu.
imGHUM: Implicit generative models of 3d human shape
and articulated pose. In Proc. IEEE/CVF International
Conference on Computer Vision (CVPR), pages 5461–5470,
2021. 3

[5] Andreas Aristidou, Daniel Cohen-Or, Jessica K Hodgins,
and Ariel Shamir. Self-similarity analysis for motion capture
cleaning. In Computer Graphics forum, volume 37, pages
297–309. Wiley Online Library, 2018. 2

[6] Andreas Aristidou and Joan Lasenby. Real-time marker pre-
diction and cor estimation in optical motion capture. The
Visual Computer, 29:7–26, 2013. 2

[7] Jonathan T Barron. A general and adaptive robust loss func-
tion. In Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4331–4339, 2019.
6, 8, 19

[8] Federica Bogo, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. Dynamic FAUST: Registering human bod-
ies in motion. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 7, 14

[9] Paula Branco, Rita P Ribeiro, and Luis Torgo. Ubl:
an r package for utility-based learning. arXiv preprint
arXiv:1604.08079, 2016. 3

[10] Paula Branco, Luı́s Torgo, and Rita P Ribeiro. SMOGN:
A pre-processing approach for imbalanced regression. In
First international workshop on learning with imbalanced
domains: Theory and applications, pages 36–50. PMLR,
2017. 3, 4

[11] Carnegie Mellon University. CMU MoCap Dataset. 7, 19
[12] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud.

Two deterministic half-quadratic regularization algorithms
for computed imaging. In Proc. IEEE International Con-
ference on Image Processing (ICIP), pages 168–172, 1994.
17

[13] Anargyros Chatzitofis, Dimitrios Zarpalas, Petros Daras, and
Stefanos Kollias. Democap: low-cost marker-based motion
capture. International Journal of Computer Vision (IJCV),
129(12):3338–3366, 2021. 1, 2, 3, 4, 5, 7, 19

[14] Kang Chen, Yupan Wang, Song-Hai Zhang, Sen-Zhe Xu,
Weidong Zhang, and Shi-Min Hu. Mocap-solver: A neural
solver for optical motion capture data. ACM Transactions on
Graphics (TOG), 40(4):1–11, 2021. 1, 2, 3, 4, 5, 7, 12, 13,
19

[15] Wei Cheng, Su Xu, Jingtan Piao, Chen Qian, Wayne Wu,
Kwan-Yee Lin, and Hongsheng Li. Generalizable neural
performer: Learning robust radiance fields for human novel
view synthesis. arXiv preprint arXiv:2204.11798, 2022. 3,
6, 14

[16] Andrey Davydov, Anastasia Remizova, Victor Constantin,
Sina Honari, Mathieu Salzmann, and Pascal Fua. Adver-
sarial parametric pose prior. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
10987–10995, 2022. 16

[17] John E Dennis Jr and Roy E Welsch. Techniques for nonlin-
ear least squares and robust regression. Communications in
Statistics-simulation and Computation, 7(4):345–359, 1978.
5

[18] Yinfu Feng, Mingming Ji, Jun Xiao, Xiaosong Yang, Jian J
Zhang, Yueting Zhuang, and Xuelong Li. Mining spatial-
temporal patterns and structural sparsity for human mo-
tion data denoising. IEEE Transactions on Cybernetics,
45(12):2693–2706, 2014. 2

[19] Mihai Fieraru, Mihai Zanfir, Silviu Cristian Pirlea, Vlad
Olaru, and Cristian Sminchisescu. Aifit: Automatic 3d
human-interpretable feedback models for fitness training. In
Proc. IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9919–9928, 2021. 3

[20] Nima Ghorbani and Michael J Black. Soma: Solving optical
marker-based mocap automatically. In Proc. IEEE/CVF In-
ternational Conference on Computer Vision (CVPR), pages
11117–11126, 2021. 1, 2, 3, 4, 5, 6, 8, 13, 19

[21] Saeed Ghorbani, Ali Etemad, and Nikolaus F Troje. Auto-
labelling of markers in optical motion capture by permuta-
tion learning. In Advances in Computer Graphics: 36th
Computer Graphics International Conference, CGI 2019,
Calgary, AB, Canada, June 17–20, 2019, Proceedings 36,
pages 167–178. Springer, 2019. 1, 2, 5

[22] Yu Gong, Greg Mori, and Frederick Tung. RankSim: Rank-
ing similarity regularization for deep imbalanced regression.
arXiv preprint arXiv:2205.15236, 2022. 3

[23] Chuan Guo, Xinxin Zuo, Sen Wang, Shihao Zou, Qingyao
Sun, Annan Deng, Minglun Gong, and Li Cheng. Ac-
tion2Motion: Conditioned generation of 3D human mo-
tions. In Proc. ACM International Conference on Multimedia
(MM), page 2021–2029, 2020. 15

[24] Mark Hamilton, Evan Shelhamer, and William T Freeman. It
is likely that your loss should be a likelihood. arXiv preprint
arXiv:2007.06059, 2020. 6

[25] Shangchen Han, Beibei Liu, Robert Wang, Yuting Ye,
Christopher D Twigg, and Kenrick Kin. Online optical
marker-based hand tracking with deep labels. ACM Trans-
actions on Graphics (TOG), 37(4):1–10, 2018. 1, 2, 3, 5

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on ImageNET classification. In Proc. IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 1026–
1034, 2015. 6

[27] Lorna Herda, Pascal Fua, Ralf Plänkers, Ronan Boulic, and
Daniel Thalmann. Using skeleton-based tracking to increase
the reliability of optical motion capture. Human movement
science, 20(3):313–341, 2001. 2

