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Abstract— The use of machine learning methods to tackle
challenging physical layer signal processing tasks has attracted
significant attention. In this work, we focus on the use of neural
networks (NNs) to perform pilot-assisted channel estimation in
an OFDM system in order to avoid the challenging task of
estimating the channel covariance matrix. In particular, we per-
form a systematic design-space exploration of NN configurations,
quantization, and pruning in order to improve feedforward NN
architectures that are typically used in the literature for the
channel estimation task. We show that choosing an appropriate
NN architecture is crucial to reduce the complexity of NN-assisted
channel estimation methods. Moreover, we demonstrate that,
similarly to other applications and domains, careful quantization
and pruning can lead to significant complexity reduction with a
negligible performance degradation. Finally, we show that using
a solution with multiple distinct NNs trained for different signal-
to-noise ratios interestingly leads to lower overall computational
complexity and storage requirements, while achieving a better
performance with respect to using a single NN trained for the
entire SNR range.

Index Terms—Channel estimation, channel denoising, deep
learning, neural networks, OFDM.

I. INTRODUCTION

The use of machine learning techniques, and in particular

deep learning and neural networks (NNs), to tackle communi-

cations tasks has attracted significant interest in the past few

years [1]–[4]. Many approaches have been proposed specifi-

cally for improving the performance of channel estimation in

orthogonal frequency-division multiplexing (OFDM) systems,

ranging from approaches which replace the entire receiver

chain [5], to model-based approaches which replace only parts

of the receiver chain [6]–[8]. More specifically, in [5] the

channel estimation and demodulation blocks of the receiver are

replaced by a five-layer fully-connected deep NN (FC-DNN).

Initial experiments show that the NN-based receiver performs

better than traditional least squares (LS) and minimum mean

square error (MMSE) estimation and detection, especially

when very few pilot symbols are used. In ComNet [6], on

the other hand, a conventional LS channel estimation is first

performed only for the pilot symbols and then refined using

a one-layer NN. Subsequently, zero-forcing (ZF) followed by

a two-layer fully-connected NN (FC-NN) is used for symbol

detection. SwitchNet [7] extends the approach of [6] by adding

a second layer NN to the channel estimation NN. The first

layer is trained on channels with a short delay spread, while the

second layer is trained on channels with a large delay spread.
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Fig. 1. Example of an OFDM receiver with NN-assisted channel estimation.

In addition, a switch is trained to switch on the second layer

when a large delay spread is detected. Finally, [8] proposes

to use two convolutional NNs (CNNs) for channel estimation.

In particular, the time-frequency response of a pilot-channel

is treated as a low-resolution image and a super-resolution

CNN is cascaded with a denoising CNN to estimate and

interpolate the pilot-channel in both time and frequency to

the data-channel. Simulation results show that this approach is

comparable to the ideal MMSE estimator and performs better

than approximated MMSE on realistic channel models.

While FC-DNN [5], ComNet [6], SwitchNet [7], and Chan-

nelNet [8] can outperform conventional methods in certain

cases, they unfortunately also have significantly higher com-

plexity that makes them impractical for resource-constrained

mobile hardware platforms. Although many NN complexity

reduction techniques have been proposed in the literature,

such as quantization [9]–[12] and pruning [13], [14], these

methods are typically applied to classification problems and

their impact on the performance of the specific regression

task performed by NN-assisted channel estimation methods

remains unknown.

Contributions: In this work, we examine several methods to

significantly reduce the computational and memory complexity

of NN-assisted channel estimators. In particular:

• In Section III-A, we perform a systematic design-space

exploration of a denoising FC-NN architecture for chan-

nel estimation and we show that a careful design of

the FC-NN configuration is a necessary requirement to

obtain Pareto-optimal performance-complexity trade-offs.

This is a rather well-known fact in the machine learning

community, but so far has received little to no attention

http://arxiv.org/abs/2002.10493v1
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Fig. 2. Fully-connected residual NN architecture for channel estimation with
P pilot symbols and with a variable depth D and layer width W .

from the communications community.

• In Section III-C, we show that both quantization and

pruning work particularly well for this application.

