
Dominant Sets and Hierarchical Clustering

Massimiliano Pavan and Marcello Pelillo
Dipartimento di Informatica

Università Ca’ Foscari di Venezia
Via Torino 155, 30172 Venezia Mestre, Italy

{mapavan, pelillo}@dsi.unive.it

Abstract

Dominant sets are a new graph-theoretic concept that
has proven to be relevant in partitional (flat) clustering as
well as image segmentation problems. However, in many
computer vision applications, such as the organization of
an image database, it is important to provide the data to
be clustered with a hierarchical organization, and it is not
clear how to do this within the dominant set framework. In
this paper we address precisely this problem, and present
a simple and elegant solution to it. To this end, we con-
sider a family of (continuous) quadratic programs which
contain a parameterized regularization term that controls
the global shape of the energy landscape. When the regular-
ization parameter is zero the local solutions are known to be
in one-to-one correspondence with dominant sets, but when
it is positive an interesting picture emerges. We determine
bounds for the regularization parameter that allow us to ex-
clude from the set of local solutions those inducing clusters
of size smaller than a prescribed threshold. This suggests
a new (divisive) hierarchical approach to clustering, which
is based on the idea of properly varying the regularization
parameter during the clustering process. Straightforward
dynamics from evolutionary game theory are used to locate
the solutions of the quadratic programs at each level of the
hierarchy. We apply the proposed framework to the prob-
lem of organizing a shape database. Experiments with three
different similarity matrices (and databases) reported in the
literature have been conducted, and the results confirm the
effectiveness of our approach.

1. Introduction

The unsupervised partitioning of data (or clustering) is
a problem that pervades computer vision research, and re-
cently there has been a resurgence of interest around graph-
based (pairwise) approaches [1, 6, 18, 20, 22], which treat
the data to be clustered (pixels, edge elements, etc.) as ver-

tices of a similarity (edge-weighted) graph, where the edges
represent neighborhood relations, and the weights reflect
the similarity between data. Graph-theoretic clustering al-
gorithms basically consist of searching for certain combina-
torial structures in the similarity graph, such as a minimum
spanning tree [26] or a minimum cut [6, 22, 25] and, among
these methods, a classic approach (the “complete-link” al-
gorithm [8]) reduces to a search for a complete subgraph,
namely a clique.1 Indeed, some authors [2, 19] argue that
the maximal clique is the strictest definition of a cluster.

In a recent paper [14], we have developed a new frame-
work for partitional (i.e., flat) pairwise clustering based on a
new graph-theoretic concept, that of a dominant set, which
generalizes the notion of a maximal clique to edge-weighted
graphs. An intriguing connection between dominant sets
and the solutions of a (continuous) quadratic optimization
problem allows the use of straightforward dynamics from
evolutionary game theory to determine them [24]. The ap-
proach has proven to be a powerful one when applied to
problems such as intensity, color, and texture segmenta-
tion [14, 15].

However, in many computer vision applications, such as
the organization of an image database [21], it is important
to organize the data to be clustered in a hierarchical manner,
and it is not obvious how to do this within the dominant set
framework. In this paper we address precisely this problem,
and provide a simple and elegant solution to it.

To this end, we consider a family of regularized (contin-
uous) quadratic programs controlled by a nonnegative pa-
rameter which determines the global shape of the energy
landscape as well as the location of its extrema. We in-
vestigate the properties of its solutions as a function of its
parameter. When the regularization parameter is zero the lo-
cal solutions are known to be in one-to-one correspondence
with dominant sets, but when it is positive an interesting

1Recall that a subset of vertices of a graph is said to be a clique if
all its nodes are mutually adjacent; a maximal clique is one which is not
contained in any larger clique, whereas a maximum clique is one having
largest cardinality.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

picture emerges. As the parameter grows larger, local so-
lutions corresponding to small clusters disappear, and we
derive bounds for it that allow us to exclude from the set
of solutions those inducing clusters of size smaller than a
prescribed threshold. This suggests a new (divisive) hier-
archical approach to clustering, which is based on the idea
of properly varying the regularization parameter during the
clustering process. We start with a sufficiently large value,
which yields a unique large cluster comprising all data, and
then decrease it properly in an attempt to split large and
incoherent clusters into smaller pieces. The process is re-
peated recursively at each level in the hierarchy, where sim-
ple replicator dynamics are used as local optimization pro-
cedures.