[28] David T Hoffmann, Dimitrios Tzionas, Michael J Black, and
Siyu Tang. Learning to train with synthetic humans. In Pat-
tern Recognition: 41st DAGM German Conference, DAGM
GCPR 2019, Dortmund, Germany, September 10–13, 2019,
Proceedings 41, pages 609–623. Springer, 2019. 3

9

https://github.com/onnx/onnx
https://github.com/onnx/onnx


[29] Daniel Holden. Robust solving of optical motion capture
data by denoising. ACM Transactions on Graphics (TOG),
37(4):1–12, 2018. 1, 2, 3, 4, 5, 13

[30] Paul W Holland and Roy E Welsch. Robust regression us-
ing iteratively reweighted least-squares. Communications in
Statistics-theory and Methods, 6(9):813–827, 1977. 5

[31] Alexander Hornung, Sandip Sar-Dessai, and Leif Kobbelt.
Self-calibrating optical motion tracking for articulated bod-
ies. In Proc. IEEE Virtual Reality (IEEEVR), pages 75–82.
IEEE, 2005. 2

[32] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. pmlr, 2015. 13, 16

[33] Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury
Malkov. Learnable triangulation of human pose. In Proc.
ICCV, pages 7717–7726, 2019. 3

[34] Alec Jacobson, Zhigang Deng, Ladislav Kavan, and John P
Lewis. Skinning: Real-time shape deformation (full text not
available). In ACM SIGGRAPH 2014 Courses, pages 1–1.
2014. 3

[35] Ali Jahanian, Lucy Chai, and Phillip Isola. On the ”steer-
ability” of generative adversarial networks. In International
Conference on Learning Representations (ICLR), 2020. 5

[36] Hanbyul Joo, Tomas Simon, and Yaser Sheikh. Total cap-
ture: A 3d deformation model for tracking faces, hands, and
bodies. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 8320–8329, 2018. 14

[37] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proc. IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4401–4410, 2019. 5

[38] Manuel Kaufmann, Yi Zhao, Chengcheng Tang, Lingling
Tao, Christopher Twigg, Jie Song, Robert Wang, and Ot-
mar Hilliges. Em-pose: 3d human pose estimation from
sparse electromagnetic trackers. In Proc. of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
11510–11520, 2021. 3

[39] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics. In Proc. IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7482–
7491, 2018. 6

[40] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[41] Diederik P. Kingma and Max Welling. Auto-Encoding Varia-
tional Bayes. In Proc. International Conference on Learning
Representations, ICLR, 2014. 4

[42] Dieederik P. Kingma and Max Welling. Auto-encoding vari-
ational Bayes. In International Conference on Learning Rep-
resentations (ICLR), 2015. 16

[43] Christophe Leys, Christophe Ley, Olivier Klein, Philippe
Bernard, and Laurent Licata. Detecting outliers: Do not use
standard deviation around the mean, use absolute deviation
around the median. Journal of experimental social psychol-
ogy, 49(4):764–766, 2013. 20

[44] Matthew Loper, Naureen Mahmood, and Michael J Black.
Mosh: motion and shape capture from sparse markers. ACM
Trans. Graph., 33(6):220–1, 2014. 2, 3, 6, 7, 8, 19, 22

[45] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. SMPL: A skinned multi-
person linear model. ACM transactions on graphics (TOG),
34(6):1–16, 2015. 3, 6

[46] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Proc. International Conference on Learn-
ing Representations, (ICLR), 2019. 17

[47] EYES JAPAN Co. Ltd. Eyes. http://mocapdata.com, 2018.
7

[48] Diogo C Luvizon, Hedi Tabia, and David Picard. Human
pose regression by combining indirect part detection and
contextual information. Computers & Graphics, 85:15–22,
2019. 5

[49] Naureen Mahmood, Nima Ghorbani, Nikolaus F Troje, Ger-
ard Pons-Moll, and Michael J Black. Amass: Archive of
motion capture as surface shapes. In Proc. IEEE/CVF in-
ternational conference on computer vision (CVPR), pages
5442–5451, 2019. 2, 3, 6, 8, 14, 19
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A. Intro
In this supplementary material we provide additional

quantitative and qualitative results to accompany the main
paper. In addition, a set of ablation studies are presented to
offer extra insights into the inner workings of the methods
and techniques presented in the main paper. Finally, due to
the lack of space in the main paper, we provide more details
with respect to the implementation of the proposed mod-
els, the experimental protocol with respect to the datasets
and metrics that were used, visualizations of related data
points, and details regarding the experiments comparing to
the state-of-the-art. It should be noted that no additional
training or optimization was performed in any of these ex-
periments with respect to that presented in the main paper.

Along with this supplementary material, we share a short
video that showcases the real-time performance of our Mo-
Cap system in a challenging input context, captured with
only 3 Microsoft Kinect for Azure sensors.

Appendix B provides the implementation details of the
UNet model used to predict landmarks ℓest. Appendix C
clarifies the augmentation and corruptions used when train-
ing and when experimenting with noisy fits. Appendix D
presents the different datasets that were used for the main
paper’s experiments and the accompanying experiments
found in this supplementary material. Appendix E defines
the metrics used to evaluate performance and the perfor-
mance indicators used to select the best performing models.