• In Section III-B, our design-space exploration reveals

that, interestingly, using multiple carefully designed FC-

NNs trained over distinct SNR ranges outperforms a

single FC-NN trained over the union of the individual

SNR ranges both in terms complexity and in terms of

the achieved denoising performance.

II. CHANNEL ESTIMATION AND DENOISING

In an OFDM system with F subcarriers, such as the one

shown in Fig. 1, the transmission of a single OFDM symbol

x[f ] ∈ C can be modeled in the frequency domain as:

y[f ] = h[f ]x[f ] + w[f ], f ∈ {0, . . . , F−1}, (1)

where y[f ] ∈ C, h[f ] ∈ C, and w[f ] ∈ C are the frequency-

domain representations of the received signal, the transmission

channel, and the additive noise on subcarrier f , respectively.

The noise w[f ] is typically modeled as additive white Gaussian

noise (AWGN) distributed according CN (0, σ2). The channels

h[f ] at different subcarriers, however, are typically correlated.

If we define h =
[

h[0] h[1] . . . h[F−1]
]

, then a common

model for correlated channels is h ∼ CN (0,Ch), where Ch

is the covariance matrix of h.

A. MMSE Channel Estimation

Known pilot symbols x[p], p ∈ P ⊆ {0, . . . , P−1}, are

sent occasionally for the purpose of estimating the channel.

LS channel estimation is given by ĥLS
P

= yP/xP , where xP

and yP denote vectors containing the elements of x[f ] and

y[f ], respectively, with indices in P and division is performed

element-wise. The LS solution is noisy in the sense that it

does not take the channel correlation into account. The MMSE

solution [15], which exploits knowledge of the covariance

matrix to denoise the LS channel estimation, can be obtained

as ĥMMSE
P

= ChP
(ChP

+ σ2I)−1ĥLS
P

, where hP denotes a

vector containing the elements of h with indices in P and

ChP
denotes the covariance matrix of hP .

TABLE I
COMPLEXITY COMPARISON OF EXISTING NEURAL-NETWORK-BASED

OFDM CHANNEL ESTIMATORS.

Approach MACs Model Size

FC-DNN [5] 6.96 M 27.85 MB
ComNet-BiLSTM [6] 10.40 M 2.40 MB
ComNet-FC [6] 0.37 M 1.25 MB
SwitchNet [7] 0.40 M 1.82 MB
ChannelNet [8] 13.15 M 35.82 MB

In practice, ChP
and σ2 are not known and need to be

estimated. Accurately estimating the covariance matrix ChP

in particular can be challenging in practice because a large

number of samples is typically required to achieve the required

estimation accuracy, which is particularly restrictive in fast-

fading environments and when the set P can change between

transmissions (which is the case in, e.g., 5G NR). Furthermore,

the required matrix inversion is computationally expensive.

B. Channel Denoising Neural Networks

In the previous subsection, we described MMSE as a denois-

ing channel estimator in order to make a natural connection

with NNs that are used for denoising [16] in other areas,

such as image denoising [17] and speech denoising [18].

Autoencoders are a feed-forward NN often used for explaining

denoising in NNs [19]. They show how by disturbing input

data a NN is forced to find a concise description of the

data that can be used to reconstruct it. This can be seen

as an explanation how denoising NNs perform the denoising

function. An example of such an denoising NN is shown in

Fig. 2, where a pilot channel estimate that is distorted by noise

(in our case, the LS estimate ĥLS
P

) is input into the NN and

a denoised, the recoverd channel estimate is produced at the

output. The mean squared error (MSE) between the NN output

and the true channel response hP is used to train the NN using

backpropagation (BP).

Table I shows the required number of multiply-and-

accumulate (MAC) operations and the required memory to

store all the NN parameters for the NNs described in [5]–[8].

As a comparison, conventional LS and MMSE estimators re-

quire O(P ) and O(P 3) MAC-like computations, respectively,

and P typically ranges from a few tens to a few thousands.

Moreover, LS channel estimation requires no storage, while

MMSE channel estimation requires storage of a P×P matrix.

