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Abstract—A discrete (binary-input 29-ary output) communica-
tion channel with memory is introduced with the objective tojudi-
ciously capture both the statistical memory and the soft-deision
information of time-correlated fading channels modulated via
binary phase-shift keying and coherently demodulated withan
output quantizer of resolution q. It is shown that the discrete
channel can be explicitly described in terms of its binary imput
process and &%-ary noise process. It is also shown that the chan-
nel is symmetric and admits a simple expression for its capity
when its noise is stationary ergodic. The29-ary noise process is
next modeled via a generalized version of the recently studd
binary queue-based channel (2007) to produce a mathematiya
tractable stationary ergodic M'th order Markovian noise source
with 29 + 2 parameters. Numerical results indicate that the
capacity of the discrete channel withq = 2,3 is substantially
improved over the cases of perfect channel interleaving (wibh
yields an equivalent memoryless channel) and of hard-dedén
demodulation (g = 1). These results point to potentially large
performance gains achievable by designing coding schemesr f
this discrete channel that exploit both its memory and soft-
decision information, as opposed to ignoring either of them

I. INTRODUCTION

Wireless communication channels undergo time-varyiﬂ

multipath fading that is modeled as a time-correlated ramd
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fading channels were proposed in [6]-[9]. Besides the main
interest in binary channels, information-theoretic stsdieveal
that soft-decision information can significantly increabe
capacity for several classes of channels, including additi
white Gaussian noise (AWGN) channels [10], [11], memory-
less (fully interleaved) Rayleigh fading channels [12]ditigle
colored Gaussian noise channels and intersymbol interdere
channels [10]. This work aims at developing simple non-
binary-output FSMC models for time-correlated flat fading
channels that capture both their memory and their softsitsti
information. The new models may be used in designing
new coding/decoding schemes for soft-decision demodiilate
channels with memory that result in superior performanas ov
systems that ignore the channel’'s memory (via interlegving
and/or soft-decision information (via hard demodulation)

We consider a discrete channel composed of a binary
phase-shift keying (BPSK) modulator, a time-correlated fla
Rayleigh fading channel, and @bit soft-quantized coherent
demodulator. Motivated by the results in [11], [12], whetre i
is, shown that, for memoryless channels, important capacity

ains are achieved over the hard-decision qgse: 1) with
small values of;, we considery = 2, 3.

process. Due to the statistical dependence of successiviyfa first d ive the bi nout di i lated
samples, the channel exhibits memory. The development ofWe Irst ~describe the binary-input discrete  correlate

iterative decoding schemes for codes (such as Iow-denﬁ yleigh ff’;\ding commgnication channel with soft-decision
parity-check and turbo codes) that achieve the capaciiy éim d modulatlon of re;o(jlutloq gmd }show :]ha.t there exists2a-
memoryless channels, when they operate on binary chanrfdlj N0IS€ Process (independent rom_t € 'F‘F’“t process)cim_s_u
with memory, was considered in [1]-[3]. These works assu way that thezq_—ary c_>utput Process 15 written as an ex_pI|C|t
that the discrete channel (from the input of the modulat H!”C“OF‘ of th;’_ bmaryn;lput a?g not:se procbe_ss. we refe;lgcth
to the output of the hard-quantized demodulator) is mOde:_ﬁglary-lerItBl\llslgéetel\(I: anne th € non-f |nar3|/ noiser I

as a binary finite state Markov channel (FSMC) model a annel ( ) ). Next, we derive a formula as well as
incorporate the FSMC structure in the decoding process anle (nqmencal!y computable) upper apd Ipwer pounds for
order to exploit the channel statistical memory. Signiftcaﬁ € cda_lpacr;]y Ef this changeltwher: ':.S noise 1s Zt_atlon_aryl and
performance gain is reported relative to traditional soeaemferg_o ic (whic CO”V\?SPOH 1o 2S|at'10nar¥ ergodic undigfy h
that ignore the channel memory via perfect interleavinghis aBKlwngr(_)ceszsq). ?\AniXt model the noise dpl;ocesz_fo_ the
latter case, the achievable rates are smaller than thodeeof V||a§1 -a(tjry grbpv process gte)nerzéte Dy modilying
original channel, since it is well known that memory increms M€ recently introduced binary queue-based noise pro&gss [

capacity for a wide class of information stable channelg. (e.Th,e resulting non—pinary q.ueue—based .(QB) noise source is a
see [4], [5]). M'th order Markovian stationary ergodic process with+ 2