We demonstrate the potential of our framework to the
problem of organizing a shape database. Experiments with
various similarity matrices (and databases) reported in the
literature have been conducted, and the results confirm the
power of the approach in correctly partitioning the data as
well as discovering meaningful hierarchial relations, despite
its simplicity.

2. Dominant sets and their characterization

2.1. The notion of a dominant set

We represent the data to be clustered as an undirected
edge-weighted graph with no self-loops G = (V,E,w),
where V = {1, . . . , n} is the vertex set, E ⊆ V × V is
the edge set, and w : E → IR∗

+ is the (positive) weight
function. Vertices in G correspond to data points, edges rep-
resent neighborhood relationships, and edge-weights reflect
similarity between pairs of linked vertices. As customary,
we represent the graph G with the corresponding weighted
adjacency (or similarity) matrix, which is the n×n nonneg-
ative, symmetric matrix A = (aij) defined as:

aij =
{

w(i, j) , if (i, j) ∈ E
0 , otherwise .

Clearly, since there are no self-loops, all the elements on the
main diagonal of A are zero.

Intuitively, a cluster should satisfy two fundamental con-
ditions: it should have high internal homogeneity, and there
should be high inhomogeneity between the entities in the
cluster and those outside. When the entities are represented
as an edge-weighted graph, these two conditions amount
to saying that the weights on the edges within a cluster
should be large, and those on the edges connecting the clus-
ter nodes to the external ones should be small.

To give our formal definition of a cluster, we start with
the intuitive idea that the assignment of the edge-weights
induces, in some way to be described, an assignment of

weights on the vertices. This perspective gives us a chance
to analyze the assignment of the edge-weights in a simpler
and fruitful way.

Let S ⊆ V be a non-empty subset of vertices and i ∈ V .
The (average) weighted degree of i w.r.t. S is defined as:

awdegS (i) =
1
|S|

∑
j∈S

aij . (1)

Observe that awdeg{i} (i) = 0 for any i ∈ V . Moreover, if
j /∈ S we define:

φS (i, j) = aij − awdegS (i) . (2)

Note that φ{i}(i, j) = aij , for all i, j ∈ V with i �= j.
Intuitively, φS(i, j) measures the similarity between nodes
j and i, with respect to the average similarity between node
i and its neighbors in S. Note that φS(i, j) can be either
positive or negative.

We are now in a position to formalize the notion of “in-
duction” of node-weights, which is captured by the follow-
ing recursive definition. Let S ⊆ V be a non-empty subset
of vertices and i ∈ S. The weight of i w.r.t. S is

wS (i) =




1, if |S| = 1∑
j∈S\{i}

φS\{i} (j, i) wS\{i} (j) , otherwise.

(3)
Moreover, the total weight of S is defined to be:

W(S) =
∑
i∈S

wS(i) . (4)

Note that w{i,j} (i) = w{i,j} (j) = aij , for all i, j ∈ V
(i �= j). Also, observe that wS (i) is calculated simply as
a function of the weights on the edges of the subgraph in-
duced by S. Intuitively, wS (i) gives us a measure of the
overall similarity between vertex i and the vertices of S\{i}
with respect to the overall similarity among the vertices in
S \ {i}.

The following definition represents our formalization of
the concept of a cluster in an edge-weighted graph.

Definition 1 A non-empty subset of vertices S ⊆ V such
that W (T) > 0 for any non-empty T ⊆ S, is said to be
dominant if:

1. wS (i) > 0, for all i ∈ S

2. wS∪{i} (i) < 0, for all i /∈ S.

The two conditions of the above definition correspond to
the two main properties of a cluster: the first regards inter-
nal homogeneity, whereas the second regards external inho-
mogeneity. The condition W (T) > 0 for any non-empty
T ⊆ S is a technicality explained in some detail in [16].

It turns out that, when applied to unweighted graphs, the
notion of a dominant set coincides with that of a (strictly)
maximal clique [16].