III. OPTIMIZED CHANNEL DENOISING

NEURAL NETWORKS

In this section, we describe our design-space exploration

methodology for the channel denoising NN, which consists

of an evaluation of various NN configurations, quantization

bit-widths, and neuron pruning percentages. The previous

solutions we discussed in Section I consider denoising across

both frequency and time [5]–[8]. For simplicity and to enable a

faster design-space exploration, in this work we focus only on

denoising in the frequency dimension, but the methodology we

follow can also be applied verbatim to more complex scenar-

ios. Furthermore, frequency and time filtering can typically be



performed separably [15]. We use three performance metrics

for the selection of the obtained NN configurations: 1) the

model size in KB, 2) the required number of MAC operations

to perform one denoising operation, and 3) the denoising gain

with respect to the LS solution, which is defined as:

G = 10 log10
‖ĥNN

P
− hP‖

2
2

‖ĥLS
P

− hP‖22
. (2)

We note that future work should also examine the system-

wide performance impact by e.g. measuring the systems bit-

error rate (BER). Before explaining our methodology, we first

briefly explain the considered channel estimation scenario.

1) Dataset: We generated a random multipath channel

dataset for training. The number of distinct paths is chosen uni-

formly at random in {1, . . . , 30}, the (normalized) path delays

are chosen uniformly at random in [0, 1], and the path gains are

chosen uniformly at random from 0 dB to −50 dB. The (non-

normalized) delay spread for our randomly generated channels

is chosen uniformly at random from 10 ns to 1000 ns similarly

to the 6 GHz channels provided by the 3GPP [20]. The test set

contains another set of similarly generated random channels

that is distinct from the training set and it is also expanded

with the aforementioned 3GPP channels to demonstrate the

robustness and generalization power of the obtained improved

denoising NNs. The pilot symbols have unit power so that the

SNR is defined as SNR = 1/σ2.

2) Training: The input to the NN is the LS-estimated

(noisy) pilot channel vector ĥLS
P

and the target output value

is the actual channel frequency response vector hP . The total

loss function of the network is a weighted mean squared error

(MSE) between the NN output and the channel frequency

response for the P pilot carriers which is defined as:

MSE =
1

N

N
∑

n=1

||(f(ĥLS
P ;Ψ)− hP)× SNR(n)||22, (3)

where f denotes the function that the trained NN implements,

Ψ are all the trainable parameters of the NN, N is the number

of training samples, SNR(n) = 1/σ2(n), and σ2(n) is the noise

variance used to generate the n-th training sample. The scaling

factor SNR(n) is used to achieve a robust performance over

a large SNR range with a single NN.

A. NN Configuration Improvement

We start with a generic denosing FC-NN architecture shown

in Fig. 2. Since there are no clear-cut NN design guidelines

in the related literature and in order to minimize the computa-

tional complexity and memory size, we explore different FC-

NN configurations of this base architecture shown in Fig. 2.

Each such NN configuration is defined by the FC-NN depth

D, the layer width W , and the type of activation function

ACT . One parameter is changed at a time with a predefined

step size and each floating-point model configuration is then

trained from scratch. We note that, in all cases, the weights

are initialized using the Glorot uniform initializer [21].

B. Improving Across a Wide SNR range

The NN parameter values for channel estimation generally

depend on the SNR [8] and supporting a large range of

SNRs is an important requirement in wireless communications

systems. Training a NN on a dataset that includes a large

SNR range results in a robust performance over the entire

range. However, in this case the NN needs to learn a rather

complex function which requires a relatively large and high-

complexity NN. A model covering a smaller range only needs

to learn a simpler function and it can potentially achieve higher

denoising performance for the training SNR while at the same

time being smaller and lower-complexity since only a single

small NN will be active at any given time. The downside of

this approach is that the NN will only perform robustly close to

the training SNR and multiple NNs and their parameters have

to be stored if the desired SNR range is large. Thus, we use

the following two approaches in our design-space exploration.