Following the experimental results structure of the main
paper, the remaining sections supplement the already pre-
sented analysis with additional experiments, results and in-
sights. Appendix F provides visualizations comparing the
distribution of the markerless and marker-based data used
to assess the efficacy of the former as a training corpus.
Complementary experiments are also presented to support
the main paper claims. Appendix G provides further anal-
ysis with respect to the inner workings of the balanced re-
gression approach presented in the main paper, specifically,
the VAE model’s details (Appendix G.1), a relevance func-
tion ablation (Appendix G.2), an investigation of the orthog-
onality between the different techniques (Appendix G.3),
and an ablation of the different sampling components (Ap-
pendix G.4). Appendix H presents an extra experiment sup-
plementing the solving comparison experiment conducted
in the main paper. Appendix I offers extra insights with re-
spect to the landmarks regressed by our model, by ablating
the fitting process across various noise levels and input land-
mark types. Finally, Appendix J includes additional quali-
tative results, while Appendix K describes the implementa-
tion details related to the real-time MoCap system used to
capture and provide in-the-wild results.

B. MoCap Solving Model
Our proposed model is designed to work with any

method capable of inferring markers and joints from an
input markers’ point cloud. However, for the presented
study, we utilized a light-weight convolutional model that
can preserve high resolution outputs, exploiting the quasi-
autoencoding nature of regressing pre-defined markers
(and, when applicable, joints) from unstructured marker po-
sition inputs.

Specifically, a modified version of the UNet [68] archi-
tecture was used to simultaneously predict 53 markers and
18 joints landmarks. It should be noted that since MoCap-
Solver [14] was trained with 56 markers and 24 joints on the
CMU data, for the experiment comparing direct solving per-
formance, our model was adapted to the same outputs. The
model consists of 5 convolutional blocks, with each block

12

https://youtu.be/Eu8j8fGeO_o
https://youtu.be/Eu8j8fGeO_o


consisting of 32, 64, 128, 256, and 512 features, respec-
tively. Each encoder block comprises 2 convolution layers,
with a kernel size of 3, a stride and padding of 1, followed
by ReLU activations and batch normalization [32]. When
downscaling anti-aliased max pooling [94] is used, while
upscaling uses bilinear interpolation. The bottleneck of the
model consists of a single convolution block, utilizing the
same parameters as the encoder blocks. The decoder in-
cludes the same convolution blocks, and the output of each
block is concatenated with the corresponding encoder’s out-
put. Finally, the prediction layer consists of a convolution
block with a kernel size of 1, a stride of 1, and padding of 0,
activated by the ReLU function. Training runs for 30 epochs
with a batch size of 16, a learning rate of 2× 10−4 accom-
panied by a step-wise schedule reducing it to 95% every 4
epochs.

As mentioned in the main paper the model is supervised
by the following loss summed over all landmarks (batch no-
tation is omitted for brevity):

L =

L∑
i=1

(λJSLJS(Hgt,Hest) + λwLν
w(ℓ̃gt, ℓ̃est)). (7)

LJS is the Jensen-Shannon divergence defined in Eq. (8):

LJS(Hgt,Hest) =
1

2
DKL(Hgt,M) +

1

2
DKL(Hest,M),

(8)
where DKL is the Kullback-Leibler divergence, M =
1
2 (Hgt +Hest) is the average of Hgt and Hest.

Lν
w is the robust Welsch penalty function, applied to the

normalized ℓ coordinates, defined by Eq. (9), with ν > 0
being a user-specified parameter set to 0.05:

Lν
w(ℓ̃gt, ℓ̃est) = 1− exp (−|ℓ̃gt − ℓ̃est|2

2v2
) (9)

C. Pre-processing
We use a pre-processing pipeline to augment and then

corrupt the input training data. Augmentations exploit the
parametric nature of the data to increase their variance.
Similar to [29, 20, 14], corruption exploits the simple and
synthetic nature of motion capture (MoCap) to closely ap-
proximate real-world MoCap settings with noisy inputs and
marker-/viewpoint- related artifacts like ghost markers, oc-
cluded markers, and varying levels of measurement noise.

C.1. Augmentations

First, we perform an augmentation to account for subject
body shape variations. A two-step process is employed that
starts with a controlled shifting of the shape coefficients,
with random values u sampled from a uniform distribution
u ∼ U(−1, 1):

β′ = β + u (10)

Then, a small random subset of the shape coefficients are
randomly sampled from a normal distribution:

β′
i =

{
βi, if i /∈ S

N (0, 1), if i ∈ S
(11)

where S is a set of n′ indices sampled uniformly from the
set of indices, with our experiments randomly shifting be-
tween [0, 2] coefficients.

Then, using the rotation symmetry of the body, we ran-
domly perform a handedness flipping augmentation by flip-
ping the parameters of the left/right arms/legs.

C.2. Corruption

We simulate marker occlusions with the following pro-
cess. Let p = (p1, p2, . . . , pn) be the vector of marker
positions, where pi is the position of the i-th marker. We
randomly select a subset of markers for occlusion by deter-
mining the number of markers to be occluded, denoted as k.
We draw a random sample from a discrete uniform distribu-
tion to determine k, k ∼ U(m,n′), m ≤ k ≤ n′ ≤ n,
where U(m,n′) is the uniform distribution over the range
of integers {m1,m2, . . . , n

′}, and n′ defines the maximum
number of markers to be occluded. Next, we draw an-
other random sample from a uniform distribution to deter-
mine the indices of the markers to be occluded, i.e. m =
(m1,m2, . . . ,mk) ∼ U(1, n), k ≤ n where U(1, n)
is the uniform distribution over the markers’ set of indices.
The resulting vector m contains the indices of the markers
to be occluded and is used to exclude these markers from p.

As a next step, the ghosting of markers is emulated by
extracting samples from a Gaussian distribution with mean
and standard deviation values equivalent to the original
marker positions, following [20]. In more detail, we first
compute the median position for each spatial dimension of
the marker positions, µj , (i.e. the median value for the j-th
spatial dimension of the marker positions), and the sample
covariance matrix Σ. We then draw samples g ∼ G(µ,Σ),
which are appended to the original markers’ positions p.