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

2.2. Dominant sets as local maxima

Given an edge-weighted graph G = (V,E,w) and
its weighted adjacency matrix A, consider the following
quadratic program (which is a generalization of the so-
called Motzkin-Straus program [13]):

maximize f(x) = x′Ax
subject to x ∈ ∆ (5)

where

∆ = {x ∈ IRn : xi ≥ 0 for all i ∈ V and e′x = 1}
is the standard simplex of IRn, e is a vector of appropriate
length consisting of unit entries (hence e′x =

∑
i xi), and

a prime denotes transposition.
The support of a vector x ∈ ∆ is defined as the set of

indices corresponding to its positive components, that is:

σ (x) = {i ∈ V : xi > 0} .

The following theorem, proved in [14], establishes an
intriguing connection between dominant sets and local so-
lutions of program (5).

Theorem 1 If S is a dominant subset of vertices, then its
weighted characteristics vector xS , which is the vector of
∆ defined as

xS
i =

{
wS(i)
W(S) , if i ∈ S

0, otherwise

is a strict local solution of program (5).
Conversely, if x is a strict local solution of program (5)

then its support S = σ(x) is a dominant set, provided that
wS∪{i} (i) �= 0 for all i /∈ S.

The condition that wS∪{i} (i) �= 0 for all i /∈ S = σ(x)
is a technicality explained in [16].

By virtue of this result, we can find a dominant set by
first localizing a solution of program (5) with an appropri-
ate continuous optimization technique, and then picking up
the support set of the solution found. In this sense, we in-
directly perform combinatorial optimization via continuous
optimization. Note that the components of the weighted
characteristic vectors give us a measure of the participa-
tion of the corresponding vertices in the cluster, whereas
the value of the objective function measures the cohesive-
ness of the class.

3. A family of quadratic programs

Let A = (aij) be the similarity matrix of the n data to
be clustered, and consider the following family of standard

quadratic programs:

maximize fα(x) = x′(A − αI)x
subject to x ∈ ∆ (6)

where α ≥ 0 is a parameter and I is the identity matrix,
which includes as special case program (5) when α = 0.

Note that the solutions of (6) remain the same if the ma-
trix A − αI is replaced with A − αI + κee′, where κ
is an arbitrary parameter, since x′(A − αI + κee′)x =
x′(A − αI)x + κ for all x ∈ ∆. In particular, if κ = α
the resulting matrix is nonnegative and has a null diagonal.
Hence, Theorem 1 applies and all (strict) solutions of (6)
correspond to dominant sets for the scaled similarity ma-
trix A+α(ee′ − I) having the off-diagonal entries equal to
aij + α.

A point x ∈ ∆ satisfies the Karush-Kuhn-Tucker (KKT)
conditions for problem (6), i.e. the first-order necessary
conditions for local optimality [10], if there exist n + 1 real
constants µ1, . . . µn and λ, with µi ≥ 0 for all i = 1 . . . n,
such that:

(Ax)i − αxi − λ + µi = 0

for all i = 1 . . . n, and

n∑
i=1

xiµi = 0 .

Note that, since both the xi’s and µi’s are nonnegative, the
latter condition is equivalent to saying that i ∈ σ(x) implies
µi = 0. Hence, the KKT conditions can be rewritten as

(Ax)i − αxi

{
= λ if i ∈ σ(x)
≤ λ otherwise

for some real constant λ. On the other hand, it is immediate
to see that λ = x′(A−αI)x. Hence the previous conditions
can be explicitly rewritten as

(Ax)i − αxi = x′Ax − αx′x, if i ∈ σ(x)
(Ax)i ≤ x′Ax − αx′x, otherwise

(7)

A straightforward way to find (local) solutions of pro-
gram (6) is given by the so-called replicator dynamics, a
class of continuous- and discrete-time dynamical systems
arising in evolutionary game theory, which are also inti-
mately related to relaxation labeling processes [12]. Such
systems are attractive because they can be coded in a few
lines of any high-level programming language, can easily
be implemented in a parallel network of locally interacting
units, and offer the advantage of biological plausibility.

In our simulations, we used the following model

xi(t + 1) = xi(t)
(Ax)i − αxi(t)

x(t)′(A − αI)x(t)
(8)

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

for i = 1 . . . n, which corresponds to the discrete-time ver-
sion of first-order replicator equations (see, e.g., [24]).