Binary FSMC models that accurately approximate har(iﬁdependent parameters. Closed-form expressions foradeve

decision demodulated correlated Rayleigh and Rician flﬁtﬁt'St'.CS and the entropy rate of the QB noise process are
established. We then conduct a numerical study to evaluate

This work was supported in part by NSERC of Canada and CNPqaxiB the effect of the model parameters (such as the demodulator



resolutiong, noise memory orded/, and noise correlation where v = FE,/N, is the signal-to-noise ratio (SNR)
coefficient) on the capacity of the NBNDC with QB noise. Irand Q(z) = 1/v2w [ exp{—t?/2}dt is the GaussiarQ-
related work, the modeling of non-binary channels via hidddunction. Due to the symmetry of the BPSK constellation and
Markov models has been considered in [13], [14]. Howevahe quantizer thresholds, we observe from (1) tha(ay) =
unlike what is herein developed, these works do not provigde_; 2s—1—;(ax). We may also write

explicit expressions for the channel statistics and capacid

are hence less amenable for tractable mathematical asalysi gij(ak) = o, 1=01 (ax)

fori € X, j € V. For integern > 1, let Pr(y” | 2™, a") =
PriYi =yi,....Y0 =yn | X1 = 21,..., Xy, = 29, A1 =
A. Discrete Fading Channel with Soft-Decision Demodulatioa, - - - A,, = a,,). Thus

II. THE NON-BINARY NOISE DISCRETECHANNEL MODEL

We consider a discrete fading channel (DFC) composed of a n n
binary BPSK modulator, a time-correlated flat Rayleighfigdi Pr(v” | ",a") = [T dwrwn(ar) = T 4y mco-ney (ar).
channel with AWGN, and a-bit soft-quantized coherent k=1 =1 U
demodulator. We define the input and output alphabets of tliee DFC is thus probabilistically specified in terms of the
discrete channel byt = {0,1}, ¥ = {0,1,---,29 — 1}, channel block conditional probability
respectively. The complex envelope of the fading process, ") ni o A N . N
G(t), is a zero-mean complex wide-sense stationary Gaussian’ o (y" [2") = Pr(Y" =y" [ X" =2")
process with a known covariance function. The sample of the

fading envelope at théth signaling interval A, = |G(kT)], = Eara, | [[ag me-cr-ve (A)| (2)
whereT is the symbol interval, has the Rayleigh probability =1 (CDTF

density function with a unit second moment. LéXx}, \yhere Y = (Y1, ,yn), " = (21, - ,2,) and Ex[]
Xp € X, k =1,2,--, be the input process to the discretgenotes expectation with respect to the random variable

channel. The sampled received symbol at the output of tF—‘Sr n = 1, a closed-form expression fdPD(Flc)

. . L . . ), j €Y, is
matched filter at théth signaling interval is written as () i€y

given by [19]
R = VEASk + Ney K =1,2,-- PR () = m(=Tj1) = m(-Ty) (3)

where{Si} = {(2X,—1)}, E; is the energy of the transmittedwhere

signal, { N} is a sequence of independent and identically -
distributed zero-mean Gaussian random variables with vari ll —Q <ij>] e‘(%il)
ance Ny/2, {Ax} is a stationary time-correlated Rayleigh 141

process. The processdst;} and {N,} are independent of m(T)) =1 —Q(T}+/27) — -

each other and of the input process. The random variBhle 51

is demodulated via g-bit uniform scalar quantizer to yield
the discrete channel outplij, € Y as follows