Finally, to simulate marker noise, we randomly select a
set of markers to shift and generate a random offset for each
selected marker. Particularly, with N being the number of
markers to shift, and M being the maximum allowable shift
distance, we randomly sample from a uniform distribution
to determine the indices of the markers to which the noise
will be added I ∼ U(1, N). For each index ij ∈ I , we
generate a random offset vector o ∼ U(−M,M), and add
this offset to the original marker position to obtain the noisy
position p′ = p+ o.

The proposed prepossessing pipeline is randomly ap-
plied in each epoch, with specific probabilities assigned to
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Figure 7: A set of random samples from the THuman2.0 [92] dataset. The darker meshes indicate more challenging poses.

Figure 8: Exemplar rare and complex poses from our cus-
tom tail dataset.

each of the augmentation and corruption functions. In more
detail, we apply the aforementioned augmentation functions
with 0.5 probability each, meaning that they will be applied
to half of the instances of input data. Similarly, we apply the
ghosting and occlusion corruption functions with 0.7 prob-
ability, while the shifting one with 0.8.

D. Datasets
D.1. Marker-based

For our experiments we used a variety of MoCap datasets
unified within AMASS [49] to body model parameters.
The datasets we use for our experiments include the CMU
dataset, which is one of the largest motion capture datasets
containing a wide variety of motion types, such as walk-
ing, running, dancing, and more. We also use the Transi-
tions dataset, which focuses on the transitions between dif-
ferent activities, such as sitting down and standing up, or
picking up and carrying an object. Additionally, we use
the PosePrior dataset developed by [3] to train a statistical
model of human pose, the HumanEva dataset [71], which
includes various activities performed by multiple subjects,
and the ACCAD dataset [2], consisting of more action mo-

tion types such as dancing, martial arts, and sports. More-
over, we use the TotalCapture dataset [36], which includes
data from 5 different subjects performing 37 motion actions,
the DFaust dataset [8] that includes motion data from 10
subjects performing 129 different types of motion, and the
CNRS dataset consisting of data from 2 subjects performing
79 different motions.

D.2. Markerless

Apart from these, which were all acquired with high-
end marker-based optical MoCap systems, we additionally
use a number of datasets that were collected with marker-
less methods, using body models and fitting them to obser-
vations. These include the THuman 2.0 [92] dataset, in-
cluding 5 subjects in extreme poses, the GeneBody dataset
[15] consisting of 50 subjects performing various short du-
ration activities, and the ZJU-MoCap dataset [63] that in-
cludes data from 10 sequences of human performances.
Fig. 7 depicts an indicative subset from the THuman 2.0
dataset, which consists of both common and challenging-
to-understand poses (shown with darker meshes).

D.3. Long-Tail

We have manually curated a small test set comprising
274 challenging poses, including extreme and rare ones,
and was used as our “Tail” dataset for assessing long-tail
regression performance. These were coarsely grouped into
4 categories, “crossed legs”, “crossed arms”, “kicks” and
“crouching”. Indicative examples are shown in Fig. 8.

D.4. Qualitative Distribution

An overview of these datasets in terms of some qualita-
tive variance indicators is presented in Tab. 6. These were
used to select by approximately equalizing the datasets used
in the markerless vs optical data study.
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Subjects Activities Minutes
ACCAD 20 14 26.74
CMU 111 25 543.49
CNRS 2 2 9.91
DFaust 10 12 5.72
HumanEva 3 5 8.47
PosePrior 3 10 20.82
TotalCapture 5 12 41.10
Transitions 1 4 15.10
THuman 2.0 10 - -
Genebody 50 50 8.33
ZJUMoCap 24 10 14.40

Table 6: Datasets overview.

E. Performance Metrics & Indicators
E.1. MoCap Metrics

For evaluating our model’s performance we resort to
common metrics used in previous works as the root mean
squared error (RMSE), defined below:

RMSE =
1

N

N∑
i=1

√√√√ 1

J

J∑
j=1

||ℓ(i,j)gt − ℓ
(i,j)
est ||2, (12)

with N being the number of samples in the dataset, and J
is the number of joints in each sample. We follow the same
notation for all the equations below.

Apart from RMSE, we use a PCK-like metric (i.e. dis-
tance accuracy metric), which measures the percentage of
predicted keypoints that fall within a certain distance thresh-
old τ from their ground-truth positions:

PCK =
1

N

N∑
i=1

1

J

J∑
j=1

[||ℓ(i,j)gt − ℓ
(i,j)
est ||2 < τ ]. (13)

In our experiments, we used three variants of PCK,
namely PCK1, PCK3 and PCK7 with τ set to 10mm,
30mm, and 70mm accordingly.

Finally, we use an angular metric defined in Eq. (14):

MAE =
1

N

N∑
i=1

1

J

J∑
j=1

d(R
(i,j)
gt , R

(i,j)
est ), (14)

where d is the geodesic distance between each joint’s rota-
tion matrix Ri

gt and Ri
est.

E.2. Synthesis Metrics

Inspired by C. Guo et al. [23], we use two metrics to
choose our best model for tail-pose generation and regres-

sion regularization, measuring quality and evaluating diver-
sity. Regarding quality, we extract features from 1052 gen-
erated and real samples and compute the Fréchet Inception
Distance (FID) between the feature distribution of the gen-
erated pose and poses from the THuman 2.0 test set that
serve as the “real” poses. To evaluate the diverse genera-
tion capability of our generative model, we generate and re-
encode 1052 samples which are then split into two subsets
of the same size N = 526. The diversity (DIV) is defined
as the Euclidean norm of the distance between these two
subsets as follows:

DIV =
1

N

N∑
i=1

∥vi − ṽi∥ , (15)

where v and ṽ correspond to re-encoded samples as vectors
from a different subset.