Provided that the matrix A − αI is scaled properly to
avoid negative values, it is readily seen that the simplex ∆
is invariant under these dynamics, which means that every
trajectory starting in ∆ will remain in ∆ for all future times.
Moreover, it can be proven that, since A is symmetric, the
(scaled) objective function fα is strictly increasing along
any nonconstant trajectory of (8), and its asymptotically sta-
ble points are in one-to-one correspondence to strict local
solutions of (6) [24]. These, in turn, correspond to dominant
sets for the scaled similarity matrix A + α(ee′ − I). These
properties naturally suggest using replicator equations as a
useful heuristic for finding local solutions of (6) and hence
dominant sets.

4. Bounds for the regularization parameter

The objective function fα in (6) consists of a data term
and a regularization term. The first one (x′Ax) favors solu-
tions with high internal coherency, and the second (−αx′x),
which is controlled by the regularization parameter α, acts
as an entropic factor: it is concave and, on the simplex ∆,
it is maximized at the barycenter and it attains its mini-
mum value at the vertices of ∆. Hence, when α is large
enough the regularization term dominates, and the only so-
lution of (6) is expected to be in the interior of ∆, probably
close to the barycenter. In other words, we expect a unique
large cluster which comprises all the data points.

This intuitive picture is formalized by the following
proposition, which gives also a simple bound for the reg-
ularization parameter α. First, however, we introduce the
following additional notations. Given a subset of vertices
S ⊆ V , the face of ∆ corresponding to S is defined as:

∆S = {x ∈ ∆ : σ(x) ⊆ S}

and its relative interior is:

int(∆S) = {x ∈ ∆ : σ(x) = S} .

Clearly, ∆V = ∆ and, accordingly, we shall write int(∆)
instead of int(∆V).

Also, note that since A is symmetric, all its eigenvalues
are real, and we shall denote by λmax(A) the largest eigen-
value of A.

Proposition 1 If α > λmax(A), then fα is a strictly con-
cave function in IRn, and the only solution x of (6) belongs
to int(∆), i.e., σ(x) = V .

Proof. We have λmax(A − αI) = λmax(A) − α < 0.
Hence the matrix A−αI is negative definite, which implies
that fα is strictly concave. Consequently, program (6) has

a unique solution, say x. Suppose by contradiction that x
lies on the boundary of ∆, i.e., σ(x) �= V . From the KKT
conditions (7) we have:

(Ax)i ≤ x′Ax − αx′x < 0

for all i ∈ V \ σ(x), which is absurd since A and x are
nonnegative.

For smaller values of α, however, it is difficult to predict
what happens to the landscape of fα, as it is not obvious
how the data and the regularization terms interact. The next
theorem provides an answer to this question.

Theorem 2 Let S ⊂ V be a proper subset of vertices (S �=
V), and let AS denote the submatrix of A formed by the
rows and columns indexed by the elements of S. If

α > λmax(AS)

then there is no point x ∈ int(∆S) that is a local maximizer
of fα in ∆.

Proof. Let α > λmax(AS). We first show that for all
x ∈ int(∆S) we have:

−γ(x) ≤ λmax(AS)

where

γ(x) = max
i/∈σ(x)

(Ax)i − x′Ax
x′x

.

Indeed, for x ∈ int(∆S), let xS be the vector obtained from
x by dropping all components in V \ S. We have:

γ(x) = max
i/∈σ(x)

(ASxS)i

x′
SxS

− x′
SASx′

S

x′
SxS

≥ max
i/∈σ(x)

(ASxS)i

x′
SxS

− λmax(AS)

≥ −λmax(AS)

where the first inequality follows from the Rayleigh-Ritz
theorem [7], and the last one from the nonnegativity of A
and x.

Now, suppose by contradiction that there exists a point x
in int(∆S) which is a local maximizer of fα(x) in ∆. Since
−α < −λmax(AS) ≤ γ(x) there exists an i /∈ σ(x) = S
such that

−α <
(Ax)i − x′Ax

x′x
which yields x′Ax − αx′x < (Ax)i = (Ax)i − αxi. This
means that the KKT conditions (7) are violated, and this
contradicts the hypothesis that x is a solution of (6).