The expected value in (2) can be directly calculatedifet 3
since the joint probability density function of arbitrgritor-

Vi =4, if Rye(T_,,T) related Rayleigh and Rician random variables is only known
’ I in closed form forn < 3 (e.g., see [15], [16]); for. > 3, (2)
for j € ). The thresholdg? are uniformly spaced with step-can however be determined via simulations.
size A, satisfying [12] We next provide an alternative representation for the DFC.
—00, if j=-1 B. Alternative DFC Model: The Non-Binary Noise Channel
Tj=q G+1-207HA, if j=0,1,---,29-2 It is often convenient to express the channel output process
00, if j=29-1. {v;} as an explicit function of the input proce$x’;} and a

noise proces$Z; }, where{Z;} and{ X} are independent of

each other (e.g., see [18, p. 183]). In this case, one canlmode

(j+1—20-1)5, for j — 0,1.--- ,2¢ — 2. The conditional _the noise process via a f|n|te-sta_te Mark_ov model which is an
. A , ) important analytical tool for coding design and performanc

probability ¢; ;(ax) = Pr(Yy = j | Xk =4, Ay = ax), where . .

e X y"and 0 ¢an be determined as follo S_evaluatlon for channels with memory.

ted e ax € [0,00), ! WS- Consider now the following non-binary noise discrete chan-

qm-(ak) = PI‘(T;_l < Rp < T; | X = i,Ak = ak) nel (NBNDC)

Settings £ A/VE; andT; £ T}/VE, as the normalized
step-size and thresholds, respectively, we can wfife=

— (99 _ _1\X
= Pr(ijl —(2i — Dag < % <Tj— (20 — 1)ak) Yie = (2 DXy + (=1)**Zg ()
for k = 1,2,---. We assume that the noise procéss;} in

=Q(V2Y(Tj—1 — (2i — ax)) — (4) is independent of the inp§tX}} and is governed by the-
Q(v27 (Tj - (2i — 1)ay)) (1) fold distribution Peibe(2™) 2 PUhe(Zy = 21, -+, Zn = 2n),



for 2, € ). It directly follows from (4) and the fact that thewhere Z" = (w™ — (29 — 1)z")/(—1)*" denotes the tuple
input and noise process are independent from each other wiatiained from component-wise operations, i(€; = (w; —
the NBNDC n-fold conditional probability is given by (29 — Dq)/(—=1)*2, -+ Zp = wy, — (29 — D)zy) /(—1)*).
The probability assignment (8) is valid since

Pite(y" | ") = Pie(=") (5)
1 = Z Pr(Z" = 2")

where ameyn

Yk — (27 — 1)y, ( w" — (27 — 1)x”)

=" k=1, ,n. = Pr( 2" = ——F— 5"
1 P 17

Now, note that if the distribution of the noise procgss. } of _ Pr(W™ = w"
the NBNDC in (5) is given by (2) for each, then the DFC o Z r( =w").

and the NBNDC have the same channel block conditional wrewn

probability. Therefore, the NBNDC provides an alternativéhe process{IV,} is stationary since{Z} is stationary;
representation of the DFC. In the special case whea 1 indeed for any integem > 0, w™ € W",

(hard-decision dequulation), t_he NBNDC expression in (4) Pr(Wism = w1, , Wi = wn)
reduces to the familiar expression

29 —1
= Z Pr<Zl+m:w1+( )xla"'7

Yi =X ® Zg (—1)z

anexn
(whered denotes addition modulo 2) which is widely adopted g wn (27— 1)%)
to model binary (binary-input binary-output) additiveise® nbm (—1)zn
discrete channels with memory [5], [6]. Furthermore{ #; } .
is memoryless, than we obtain the memoryless binary sym- = Z Pr<Z1 — w’ e
metric channel (BSC) which represents the fully interleave zrexn (=)=
DFC. The channel capacity of the NBNDC with stationary Wy, — (29 = 1)z,
ergodic noise{ Z;,} is studied in the next sectidn. Zn = W)
IIl. CHANNEL CAPACITY = Pr(Wy=wq, -, W, =wy,).