E.3. Performance Indicators

The plethora of metrics makes it harder to find the best-
performing model. To that end, we introduce a set of perfor-
mance indicators, which essentially combines an error and
an accuracy metric. Specifically, for the MoCap metrics we
introduce rmse3 indicator, defined in Eq. (16):

rmse3 = (1− PCK3)×RMSE, (16)

Regarding the generative model performance, we choose
our best-performing model using the indicator defined as:

synthesis =
FID

DIV
. (17)

F. Training Data Sourcing
Tab. 7 presents a more extensive set of experiments for

the markerless vs marker-based training data study where
the models are also evaluated on our “Tail” test set. Extra
experiments are also included, namely another variant of
the markerless model that was additionally trained with the
ZJU-MoCap data apart from GeneBody and THuman2.0
(i.e. Markerless#2), and another variant of the optical data,
Optical#4 trained only on the CNRS dataset.

As in the main paper, we observe that even though the
best performance is offered by an optical MoCap dataset
combination, the markerless alternative is close in perfor-
mance and surpasses some marker-based dataset combina-
tions. Essentially, the quality of the data acquisition method
does not seem to play a big part in the performance of the
model, but instead the variance of the samples seems to be
the largest performance denominator.

To supplement this point, Fig. 9 offers comparative visu-
alizations of the encoded pose parameters θ vectors’ distri-
bution for each dataset combination.
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Figure 9: UMAP projections [51] on datasets collected using high-end MoCap systems and others collected from a multiview
markerless fitting process. The first row uses the markerless#1 dataset and the second row uses the markerless#2 dataset. It
can be seen that the variability of data is independent of the type of acquisition.

RMSE↓ PCK1↑ PCK3↑ PCK7↑

A
C

C
A

D

Optical#1 50.40 mm 36.14% 84.89% 90.90%
Optical#2 89.99 mm 41.11% 81.18% 86.24%
Optical#3 92.90 mm 39.16% 79.74% 86.08%
Optical#4 118.2 mm 26.21% 64.70% 79.64%

Markerless#1 59.40 mm 21.70% 79.96% 90.08%
Markerless#2 57.40 mm 24.75% 80.86% 90.40%

Ta
il#

1

Optical#1 23.80 mm 17.04% 86.67% 99.26%
Optical#2 37.50 mm 19.26% 76.30% 95.56%
Optical#3 41.30 mm 17.04% 70.74% 94.81%
Optical#4 116.8 mm 5.55% 44.07% 70.74%

Markerless#1 33.50 mm 12.59% 82.96% 98.52%
Markerless#2 28.85 mm 20.00% 87.77% 98.14%

Ta
il#

2

Optical#1 26.70 mm 15.26% 84.33% 97.55%
Optical#2 57.70 mm 13.89% 71.27% 89.84%
Optical#3 72.80 mm 14.64% 67.16% 86.48
Optical#4 123.8 mm 5.16% 44.63% 71.54%

Markerless#1 29.50 mm 13.43% 82.34% 97.68%
Markerless#2 33.70 mm 18.19% 82.11% 95.11%

Ta
il#

3

Optical#1 71.40 mm 13.89 57.78% 82.22%
Optical#2 300.0 mm 3.33 10.56% 19.44%
Optical#3 300.1 mm 0.5% 10.56% 17.22%
Optical#4 309.1 mm 0.5% 6.67% 12.78%

Markerless#1 222.0 mm 2.22% 22.78% 40.56%
Markerless#2 248.0 mm 2.22% 16.11 % 30.33%

Ta
il#

4

Optical#1 68.30 mm 11.30% 59.90% 88.36%
Optical#2 280.2 mm 7.00% 37.87% 60.58%
Optical#3 343.5 mm 6.43% 36.91% 60.77%
Optical#4 374.4 mm 4.07% 20.25% 36.33%

Markerless#1 76.60 mm 10.68% 58.65% 86.71%
Markerless#2 77.56 mm 13.10% 62.90% 89.23%

Table 7: Markerless vs optical data tested on ACCAD and
tail test sets. Models trained on data sourced from a multi-
view markerless fitting process perform on par with models
trained on high-quality Optical data.

G. Balancing Regression
G.1. Robust VPoser

G. Pavlakos et al. [61] were the first to leverage a Varia-
tional Autoencoder (VAE) [42] instead of Gaussian mixture
models to learn a pose prior by folding axis-angle embed-
dings around a Gaussian distribution. Apart from VAEs,
pose - and by extension, motion-priors have been learned
using other generative models [16] or by mapping the pose
space on a surface-like manifold [78]. However, in this pa-
per, we choose to focus on autoencoding generative mod-
els, as the trained model operates as a rare pose generator,
as well as to reconstruct poses and providing input to the
relevance function of our balanced regression model (see
Section 3.1 of the main paper).

As noted in the works above, VAEs have certain draw-
backs; due to the lack of other constraints. The learned
prior tends to be mean-centered while the manifold “folded”
around the Gaussian includes several “dead” regions that
could lead to non-plausible data generation. These draw-
backs would make a fitting process hard as the prior would
serve as a regularizer. However, we choose to focus on the
controllable generation of tail samples, as well as the use
of the VAE for re-weighting each sample’s contribution to
the batch loss during training. That is, we focus our ex-
periments on comparing our VPoser variant termed Robust
VPoser (RVPoser) with the model from [61] for tail-sample
generation.