Therefore, suppose that S is a cluster (i.e., a dominant
set) we want to avoid. By letting α > λmax(AS) no point
in ∆ with support S will be a solution of (6). Of course,

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

the problem is to obtain a reasonable bound for α without
knowing S in advance. To this end, suppose for simplicity
that aij ≤ 1 for all i, j ∈ V , namely

0 ≤ A ≤ eeT − I .

From standard results on nonnegative matrices (see,
e.g., [7]), we get

λmax(AS) ≤ λmax(eeT − I) = |S| − 1

for any S ⊆ V . Hence, if we want to avoid clusters of size
|S| ≤ m < |V | we could simply let

α > m − 1 .

In so doing, no face ∆S with |S| ≤ m will contain solutions
of (6). Hence, these faces cannot be approached by any
interior trajectory of replicator dynamics with payoff A −
αI; in other words, at this scale, all clusters will have at
least m + 1 data points.

On the other hand, by virtue of Proposition 1, if

α > |V | − 1 ≥ λmax(A)

we always get a unique large cluster comprising all points
in V .

5. The hierarchical clustering algorithm

Summarizing the above findings, when α > m − 1 the
energy landscape of fα is populated only by solutions hav-
ing a support with more than m data points. Among them,
some will correspond to dominant sets for the original ma-
trix A and some will be “spurious” solutions, namely, solu-
tions of program (6) that are not characteristic vectors of a
dominant set for A. Spurious solutions represent large sub-
sets of points that are not sufficiently coherent to be domi-
nant with respect to A, although they are dominant for the
scaled matrix A + α(ee′ − I), and hence they should be
split. Indeed, it is precisely the emergence of these spurious
solutions that allows us to provide the data to be clustered
with a natural hierarchical organization.

Instead of keeping the value of α fixed, our approach is
to start with a sufficiently large α, say α > λmax(A), and
adaptively decrease it during the clustering process. The
rationale behind this idea is that for values of α that are
large enough, only the characteristic vectors of large dom-
inant sets will be stable attractive points for the replicator
dynamics, together with a set of spurious solutions. As the
value of α decreases, spurious solutions disappear and at the
same time (characteristic vectors of) smaller dominant sets
become stable. At a given level α, the algorithm produces
a (flat) partition of the data set into several “clusters,” some

Algorithm HIER CLUSTERING(V , A)
begin

if V is dominant (or is a singleton) then return V
let α be a large positive value (e.g., α > |V | − 1)
repeat

decrease α (e.g., α ← α − 1)
if α < 0 then α ← 0
V1, . . . , Vk ← SPLIT(V , A, α)

until k > 1
return

⋃k
i=1 { HIER CLUSTERING(Vi, AVi

) }
end

Figure 1. Pseudo-code for our hierarchical
clustering algorithm.

of which will be dominant with respect to the unscaled sim-
ilarities (and we declare them leaves of our hierarchy) and
some will not. We then proceed by decreasing α and recur-
sively applying the procedure to these spurious solutions,
in an attempt to split them into smaller and more coherent
pieces.

A high-level description of our algorithm is shown in
Fig. 1 (as usual, V is the set of data points to be clustered
and A is the corresponding similarity matrix). Its output is
in the form of nested sets, with the nesting providing the
hierarchy.

A few remarks about the previous algorithm are in or-
der. The function SPLIT accepts as input a set of vertices,
the corresponding similarity matrix, and a parameter α, and
provides as output a (flat) partition of the input set at level
(or scale) α. This can be accomplished by iteratively finding
a local maximizer of fα in ∆ (using, for example, replicator
dynamics with payoff A − αI) and then removing the ver-
tices in its support from the input set, until all vertices have
been clustered.

Note also that the repeat-until loop must terminate. In
fact, since V is not dominant (and is not a singleton) the
function SPLIT will certainly return a non-trivial partition
of V for all α’s in some interval [0, α̂].

Finally, note that checking that the set V is dominant is
straightforward. In fact, this happens if and only if there ex-
ists a (unique, see [3]) strict local solution of (5) in int(∆)
and this happens if and only if any interior trajectory or
replicator dynamics with payoff A converges, with proba-
bility one, to a point in int(∆).