Consider the NBNDC described by (4) where the noise Example 1:Let ¢ = 2 and aj = Pr(Z, = j). The

process{Z;} is stationary ergodic. The channel capacity, iprobability distribution ofi¥; is given by
bits per channel use, for this information stable channel is

given by [17], [20] (Pr(W1 =0),Pr(W1 =1)) = (a0 + a3, o1 + az).
C = lim C™ =sup C™ (6) Letw; ; = Pr(Zy, =i, Zy+1 = j). The probability distribution
n—oo n of W2 is given by

where C(™ £ max, ) 2I1(X™;Y™), where the maximum (Pr(W? = 00), Pr(W? = 01), Pr(W? = 10), Pr(W? = 11))
is taken with respect to all input distributiongz™) and _
I(X™; Y"™) denotes the block mutual information betweki
andY™. I(X™;Y"™) can be written as follows

(o0 + a3 + 30 + 33,01 + o2 + 31 + a3 2,
ajo+orz+oagg+ags, o+ o+ a4 az2).
(X" Y™) = HY™) - HY"™ | X") = H(Y"™) — H(Z") Consider the™ x 27" channel transition probability matrix

. Q" = [p,fB’ﬁ,)DC(yﬂx")] corresponding ta. channel uses, where
whereH (-) denotes entropy and the last equality follows froreach row (resp. column) d)” is indexed by a sequencg®

(4) and the independence &f" and Z". Thus (resp.y™). It can be shown tha@Q" is symmetric [17] since
1 its columns can be partitioned inf7—1)" arrays, where each
c = - (H(lmg[H(Yn)] - H(Z"))- (7) array is of size2” x 2" with the property that its columns are
p(z™

_ o o ~ permutations of each other and its rows are permutations of
The capacity achieving input distribution that maximizegach other [17, p. 94]. This symmetry implies that the channe
H(Y™) is determined next. capacity is achieved by a uniform input distribution [1798].

Definition 1: Let W = {0,1,---2797! — 1} and let{W}}, Proposition 1: The value ofH (Y™) under a uniform input
Wy € W, be a process with-fold probability distribution distribution overX™ = {0,1}" is given by

Pr(W" =w") = 3 Pr(Z" il Gl _(gq);l)xn) @) max[H(Y™)] = n+HW"). 9)

zneXxn
Proof: We need to calculate
INote that the stationary noisgZ,} defined by (5) and (2) is ergodic
when the covariance function of the fading procésg) is asymptotically HY")= - Z Pr(Y" = yn) logy Pr(Y™ = yn) (10)
vanishing (such as the Clarke covariance function). yreyn



for a uniform input distribution. In this case

1 y" — (27— 1)z
ny = Priztn==——~"—_"""_1 (11
ERE P S )@
ZIJ”GX”
According to the symmetry 0", the probability (11) is the
same for2™ distinct values ofy™. Substituting (11) into (10)
and using Definition 1, we have

distribution of the balls in the urn, and correlation paréens:
ando, where0 < e < 1, « > 0. The state processS } 7>
of the QB noise, defined b§, £ (Zx, Zr_1, -, Zx—rr4+1),

is a homogeneous first-order Markov process with an alphabet
of size 2‘1M. Let p;; denote the conditional probability that
Sx = j given thatSy_; = i, wherei = (ig, -+ ,ip—1),