Our RVPoser follows a similar structure to the VPoser’s,
with 3 main differences: a) we do not use batch normal-
ization [32] prior to the first fully-connected layer of the
encoder, b) we do not use any dropout layers in the decoder,
and c) we do not use any activation function after the last
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Synthesis Fitting
FID↑ DIV↑ MAE↓ PCK1↑ PCK3↑ PCK 7↑

VPoser [61] 7.94 12.11 2.68◦ 28.83% 89.04% 99.03%
RVPoser (Ours) 8.57 14.24 1.51◦ 53.72% 94.57% 98.15%

Table 8: Quantitative comparison between the VPoser
model from [61] and our robust variant (RVPoser) in syn-
thesis and fitting on the THuman 2.0 test set.

fully-connected of the decoder. We train RVPoser using the
CMU, Transitions, and PosePrior datasets, while our total
training loss can be decomposed into the following losses:

LV AE = λ1LKL + λ2Lrec + λ3Lorth (18)

LKL = Ψ(DKL(qθ(z|R)||N (0, I))) (19)

Lrec = ∥v − v̂∥2 , (20)

Lorth =
Trace(RT R̂)− 1

2
, (21)

where z ∈ R32 is the 32-dim latent code, R ∈ SO(3)P

is the rotation matrix for each pose parameter P , while
R̂ is the rotation matrix output of the decoder. v, v̂ cor-
respond to the predicted and ground truth vertices, indi-
cating that the reconstruction term incorporates both an-
gular and 3D joint-position errors. Instead of using solely
the Kullback-Leibler (KL) divergence, we regularize it (as
in [95]) using the Charbonnier penalty function Ψ, with
Ψ(x) =

√
1 + x2− 1 [12] to prevent posterior collapse and

learn a more disentangled manifold. Eqs. (19) and (20) fol-
low the VAE training scheme - e.g., trading of reconstruc-
tion quality with learning a Gaussian-like manifold, while
Eqs. (20) and (21) force the model to construct a valid rota-
tion latent space. We complement RVPoser training with
the weight-decaying version of Adam optimization [46],
which penalizes large weights and prevents over-fitting.

We choose to evaluate the 2 models on two different
settings: a) compare the models in the task of generating
realistic and diverse poses, and b) compare the models as
priors for the task of fitting human body parameters. We
evaluate both tasks on unseen data from the THuman 2.0
dataset which comprises diverse samples with challenging
poses. From the results presented in Tab. 8, we observe
that RVPoser is able to generate more diverse and faithful
poses, while also outperforming VPoser in the fitting task,
improving the overall angular error and the pose prediction
accuracy (except for PCK7). Apart from the quantitative
results, in Fig. 10 we show the UMAP projection [51] of
1200 ground truth pose vectors superposed on 1200 gen-
erated ones using VPoser and RVPoser. Based on the de-
picted result, the samples generated with our VAE variant
cover significantly more space spanned by the ground truth
embeddings. That is, our prior can generate more diverse -
but still plausible - samples compared to VPoser.

G.2. Relevance Function

As stated in the main paper, bias in sample recon-
structability can be used to assign relevance to each sample
as more challenging (tail) poses are hard to reconstruct ac-
curately. As relevance ρ, we define the weight used to scale
the contribution of each pose to the batch-wide loss. That
is, we need to increase the contribution of the tail poses to
the batch loss for every iteration to mitigate the regression
bias due to the high number of mean-like poses in our train-
ing set. We have experimented with 2 different relevance
functions, omitting linear weighting as our goal is to boost
the contribution of the poses with higher reconstruction er-
ror non-linearly. First, we experimented with the Sigmoid
function, focusing on the part that corresponds to the posi-
tive input values:

ρ(θ) = 1 + 2
( ex

ex + 1
− 0.5

)
, x =

ϵ

σ
, (22)

where ϵ is the normalized-RMSE, σ is a scaling factor, and
θ is the given pose parameters as defined in Eq. (2) of the
main paper. As shown in Fig. 11, the Sigmoid-based ρ - al-
though non-linear - leads to similar error values (colorized)
and thus fails to serve our cause in significantly boosting the
contribution of the least faithfully reconstructed samples.
To achieve this, we experiment with a relevance function
that scales the error contribution exponentially:

ρ(θ) = e
ϵ/σ. (23)

Note that since the exponential function does not have an
upper limit, we clamp the result at ρ(θ) = 3, so the effec-
tive range of the weighting function is [1, 3], while for the
Sigmoid-based relevance function ρ ∈ [1, 2] range. From
the exemplar samples depicted in Fig. 12, it can be observed
that the exponential relevance function achieves our origi-
nal goal as it seems to assign a significantly larger weight
to higher reconstruction error (colorized). Note that the per-
formance of each relevance function for different σ values
is also depicted in Figs. 11 and 12.

Figure 10: UMAP projections [51] of “real” ground truth
samples and of “fake” ones generated by our RVPoser (left)
and the VPoser [61] (right) models, respectively.
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Figure 11: Color-coded (turbo colormap [54] at the bot-
tom) autoencoding ρ of various poses and σ values, using
the Sigmoid-based relevance function.

G.3. Orthogonality Investigation

Tab. 2 of the main paper presents the performance of our
model against the baseline model (no oversampling or rel-
evance function used) and the same model trained with the
Balanced Mean Square Error (BMSE) from [64]. Here, we
present further details that help us explore the orthogonality
of 2 of the contributions of our paper, namely the oversam-
pling and re-weighting through reconstructability methods,
as well as the performance of our best model when trained
using the BMSE regression loss.

As shown in Tab. 9, the ‘Ours’ model performs bet-
ter than the ‘Sampling’ (i.e. oversampling synthetic data)
and ‘Relevance’ (i.e. re-weighting the loss) models for both
THuman 2.0 and “tail” test sets. This indicates that there
is an underlying synergy between oversampling and re-
weighting that is horizontal for simple, challenging, and
rare poses. We also observe that both variants improve the
baseline, while the oversampling variant seems to perform

slightly better than the re-weighting one. This result is in
line with the feedback from the prior work in unbalanced
regression. For the rest of the orthogonality experiments,
we choose the ‘Ours’ model as our best-performing one.