Characterizing the complexity of our algorithm is dif-
ficult since it involves the simulation of a dynamical sys-
tem. However, we have observed experimentally that it con-
verges quickly, and this is also confirmed by earlier empiri-
cal findings (see, e.g., [3, 17]).

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

Figure 2. Top: Similarity matrix used in the ex-
periments described in Section 6.1. Bottom:
Hierarchy produced by our algorithm.

6. An example: Organizing a shape database

We illustrate the potential of our approach on the prob-
lem of organizing an image database. To this end, we used
three different similarity matrices reported in the literature
derived from as many binary shape databases. In all ex-
periments, the algorithm took only a few seconds to return
a hierarchy on a machine equipped with a 750 MHz Intel
Pentium III.

6.1. Using Luo et al.’s similarities

The first dataset we applied our algorithm on was used
by Luo et al. [11], who developed a maximum-likelihood
framework for graph clustering. The dataset contains
25 different shapes from 9 different classes: brushes,
wrenches, pliers, hammers, spectacles, fishes, rabbits,
horses, and hands.

In the work described in [11], shapes were abstracted
in terms of rooted shock-trees [23], and the similarities be-
tween pairs of shapes were computed by using the weighted
tree edit distance of the corresponding trees. The resulting
similarity matrix (whose entries are taken from [11, Fig. 1]
and scaled properly) is shown in Fig. 2 (top). Here, and in
the sequel, the gray-levels in the matrix representation are
proportional to the similarities: the darker the entries, the
weaker the similarities between the corresponding shapes.
The order of the entries in the matrix is the same as the one
given above.

The results obtained using our hierarchical clustering al-
gorithm on this dataset are shown in Fig. 2 (bottom). The
algorithm discovered (correctly) 9 classes, and made only 3
mistakes by placing a pair of glasses in the fish class, and
by swapping two elements from the hammer and wrench
classes. As for the hierarchy, the algorithm was able to
separate the tools from the rest of the objects. Note that
these data do not exhibit a natural hierarchical organization,
hence it is not surprising that the algorithm produced a shal-
low tree.

These results are substantially better than those reported
by Luo et al. in [11]. Indeed, they were able to partition
the database into 7 (instead of 9) classes, and made more
classification errors, by placing two fishes in the spectacle
class, a hammer in the wrench classes, and by putting to-
gether in a quite inhomogeneous cluster, a hammer, a fish, a
rabbit, and the two horses. In addition, their algorithm does
not offer any hierarchical interpretation.

6.2. Using Klein et al.’s similarities

A second series of experiments was conducted on the
database used by Klein et al. in [9], which contains 36 bi-
nary shapes from 6 different categories: fishes, wrenches,
planes, “greebles,” rabbits, and hands. Each category con-
tains 6 different shapes.

They used an unrooted and ordered shock-tree represen-
tation for shapes. To measure the distance between two
shapes, they first compared each path in one shock graph
to each path in the other, computing a cost of deforming
one to the other, and then used these costs to compute the
edit-distance. Fig. 3 (top) shows the similarity matrix ob-
tained by transforming the distances presented in [9, Table
1] into affinities using a customary exponential transforma-
tion. The order of the entries is the same as the one given
above.

Fig. 3 (bottom) shows the results obtained using our al-
gorithm. Starting from the root of the hierarchy, the algo-
rithm first distinguished between planes and hands from the
rest of the dataset, and it further refined the latter classes
by separating fishes and tools from greebles and rabbits.
At the base level, the algorithm partitioned the dataset into
the right number of classes and made no classification er-
ror. Note that, although some of these high-level groupings
(e.g., tools and fishes) make little sense from a semantic
standpoint, the corresponding shapes are indeed topologi-
cally similar, as can also be seen by manually inspecting
the similarity matrix.

6.3. Using Gdalyahu et al.’s similarities

Finally, we applied our algorithm on a larger database
used by Gdalyahu et al. in a series of papers [4, 5, 6] which

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

Figure 3. Top: Similarity matrix used in the ex-
periments described in Section 6.2. Bottom:
Hierarchy produced by our algorithm.

contains 121 binary images, 90 of which represent 6 toy
models seen from 15 different viewpoints, while the other
ones are 31 silhouettes taken from the database used in the
previous section. Overall, there are 12 categories: cows,
hippos, wolves, cars, sport cars, children, hands, fishes,
planes, rabbits, wrenches, and greebles.