1) Wide SNR range: A single NN is trained and evaluated

on a dataset that includes randomly sampled SNRs in a desired

range [SNRmin, SNRmax].
2) Split SNR ranges: A set of K models is trained, each on

a single SNR. Specifically, model k ∈ {0, . . . ,K−1}, is used

in the range [SNRmin+kSNRstep, SNRmin+(k + 1)SNRstep),
where SNRstep , 1

K
(SNRmax−SNRmin). The training SNR

is chosen as the midpoint of each range. Finally, all NN

parameters are stored and only the appropriate NN is selected

and used for inference depending on the SNR.

C. Fixed-point Quantization

To further reduce the memory and computation require-

ments, we use the pre-trained set of floating-point Pareto-

optimal NN architectures obtained from the first step de-

scribed in Section III-A and re-train them with the addition

of quantization. We quantize the weights, the biases, and

the activations in each layer of the NN. Recent works have

shown that deterministic quantization outperforms stochastic

quantization [22]. It has been shown that FC-NNs and CNNs

generally do not need a large bit-width to maintain good

performance, but that the limited dynamic range of fixed-

point numbers may be problematic. From our dynamic range

analysis, we found that we could get the same precision

with fewer bits using an asymmetric quantization scheme.

Therefore, to maximize the performance we use deterministic

uniform affine quantization to quantize a set of floating-point

variables X to a set of fixed-point variables XQ with a bit-

width Q. Each element x ∈ X is quantized as:

xint = round
( x

∆

)

, (4)

xQ = clamp(xint, 0, 2
Q − 1), (5)

where clamp(x, a, b) , max(min(x, b), a) with a ≤ b and the

scaling factor ∆ is defined as:

∆ =
max(X )−min(X )

2Q − 1
. (6)

The derivative of the quantization function is zero almost ev-

erywhere, so we use a straight-through estimator for BP [23].



Fig. 3. Design-space exploration where each point represents a single FC-NN
that is used for the entire SNR range from 0 dB to 30 dB. The line represents
the Pareto frontier.

The weights in different layers can have significantly differ-

ent distributions. For the same bit-width Q, smaller parameter

ranges can be represented with higher precision than larger

parameter ranges. Due to the different distributions for the pa-

rameters in each layer, using a common bit-width Q and range

∆ for all layers and parameter types (i.e., weights, biases, and

activations) is generally not ideal. By allowing distinct ranges

∆ and bit-widths Q for each layer and parameter type, we

can reduce the quantization error, at a small cost of storing

three scaling values per layer. We note that this overhead is

included in the model size results and we report the worst-case

bit-width in our results in Section IV.

D. Neuron Pruning

To reduce both memory and computational complexity even

further, we also apply a pruning approach based on the average

percentage of zeros (APoZ) proposed in [13], as a showcase.

The APoZ is defined as the percentage (or, equivalently,

fraction) of zero-valued neuron activations of a particular

neuron over a set of N inputs. Let O
(l)
c (n) denote the output

of neuron c in layer l for input sample n. Then, the APoZ(l)
c

of neuron c in layer l is defined as:

APoZ(l)
c =

1

N

N
∑

n=1

I

(

O(l)
c (n) = 0

)

, (7)

where I(·) is an indicator function. All neurons in the NN

for which APoZ(l)
c is smaller than some threshold t are

pruned. The threshold t is gradually increased in steps of

1% and pruning is followed by retraining to compensate

for any performance degradation. To keep the design space

size reasonable, only the set of pre-trained Pareto-optimal

quantized NNs obtained from the procedure of Section III-C

are considered and re-trained with pruning.

IV. RESULTS

In this section, we present and interpret the results of

our design-space exploration. We note that our goal is not

Fig. 4. Design-space exploration where each point represents three distinct
FC-NNs that are used for the SNR range from 0 dB to 30 dB. The lines
represent the Pareto frontiers for each FC-NN.

to directly compare our results to previous work but rather

to compare the various complexity-reduction methods in a

well-defined and fully-controlled environment against our own

baseline solution. Moreover, the works of [5]–[8] consider a

different setting than our work and the methodology that we

explore can also be applied verbatim to these works.