Obviously, we have just scratched the surface of the gen-
eral picture of balancing a regression task and we will keep
investigating the complex relationships between different
methods that attempt to “unskew” unbalanced distributions.

Figure 12: Color-coded (turbo colormap [54] at the bot-
tom) autoencoding ρ of various poses and σ values, using
the Exponential-based relevance function.

RMSE↓ PCK1↑ PCK3↑ PCK7↑
Base 21.4 mm 28.69% 92.08% 98.60%
Sampling 20.4 mm 29.69% 92.78% 98.80%
Relevance 20.6 mm 30.99% 92.79% 98.61%
Ours 19.1 mm 32.38% 93.55% 99.11%
[64] 22.2 mm 25.51% 91.90% 98.62%

Base 35.8 mm 22.04% 80.27% 94.31%
Sampling 31.0 mm 26.34% 83.90% 95.76%
Relevance 33.9 mm 23.61% 81.00% 95.21%
Ours 29.3 mm 23.42% 84.70% 97.24%
[64] 32.9 mm 27.66% 81.98% 94.92%

Table 9: Imbalanced regression ablation. ‘Sampling’ and
‘Relevance’ variants are combined in ‘Ours’ model, while
the results of [64] are presented for reference.
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RMSE↓ JPE↓ PCK1↑ PCK3↑ PCK7↑
[14] 18.20 mm 14.80 mm 37.19% 85.38% 99.37%
[13] 22.27 mm 17.08 mm 49.86% 88.98% 97.26%
Ours 17.90 mm 14.20 mm 48.93% 92.55% 98.84%

Table 11: Direct joint solving on CMU [11] test set with a
different seed (SEED200 from [14]) than in the main paper.

nd nm RMSE↓ MAE↓ PCK1↑ PCK3↑ PCK7↑
[44, 49]

✓ ✗

30.10 mm 3.49◦ 11.79% 66.85% 98.34%
[7] 30.80 mm 3.10◦ 12.71% 67.06% 97.71%

Ours (ℓm) 28.90 mm 2.98◦ 14.71% 69.86% 98.18%
Ours (ℓm|ℓj) 23.40 mm 2.29◦ 19.66% 81.06% 99.11%

[44, 49]

✗ ✓

20.60 mm 1.93◦ 28.71% 89.03% 99.05%
[7] 21.71 mm 1.91◦ 36.38% 87.75% 98.22%

Ours (ℓm) 18.70 mm 1.85◦ 41.99% 90.95% 98.81%
Ours (ℓm|ℓj) 18.50 mm 1.49◦ 42.18% 91.44% 98.56%

[44, 49]

✓ ✓

23.80 mm 2.03◦ 24.26% 85.63% 98.22%
[7] 24.87 mm 1.94◦ 31.99% 84.05% 97.00%

Ours (ℓm) 22.40 mm 1.79◦ 36.01% 87.14% 97.53%
Ours (ℓm|ℓj) 21.90 mm 1.52◦ 36.67% 88.09% 97.69%

Table 12: Noisy landmark fitting on THuman 2.0.

RMSE↓ PCK1↑ PCK3↑ PCK7↑
Base 21.4 mm 28.69% 92.08% 98.60%

Random 21.5 mm 31.60% 92.49% 98.60%
LERP 21.6 mm 29.48% 92.68% 98.58%T

H
2

SLERP 20.4 mm 29.69% 92.78% 98.80%

Base 35.8 mm 22.04% 80.27% 94.31%

Random 35.8 mm 23.00% 81.81% 95.70%
LERP 33.5 mm 25.02% 79.82% 95.22%Ta

il

SLERP 31.0 mm 26.34% 83.90% 95.76%

Table 10: Alternative sampling methods ablation. ‘SLERP’
variant corresponds to the ‘Sampling’ variant in Tab. 9,
while ‘Base’ corresponds to the baseline model (i.e. no syn-
thetic samples).

G.4. Sampling Ablation

Our ‘Sampling’ and ‘Ours’ models consist of a specific
strategy for sampling from a learned latent space in order
to generate diverse, rare, and plausible poses. As stated in
Section 3.1 of the main paper, this strategy is based on non-
linear sampling between 2 or more anchor samples. That
is, we choose samples using statistical thresholding and use
them as anchor samples, avoiding using them in any train-
ing or test set. Our sampling strategy is to randomly sample
a latent vector and add it to one of the anchor vectors. This
helps us achieve extra diversity versus (re)using the anchor
vector as is. The next step is to pick a latent sample from the
intermediate space between 2 anchor neighborhoods. For
this purpose, we choose geometric spherical linear interpo-
lation (SLERP) with alternative blending factors in the [0, 1]

range and compare it with its linear variant ‘LERP’ and the
simple random (i.e. no anchors used) sampling (‘Random’).

Tab. 10 presents the performance of our ‘Sampling’
model using each of the 3 different sampling methods on
the THuman 2.0 and custom tail test sets, as well as the per-
formance of the ‘Baseline’ for reference. From the results,
we can verify that the geometric SLERP helps allows for a
safer traversing of the hypersphere-shaped manifold avoid-
ing the dead regions between anchors. This conclusion is
supported especially by the performance of SLERP on the
“Tail” set, where the sampling neighborhood can be truly
“away” from the mean of the manifold. Another interesting
feedback from the presented results is the performance drop
of the ‘Random’ variant when tested on the tail set com-
pared with the results for THuman 2.0. This result demon-
strates the difference between having to operate on diverse
- but possibly still close to the mean - poses and having to
estimate rare and complex poses. A visual representation of
the 3 sampling methods is depicted in Figure 4 of the main
paper.