Jj= (30, <y im—1)forigjee Y, £€0,--- M —1. We let

the rows and columns of the state transition probabilityrixat

— 00

max[H(Y")] = — Z Pr(W" = w™)log, (M) denoted byP, be indexed by the vectoisandj, respectively.
p(am) whepyn 2 The (i, j)th entry of the matrixP = [p;;] is given by
and hence (9) follows. [ ] M—2
Substituting (9) into (71) yields Pij = (% 8josie T adjoyiMl> 7 -1+a + (1 —¢)pj,
C™ =14 —[HW™"™) - H(Z")]. 12 B
* n[ U (2" (12) if joy1 =id¢,ford=0,---M—2,0r otherwisq%l- = 0, where
Corollary 1: The channel capacity (6) is given by .
1, ifi=j
— 1 (n) 51 i = .
C = nl;n;OC 7 {0, if ¢ # j.
1
= 14 lim —[H(W™) — H(Z™)] (13) It can be shown that thih component of the state stationary
nmee distribution column vectorII = [r,] is given by
= 1+H(W)-H(Z) (14) .
29-1&,—1
in bits/channel use, wherg(W) £ lim,, .. (1/n)H(W™) H i‘[ < 1-¢) pﬁ_m#)
and H(Z) £ lim, . (1/n)H(Z™) denote the entropy rates 70 m=0 M—-1+a
of {W,} and{Z,}, respectively. - M1 (16)
In the case of hard-decision demodulation € 1), the H ((1 —¢€) +k#)
entropy H(W") = 0 for all n, and the expression for k=0 M-1+a

channel capacity in (14) reduces to the well-known formula 1
C =1-H(Z) (e.g., see [5]). We can directly obtain upper anﬁ'herenkzo('.).: 1 ami@
lower bounds orC' using (13). Sincef (2")/n is decreasing P10¢K Probability Peg(=")
in n for a stationary processZ, }, we have

= ny:gl di, ¢ Thus the QB noise
£ Pr(Z™ = 2") is as follows:

o For blocklengthn < M
C' < min {1, 1+ %H(W”) - H(Z)} 20m. (15)

PQ(;l) (Zn) _ =0 m=0

Combining (15) with the lower bound™ < C' yields

_ 3
cm <o<c —1+a>
k=0

V. NON-BINARY QUEUE-BASED MARKOVIAN NOISE whereg; = 370, 0z 0.

The binary queue-based channel was recently introduced¢ For blocklengthn > M + 1
in [5] to model a binary channel with a stationary ergodic n i—1
binary M’th-order additive Markov noise via a finite queue. P (") = H K Z Oiyze T Oé5zi.,ziM>
We herein generalize the binary queue set up of [5] to i=M+1 L \e=i—M+1
produce a tractable non-binary Markovian noise model for €
the NBNDC. The non-binary queue-based (QB) noise process “M_1ta + (1= €)pz| T, 2r) (17)

{Zk}324, Z, € Y, is generated by slightly modifying the two- . o .
parcel procedure in [5]: given that we now operate on balls where the expression for(,, ) is given in (16).
with |y| — 924 different colors (|nstead of 0n|y two C0|0rs) WeThe correlation coefficient for the QB noise is a non- ne@.uv
assume that the second parcel (the urn) contains ballsstbéjuantity given by
with symbols in ) satisfying the probablllty .d|§tr|but|on  E[ZkZk1a] — E[Z4)?
(po, p1,--- ,p2a_1); See [5] for a detailed description of the Cor=

. . . . Var(Zy,)
procedure. The resulting QB noise process is a stationary
ergodic M’th order Markov source and has onBf + 2 where VafZ,) denotes the variance of;. We conclude
independent parameters (as opposed to a general Markovhia section by establishing a closed-form expression tier t
process which would require in the order 2f* number entropy rate(Z) of the QB noise. Letwy, - ,wqa_1 be
of parameters): the size of the queud, the probability non-negative integers such that + --- + woe_1 = M — 1

ZM

— M7€1+a
1—-(M-2+aq)