We consider SNRs ranging from 0 dB to 30 dB, which are

practically relevant for a modern OFDM-based system that

uses adaptive modulation and coding. Each OFDM symbol

contains 72 data symbols and 24 pilot symbols. A preliminary

exploration showed that, for W > 160 and D > 6 no

denoising performance increase is obtained, while for W < 32
and D < 2 the performance is far from satisfactory. Moreover,

only multiples of 32 are explored for W for two reasons:

1) to reduce the design space, as time-consuming training is

required in order to obtain the denoising performance of each

considered NN architecture and 2) because communications

hardware typically uses vector processors where the vector

sizes are powers two. Finally, we consider the two activation

functions which are used in the related works and are also

generally the most widely used, namely tanh and ReLU. As

such, the explored parameter ranges are:

W ∈ {32, 64, 96, 128, 160}, (8)

D ∈ {2, 4, 5, 6}, (9)

ACT ∈ {tanh,ReLU}. (10)

For the quantization bit-width, we consider

Q ∈ {8, 10, 12, 16, 32} in order to cover commonly

supported bit-widths and some additional in-between values.

A. NN Configuration Improvement

Fig. 3 and Fig. 4 show the results of our design-space

exploration only for the floating-point FC-NN configuration

(i.e., not considering quantization or pruning yet) for the cases

where a single FC-NN and K = 3 distinct FC-NNs are used

for the SNR range of interest, respectively. We observe that



Fig. 5. Performance of Pareto-optimal FC-NNs after quantization for different
bit-widths Q ∈ {8, 10, 12, 16, 32}.

the model size versus performance trade-off curve is steep in

both cases and levels off quickly after some model size. This

shows that it is crucial to carefully select an appropriate NN

configuration in order to maximize the denoising gain for a

given model size constraint or to minimize the model size for

a given denoising gain target.

B. Improving Across a Wide SNR range

By comparing Fig. 3 and Fig. 4, we also observe that, as

expected, the K = 3 distinct FC-NNs have a better denoising

gain than the single FC-NN over the SNR ranges where they

are used (Section III-B2). Moreover, we observe that a lower

denoising gain is achieved at low SNRs than at high SNRs

due to the limiting effect of the additive Gaussian noise at

low SNRs. The average performance of the single FC-NN is

limited by the performance at low SNRs.

The results for different values of K (with K = 1
corresponding to the single large SNR range FC-NN) are

summarized in the second column of Table II, where we show

the average denoising performance over the entire range of

interest. Moreover, for K > 1 we report the worst-case number

of MACs for the largest FC-NN and the sum of the model sizes

of all K FC-NNs. We observe that, without quantization or

pruning, using K = 4 results in a 1.08 dB better denoising

gain with 83% fewer MACs and a 33% smaller model size

compared to the K = 1 case.

C. Fixed-Point Quantization

In Fig. 5 we show the denoising gain as a function of the

quantization bit-width for the cases where a single FC-NN

and K = 3 distinct FC-NNs are used for the SNR range of

interest. For this evaluation, we selected Pareto-optimal FC-

NN configurations for each case from the previous design-

space exploration step from Section IV-B. We observe that all

considered FC-NNs are quite robust to quantization down to a

bit-width of Q = 10 bits, while a significant performance

degradation starts appearing for Q = 8 bits. Interestingly,

Fig. 6. Performance of Pareto-optimal FC-NNs after neuron pruning for
different thresholds t resulting in different percentages of pruned neurons.

all FC-NNs have a very similar robustness with respect to

quantization, although the single FC-NN seems to suffer a

slightly larger loss when going from Q = 32 to Q = 10.

In the third column of Table II, we observe that, with fixed-

point quantization using Q = 10, selecting K = 4 results in

a 1.42 dB better denoising gain with 83% fewer MACs and a

33% smaller model size compared to the K = 1 case.