In [5], the (dis)similarities between shapes were com-
puted by constructing a syntactic representation for the
shape boundaries and then finding an edit transformation
which maps one curve to the other by dynamic program-
ming. Similarities were then obtained by a standard expo-
nential transformation. The resulting matrix is shown in
Fig. 4 (top), with the entries ordered as above.

The results of applying our algorithm on this database
are shown in Fig. 4 (bottom). Here, for each base-level clus-
ter we show a representative for each category contained in
it and, in parenthesis, the number of objects in that cate-
gory. At the coarsest scale, the algorithm first distinguished
the cars from all other classes and, by proceeding down
along the car branch, it then correctly separated the two car
models, although it created an extra spurious cluster with 5
cars. As for the remaining objects, it separated the mam-
mals (comprising the children) from the other objects, erro-
neously putting the wrenches in the mammal category, and
then it separated quadrupeds from children and wrenches,
which in turn formed their own cluster. However, an ex-
tra cluster was created which contained exemplars from the

Figure 4. Top: Similarity matrix used in the ex-
periments described in Section 6.3. Bottom:
Hierarchy produced by our algorithm.

three quadruped classes. Finally, it correctly categorized
the hands, the greebles, the rabbits, the planes, but it split
the fish class into two components.

Our results compare favorably with those obtained using
a recursive application of Perona and Freeman’s factoriza-
tion algorithm [18] (see [4, p. 91]), which does not suggest a
natural hierarchical interpretation of the data, and are com-
parable with the ones produced by typical/normalized cut
algorithms [6, 22] (see [4, Sect. 4.4.] for details), some mis-
takes of which are similar to ours (e.g., mixing up wrenches
with mammals at a coarse scale and splitting the fishes into
two or more classes). At the base level, they misplaced
one or more wrenches (both algorithms) and a plane (typi-
cal cut). The hierarchies produced by the three algorithms,
however, are different, with ours being shallower.

Interestingly, as observed by Gdalyahu [4, 6], the data
in this database form chained structures where images in
the same class might be related to each other indirectly via
“mediating” images. In fact, the complete-link approach
fails completely on these data [4, p. 91]. In view of this, it
is remarkable that our algorithm, which favors compact (al-
though not necessarily isotropic) structures, produced rea-
sonable results and succeeded in discovering meaningful hi-
erarchical relations.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

7. Conclusions

We have developed a new framework for pairwise hi-
erarchical clustering centered around the notion of a dom-
inant set, a newly introduced graph-theoretic concept that
has proven to be relevant in partitional clustering and image
segmentation problems. We have considered a family of pa-
rameterized (continuous) quadratic programs and have stud-
ied the properties of its solutions as a function of its (non-
negative) parameter. When the regularization parameter is
zero the local solutions correspond to dominant sets, and as
it grows larger solutions corresponding to small clusters dis-
appear. We have determined bounds on the regularization
parameter which induce bounds on the size of the surviving
clusters. These properties have motivated our hierarchical
clustering algorithm, which is based on the idea of varying
the regularization parameter in a principled way during the
clustering process. Straightforward dynamics from evolu-
tionary game theory are used to locate the solutions of the
quadratic programs at each level of the hierarchy.

The approach is general and can be applied to a vari-
ety of computer vision and pattern recognition problems.
We have demonstrated its potential for the problem of im-
age database organization. Experiments with three different
similarity matrices (and databases) reported in the literature
have been conducted, and the results have shown the effec-
tiveness of our approach.

Acknowledgements. We would like to thank Y. Gdalyahu
for providing us the data used in the experiments reported
in Section 6.3.

References

[1] S. Aksoy and R. M. Haralick. Graph-theoretic clustering for
image grouping and retrieval. In Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 1999.

[2] J. G. Auguston and J. Minker. An analysis of some graph
theoretical clustering techniques. J. ACM, 17(4):571–588,
1970.