H. Extra Solving Experiments
In the following Tab. 11 we compare the performance

of our model to a dataset generated with a different seed
following [14] (denoted as SEED200). We observe that the
results do not significant vary from those presented in the
main paper.

I. Landmarks and fitting ablation
As demonstrated, our noise-aware fitting method is more

robust to various types of noise, whether originating from
the data, nd, the model’s inference, nm, or both. The results
in Tab. 12 show that our approach maintains its performance
across different noise sources, while the method proposed in
[7] may require hyperparameters tuning.

In addition, we present results that are optimized using
both ℓm and ℓj , which further improves performance. Our
method also has the advantage of adapting the influence of
markers and joints on the fit dynamically, which reduces the
burden of hyperparameter tuning. In Fig. 15, we qualita-
tively compare the performance of our method with that of
[20], colorised each mesh based on its distance error from
the ground truth. Finally, for a fair comparison with [7] we
conducted several experiments to find the best range of α
values, as well as their initial values. Fig. 13 reports the
values of rmse3 with different values of α. Interestingly,
we found that the best results are obtained with an α range
of [-7, 4] and an initial α value of -4.5.

J. Additional Qualitative Results
We present additional qualitative results comparing our

direct regression approach to labeling [20] in the THuman
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(a) With αrange ∈ [-7,-4], we search for the
best αinit value.

(b) With αrange ∈ [-7, 2], we search for the
best αinit value.

(c) We initialize α to the mean value of
αrange, and search for its best range.

Figure 13: Ablation on α values.

2.0 and “Tail” sets. These additional results further rein-
force the case that a labeling method’s errors are more detri-
mental to fitting performance, even in cases with no noise,
as is evident in the Fig. 14. Finally, Fig. 16 presents qual-
itative results using real-world data acquired from the de-
veloped system presented in Appendix K, including both
model predictions and post-fitting body results, showcasing
the benefits of the noise-aware fitting process.

K. System Details
We develop a multi-sensor acquisition system, equipped

with 3 Microsoft Kinect for Azure depth sensors, to demon-
strate our model’s results in real-time. The system connects
K hardware synchronized time-of-flight (ToF) sensors k,
k ∈ {1, . . . ,K}, spatially aligns them by performing ex-
trinsic parameter calibration, and fuses the marker measure-
ments in real-time, producing an unstructured point cloud
m ∈ RM×3, with M being the number of marker estimates.

This process crucially relies on first acquiring 3D posi-
tion marker measurements from a ToF sensor. The sensor k
produces a stream of an infrared image I(p) ∈ R as well as
a pixel-registered depth map D(p) ∈ R, where each pixel
p ∈ N2 is defined in the image domain Ω := W × H of
width W and height H (the subscript k is omitted for the
sake of notational simplicity). Using the factory calibrated
intrinsic parameters of the sensor, the depth map is straight-
forwardly transformed to a structured point cloud P ∈ R3,
with P(p) = KG(p)D(p), with K ∈ R3×3 being the
intrinsic camera parameters matrix, and G ∈ N3 the homo-
geneous coordinates image grid.

We exploit this one-to-one mapping between the infrared
image I and the structured point cloud P to extract the

marker positions mk. Relying on the retro-reflective prop-
erties of markers that return the light emitted by the ToF
projector, we identify the marker pixels after applying bi-
nary thresholding and contour detection [76] on the infrared
image. While measurements are undefined on the actual
marker position due to the ToF depth estimation principles,
we observe that the measurements around the actual marker
position are well-defined. Thus, for each contour we sample
the structured point cloud to extract a point measurement,
aggregating them into a vector v ∈ RV×3, with V being
the number of the contour points. As spurious outliers can
be included in this vector due to fore/background issues and
imperfect pixel sampling, we perform Median Absolute De-
viation (MAD) outlier rejection [43] using the z-coordinate
(depth) of each point, and the average the remaining points
to extract the final marker position estimates mk.

Using mk, the system calibrates the sensors by running
bundle adjustment using a simple calibration wand with
a marker attached to a stick. Then, gravity alignment is
achieved by placing 3 markers in a Γ shape on the floor and
extracting the long and short edge cross product as the up
vector, transforming all extrinsic transforms to align with
it. With the sensors spatially aligned, all marker estimates
are fused in a single unstructured point cloud m. To ac-
count for slight calibration errors, we perform point cloud
clustering with a radius of 1cm, which results in the actual
model input. Evidently, this process is a cascade of numer-
ous estimation errors, the inherent measurement noise that
influences the calibration process, and the clustering itself
which also adjusts the final estimates. Additionally, we only
use K = 3 sensors, which accentuates the problem since
information fusion is not that effective with such a sparse
number of viewpoints.
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Figure 14: Fits to our regressed versus SOMA labeled markers. The fitting process is more sensitive to labeling errors.
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Figure 15: The figure shows the qualitative results of our noise-aware fitting method on the left and the method proposed in
[44] on the right. Each mesh is colored using a Jet color map based on the Euclidean distance error metric from the ground
truth mesh.
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Figure 16: Additional qualitative results of our system in the wild using a setup comprising a very sparse set of low-cost
sensors. Starting from the left, we present the raw input collected from our multi-sensor acquisition system (Appendix K),
with the raw (unfiltered) estimated ℓest from our model following. The last 2 columns present the fitted θest pose and shape
βest parameters. As our real-time model only implicitly learns the human skeleton, this can lead to unrealistic results. To
address this, the noise-aware fitting approach introduces human body constraints, resulting in more accurate and realistic
results. Furthermore, it adequately handles missing or incorrectly inferred landmarks.
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