D. Neuron Pruning

In Fig. 6 we show the denoising gain as a function of the

percentage of pruned neurons for the cases where a single FC-

NN and K = 3 distinct FC-NNs are used for the SNR range of

interest. Different percentages of pruned neurons are obtained

by varying the pruning threshold t and pruning is applied to

the Pareto-optimal quantized FC-NNs from Section IV-C. We

observe that the single FC-NN is initially sensitive to pruning

and shows a performance loss of approximately 0.5 dB when

pruning 10% of the neurons. However, after that point the sin-

gle FC-NN is very robust to pruning and approximately 48%

of the neurons can be pruned without a significant additional

performance degradation. For the case where K = 3, all FC-

NNs degrade much more gracefully with increasing neuron

pruning percentages, but only about 20% pruning is possible

without a significant performance degradation.

In the fourth column of Table II, we observe that, when

combining both quantization and pruning, selecting K = 3
results in a 1.35 dB better denoising gain with 74% fewer

MACs and a 23% smaller model size compared to the K = 1
case. We note that, based on the previous results, 48% pruning

is used for K = 1 and 20% pruning is used for K ≥ 1. Due

to the more limited pruning that is possible for the K > 1
cases, in this scenario the solution with K = 4 actually has

a 3% larger model size than the solution with K = 1, but it

can achieve a 1.62 dB better denoising gain.

V. DISCUSSION

In this section, we briefly discuss some other common NN

techniques that we considered in our design-space exploration



TABLE II
COMPARISON OF THE AVERAGE DENOISING PERFORMANCE, MACS, AND MODEL SIZE OVER THE SNR RANGE FROM 0 DB TO 30 DB FOR VARIOUS

NUMBERS K OF DISTINCT NNS.

Q = 32 Q = 10 Q = 10 & pruning
Models Perf. MACs Model Size Perf. MACs Model Size Perf. MACs Model Size

1 5.75 dB 62000 248.00 KB 5.40 dB 62000 77.50 KB 5.12 dB 33159 41.44 KB
2 6.01 dB 10416 83.00 KB 5.80 dB 10416 26.00 KB 5.79 dB 8547 21.40 KB
3 6.60 dB 10416 125.00 KB 6.58 dB 10416 39.00 KB 6.47 dB 8547 32.00 KB

4 6.83 dB 10416 166.70 KB 6.82 dB 10416 52.10 KB 6.74 dB 8547 42.70 KB

1For reference, the average denoising gain for the ideal MMSE estimator with perfect knowledge of the channel covariance matrix in this SNR range is 9.1 dB and the denoising

gain of a more realistic MMSE estimator that uses 100 samples to estimate the channel covariance matrix is 5.22 dB.

but that did not give significant improvements. The LS channel

estimates are complex-valued, meaning that we need to split

the complex input into real and imaginary parts in order to

use standard real-valued NNs. We attempted to directly use

complex-valued NNs, but did not obtain any noteworthy im-

provements in neither performance nor complexity. Moreover,

to see if we could reduce the model size of the K > 1 models

we tried to re-use some of the first layers across different

SNR ranges, as we hypothesized that the features in the first

layers might be similar. This did not improve the performance

and, in some cases, even made it worse. Finally, we also

attempted to use one-dimensional CNNs, but this resulted in

worse denoising performance with higher complexity.

VI. CONCLUSIONS

In this work, we performed a systematic design-space

exploration of denoising NNs for channel estimation in OFDM

systems. We showed that carefully exploring and selecting

the NN configuration is necessary to obtain Pareto-optimal

performance-complexity trade-offs. Moreover, we confirmed

that quantization and pruning are effective complexity-

reduction methods for this application. Specifically, when

applied to Pareto-optimal model configuration, a bit-width of

Q = 10 bits is sufficient for the examined channel denoising

scenario. After selecting and quantizing a model often almost

50% of the neurons can be pruned with negligible performance

degradation in comparison to the floating-point Pareto optimal

counterpart. Finally, we showed that, during all steps of our

design-space exploration using multiple distinct NNs trained

for different SNR ranges can be more effective than using a

single NN trained over the entire SNR range of interest. For

example, when using both quantization and pruning, K = 3
distinct NNs have a 1.35 dB better average denoising gain

while also being 74% less computationally complex and 23%

smaller in terms of the model size.
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