€
M—-1+«



and let the probability distributions;, ¢ = 0,--- ,29 — 1, be approximately the same value 6ffor all models. Thus, the

defined as values of$ tabulated in [12] for the DMC can also be used
wo & (w; + a)e for the NBNDC with QB noise.
I = (m + (L —¢€)po, -, M-_1+ta + (L —¢)ps, The effects of the parametedd anda on the capacity of
the NBNDC with QB noise are next illustrated in Fig. 2 for
. _Wae-ie (1- E)pgql) . guantization parameters= 2 andd = 0.44 and SNRy =5
M-1+a dB. The following properties were proved for the channehwit
Then binary QB noise [5]: (i) its capacity strictly increases hvit
M-1 M-1 for fixed M > 2, distribution(po, p1) and Cor; (ii) its capacity
H(Z) = Z e Z < M—1 ) X increases with\/, for fixed (pg, p1) and Cor wherw < 1. The
00 wag a=0 WO, Wi, -, Waa—1 curves in Fig. 2 numerically point out that these two capacit

Liwestwr o wse VH(T0) + Liwe ws 41 wng - H(T properties are alsf_o valid for the NBNDC wiﬂ‘i—ary QB noise,
w101, w1 H (T0) (wowr 1, e H(TD) where property (ii) holds forv less than a certain threshold.

+ -+ Liwgwn e swsa 1 +1)H (T2a-1)] Fig. 3 presents upper and lower capacity bounds versus
Cor for M =2, « = 0.5 andq = 1,2,3 with v = 5 dB,

where and§ = 0.44 wheng = 2, andd = 0.24 wheng = 3.
2ol fued € For comparison purposes, we also provide the capacity of
H H (1 —&)pe + " —1ta the memoryless fading channel with unquantized output and

Lwo,wr, - swsa_1) = ZZOM:T:O either without channel state information at both the trattem

M-1+a« state information at only the receiver (labeled DMC-CSI)][2
These capacities represent the largest achievable ratks un
V. CAPACITY NUMERICAL STUDY perfect interleaving for an unquantized Rayleigh fadingreh
In this section, we present numerical results to examine thel without or with channel state information, respectel
behavior of the channel capacity of the NBNDC with QB nois#/e remark from the figure that quantization resolutions @y on
in terms of the demodulator resolutignnoise memory order 2 or 3 bits produce important capacity gains for our channel
M and correlation coefficient Cor. with memory relative to the hard-quantizeg=¢ 1) and fully
Since the noise process is described in term%f- 2 interleaved (Cor= 0) channels. For example, when Cer0.3,
independent parametefgiy, - - - , p2a—1), €, & and M, we fix the capacity gain o0V (¢ = 3) over C1V (¢ = 1) is
the values of po, - - - , p2a_1) SO that we can assess the effects8.5%; it is 26.5% when we compare®?) (¢ = 3) with
of o, M, ande (or equivalently Cor) on the channel capacitythe BSC (Cor= 0,¢ = 1). Furthermore, for each value qf
As the underlying physical channel is the time-correlatgtiere is a minimal value of noise correlation Cor for which
Rayleigh fading channel described in Section 11.B, we abtathe capacity of the NBNDC with QB noise is larger than that
the values of(pg, - - - ,paa_1) by settingp; = pggg(j) for of the corresponding unquantized memoryless channel.€Thes
j=0,---,20-1, where PV (j) is given by (3) in terms of capacity gains indicate that exploiting the noise memory is
the quantization parametefsand¢ and the SNRy.2 more worthwhile than ignoring it via interleaving, even hwit
We first calculate the lower bound for the capacity”) low-precision quantization (small values @
using (_12) and (1_7) for as large as 11. _One_ objecFive is to VI. CONCLUSIONS
determine the optimal value of the quantization sigfn the

sense of maximizing channel capacity) under different okan We introduced a binary-inpdt'-ary output discrete Char?”‘?'
conditions. Fig. 1 shows’) versuss for ¢ — 2 and SNR (denoted by NBNDC) to properly represent both the statibtic