[3] I. M. Bomze. Evolution towards the maximum clique. J.
Global Optim., 10:143–164, 1997.

[4] Y. Gdalyahu. Stochastic Clustering and its Applications
to Computer Vision. PhD thesis, Hebrew University,
Jerusalem, Israel, 1999.

[5] Y. Gdalyahu and D. Weinshall. Flexible syntactic matching
of curves and its application to automatic hierarchical clas-
sification of silhouettes. IEEE Trans. Pattern Anal. Machine
Intell., 21(12):1312–1328, 1999.

[6] Y. Gdalyahu, D. Weinshall, and M. Werman. Self-
organization in vision: Stochastic clustering for image seg-
mentation, perceptual grouping, and image database or-
ganization. IEEE Trans. Pattern Anal. Machine Intell.,
23(10):1053–1074, 2001.

[7] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge
University Press, Cambridge, UK, 1985.

[8] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice Hall, Englewood Cliffs, NJ, 1988.

[9] P. N. Klein, T. B. Sebastian, and B. B. Kimia. Shape match-
ing using edit-distance: An implementation. In Proc. 11th
Ann. ACM-SIAM Symp. Discrete Algorithms (SODA), pages
781–190, 2001.

[10] D. G. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley, Reading, MA, 1984.

[11] B. Luo, A. Robles-Kelly, A. Torsello, R. C. Wilson, and
E. R. Hancock. A probabilistic framework for graph clus-
tering. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, volume 1, pages 912–919, 2001.

[12] D. Miller and S. W. Zucker. Efficient simplex-like meth-
ods for equilibria of nonsymmetric analog networks. Neural
Computation, 4(2):167–190, 1992.

[13] T. S. Motzkin and E. G. Straus. Maxima for graphs and a
new proof of a theorem of Turán. Canad. J. Math., 17:533–
540, 1965.

[14] M. Pavan and M. Pelillo. A new graph-theoretic approach to
clustering and segmentation. In Proc. IEEE Conf. Computer
Vision and Pattern Recognition, volume 1, pages 145–152,
2003.

[15] M. Pavan and M. Pelillo. Unsupervised texture segmentation
by dominant sets and game dynamics. In Proc. IEEE Int.
Conf. on Image Analysis and Processing, 2003 (in press).

[16] M. Pavan, M. Pelillo, and E. Jabara. On the combinatorics
of standard quadratic optimization. Forthcoming.

[17] M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hier-
archical structures using association graphs. IEEE Trans.
Pattern Anal. Machince Intell., 21(11):1105–1120, 1999.

[18] P. Perona and W. Freeman. A factorization approach to
grouping. In H. Burkhardt and B. Neumann, editors, Com-
puter Vision—ECCV’98, pages 655–670. Springer-Verlag,
Berlin, 1998.

[19] V. V. Raghavan and C. T. Yu. A comparison of the stabil-
ity characteristics of some graph theoretic clustering meth-
ods. IEEE Trans. Pattern Anal. Machine Intell., 3:393–402,
1981.

[20] S. Sarkar and K. L. Boyer. Quantitative measures of
change based on feature organization: Eigenvalues and
eigenvectors. Computer Vision and Image Understanding,
71(1):110–136, 1998.

[21] K. Sengupta and K. L. Boyer. Organizing large structural
modelbases. IEEE Trans. Pattern Anal. Machine Intell.,
17(4):321–332, 1995.

[22] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Trans. Pattern Anal. Machine Intell., 22(8):888–
905, 2000.

[23] K. Siddiqi, A. Shokoufaundeh, S. J. Dickinson, and S. W.
Zucker. Shock graphs and shape matching. Int. J. Computer
Vision, 35(1):1999, 1999.

[24] J. W. Weibull. Evolutionary Game Theory. MIT Press, Cam-
bridge, MA, 1995.

[25] Z. Wu and R. Leahy. An optimal graph theoretic approach
to data clustering: Theory and its application to image
segmentation. IEEE Trans. Pattern Anal. Machine Intell.,
15(11):1101–1113, 1993.

[26] C. T. Zahn. Graph-theoretic methods for detecting and de-
scribing gestalt clusters. IEEE Trans. Comput., 20:68–86,
1971.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