~ = 5 dB. For this figure, we selected three QB noise modeaemory and the soft-decision information of BPSK-modudate

with varying levels of correlation and memory. The modets a}ime-correlated Rayleigh fading channels when they arewoh
QBL (M = 2, a = 1.0, Cor= 0.3), QB2 (M = 2, a = 0.5 ently demodulated via g-bit output quantizer. The NBNDC's

Cor — 0.5) and QB3 (/ — 4, a — 2.0, Cor — 0.5). The output is explicitly described in terms of its binary inputda

capacity of the DMC (binary-inpu2?-output) with the same a 2%-ary npise. This channg_l redu_ces to the fgmiliar binary
values ofq, ¢, v is also shown as a reference. Note that tlg‘ag':jel W'_th rr(;odul?j-Zl athmv\(/avnc:jlse_ wgen:_l ('ie']; undi;
DMC can be regarded as the channel resulting when perf g{d-aecision aemodula lon). We derive asimpie forma (.
interleaving is employed on the NBNDC (with— 0 or Cor— well as computable upper and lower bounds) for its capacity

0). We observe from the curves that capacity is maximized prder stationary ergod_lc hoise. We .also genergllzed tharpin .
gueue-based (QB) noise process introduced in [5] to obtain
2Note that we herein choose the QB noise parameters so thathenfirst- @ 29-ary QB stationary ergodid/th order Markovian noise
order statistics of the NBNDC and the underlying fading ctedrare matched model that is mathematically tractable (being fully ddsed
i.e.,pj = Pé,:lg (j)). As stated in the conclusions, a systematic fitting of

the QB noise parameters to the DFC (conducted, as in [7], loymiEing the 3The capacity of the DMCs (corresponding to the case €o0) with
Kullback-Leibler divergence rate between the DFC and theNRB noise increasing values of converges to the value indicated by DMC-noCSI when
sources will be undertaken in future work. q — oo andé — 0 [19].

H ((1 otk € > . and the receiver (labeled DMC-noCSl) [19] or with channel

k=0



in terms of2¢ + 2 parameters as opposed 26" parame-

ters

needed for a general non-binavi/th order Markovian

source). We established closed-form analytical exprasdior

the statistics and the entropy rate of tb&-ary QB noise

process in terms of it&8? + 2 parameters. Finally, we carried
a numerical study for the capacity of our NBNDC with QB
noise, revealing substantial capacity gains over the cabes
perfect channel interleaving and hard-decision demoibmat

via the use of only 2 or 3-bit output quantization.
In future work, we plan to fit the discrete soft-quantized
correlated fading channel via the NBNDC with QB noise and
validate the modeling in terms of codeword error probapilit
under error correcting codes. In light of the capacity gains
shown in Section V, another interesting direction is the-con
struction of practical high-performing codes that explmth

the channel's noise memory and soft-decision information.

cn

cn

1 T T T T T T T T
QB3 a
QB2 B

QBl1 ——

0.95 - DMC --=—- -

09 [ B

085 T

06 ! ! ! ! ! ! ! !

0.9

Fig. 1. C(1 (bits/channel use) versusfor ¢ = 2, v = 5 dB.

1 T T T

07 ! ! ! !

10
«

Fig. 2. ¢ (bits/channel use) versus for ¢ = 2, v = 5 dB, § = 0.44.

(1]
(2]

(3]

REFERENCES

J. Garcia-Frias and J. D. Villasenor, “Turbo decodingGifbert-Elliott

channels,"IEEE Trans. Communyol. 50, pp. 357-363, Mar. 2002.

A. W. Eckford, F. R. Kschischang and S. Pasupathy, “Asilyof low-
density parity check codes for the Gilbert-Elliott chahéEEE Trans.
Inform. Theory vol.51, pp. 3872-3889, Nov. 2005.

C. Nicola, F. Alajaji, and T. Linder, “Decoding LDPC casleover
binary channels with additive Markov noise,” Rroc. Ninth Canadian

Workshop Inform. TheoryMontreal, Canada, June 2005, pp. 187-190.

Capacity

Fig. 3.

0.95 - 1

DMC-CS|

DMC-noCSI

06 ! ! ! !
0

0.5

Cor

Upper and lower capacity bounds (bits/channel usejus Cor for

v =5dB, ¢ = 1,2, 3. The QB noise model has parametéfs= 2, « = 0.5.

(4]
(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

R. L. Dobrushin and M. S. Pinsker, “Memory increases $raission
capacity”, Probl. Pered. Inform.vol. 5, no. 1, pp. 94-95, 1969.

L. Zhong, F. Alajaji and G. Takahara, “A binary commurtica channel
with memory based on a finite queudBEE Trans. Inform. Theory,
vol. 53, pp. 2815-2840, Aug. 2007.

W. Turin and R. van Nobelen, “Hidden Markov modeling oftffading

channels,”IEEE J. Select. Areas Commurvol. 16, pp. 1809-1817,
Dec. 1998.

L. Zhong, F. Alajaji and G. Takahara, “A model for corrd Rician

fading channels based on a finite queud&EE Trans. Veh. Technol.
vol. 57, pp. 79-89, Jan. 2008.

P. Sadeghi and P. Rapajic, “Capacity analysis for fisttte Markov
mapping of flat-fading channelsIEEE Trans. Commun.vol. 53,

pp. 833-840, May 2005.

C. Pimentel and . F. Blake, “Modeling burst channelsngspartitioned
Fritchman's Markov models,"IEEE Trans. Veh. Technol.vol. 47,

pp.885-899, Aug. 1998.

N. Phamdo and F. Alajaji,"Soft-decision demodulatiesign for COVQ
over white, colored, and ISI Gaussian channelEEE Trans. Comm.
vol. 48, pp. 1499-1506, Sept. 2000.

J. Singh, O. Dabeer and U. Madhow, “Capacity of the ditstime

AWGN channel under output quantization,” Proc. IEEE Int. Symp.
Inform. Theory Toronto, July 2008, pp. 1218-1222.

F. Alajaji and N. Phamdo, “Soft-decision COVQ for Ragle-fading

channels,"IEEE Commun. Lettersvol. 2, pp. 162-164, June 1998.

F. Swarts and H. C. Ferreira, “Markov characterizatarchannels with
soft decision outputs,IEEE Trans. Commun.vol. 41, pp. 678-682,
May 1993.

P. Kuczynski, A. Rigolle, W. H. Gerstacker, and J. B.Heu “Hidden

Markov modeling of error patterns and soft outputs for satioh of

wideband CDMA transmission systemdfit. J. Electron. Commun.
vol. 58, pp. 256-267, 2004.

Y. Chen and C. Tellambura, “Infinite series represeomst of the

trivariate and quadrivariate Rayleigh distribution anéittapplications,”
IEEE Trans. Communvol. 53, pp. 2092-2101, Dec. 2005.

P. Dharmawansa, N. Rajatheva and C. Tellambura, “Ontrikiariate

Rician distribution,” IEEE Trans. Commun.vol. 56, pp. 1993-1997,
Dec. 2008.

R. G. Gallagernformation Theory and Reliable Communicatidvew

York: Wiley, 1968.

R. W. Yeung, A First Course in Information TheoryNew Jersey:
Springer-Verlag, 2006.

G. Taricco, “On the capacity of the binary input Gaueséad Rayleigh
fading channel,”Eur. Trans. Telecommunvol. 7, pp. 201-208, Mar.-
Apr. 1996.

S. Verd( and T. S. Han, “A general formula for channedaxzity,” IEEE

Trans. Inform. Theoryol. 40, pp. 1147-1157, July 1994.

E. K. Hall and S. G. Wilson, “Design and analysis of Turbmdes on
Rayleigh fading channelsJEEE J. Select. Areas Communol. 16,

pp. 160-174, Feb. 1998.



