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ABSTRACT 
This paper presents a novel Sparsity-driven joint Image 
REgistration and Change Detection (SIRE-CD) technique for SAR 
imagery. The proposed algorithm simultaneously performs two 
main tasks: (i) locally register the test and reference images; and 
(ii) perform the change detection between the two. The key 
innovative concept here is the sparsity-driven transformation of the 
signatures from the reference image to match to those of the test 
image at the local image patch level. In other words, we are 
constructing a large dictionary from the reference data and use that 
to find the sparsest representation that best approximates the new 
incoming test data. The accuracy level of the approximation 
determines the detected changes between the reference and the test 
image. We demonstrate the performance of this technique using 
both simulated data and real SAR imagery from the Army 
Research Laboratory ultra-wideband (UWB) SAR forward-looking 
radar.
Index Terms— image registration, change detection, synthetic 
aperture radar (SAR), sparse representation, compressed sensing. 

 
 

1. INTRODUCTION 
Change detection is a popular and crucial image processing 
process in numerous applications such as medical imaging, 
agriculture, and other remote sensing tasks. In synthetic aperture 
radar (SAR) application, many different change detection 
techniques have been developed to detect targets from changes in 
SAR images, ranging from difference test, ratio test, to subspace 
projection [1]–[4]. These SAR images from the same area are 
collected and generated at different times (minutes, hours, or even 
days).  Any changes between the SAR images that are detected by 
the algorithm are considered to be targets of interest that should be 
further investigated.

There are two major challenges that any change 
detection algorithm must face. The first challenge is the image 
registration problem. The two SAR images—referred to as the 
reference image and the test image in a change detection 
algorithm—usually are not aligned since in general it is not 
possible to keep the radar platform in the exact geometry (radar 
aperture) from one run to another.  This results in a translation and 
even some slight rotation between the two. Performances of 
change detection often depend on (besides the techniques 
involved) how well image registration can be achieved. If the 
alignment was not well performed prior to the application of the 
change detection algorithm, the resulting change detection 
performance will degrade significantly as a function of the 
accuracy of the alignment. In addition, the degree of misalignment 

between the two images usually varies throughout large areas. 
Thus, it might not be possible to achieve a good registration 
between the two images (test and reference) globally. We 
hypothesize that local geometry changes can be best captured by 
performing image registration locally.
 The second challenge is the suppression of the 
signatures from common objects that appear in both test and 
reference image scenes. In the ideal situation, after the two images 
are carefully registered, the signatures of the objects that are 
presented in both passes would be almost the same in both images. 
Hence, the signatures from common objects that appear in both 
image scenes should be well suppressed by the change detection 
algorithm. However, in reality, the image signatures of the same 
object are often different in the two images due to many reasons 
(radar calibration problem, slight change in aspect angle, noise, 
etc.). In the resulting change detection image, these different 
signatures of a common object would result in large differences, 
which would result in a high false-alarm rate. Current state-of-the-
art change detection algorithms often have difficulty in 
suppressing these differences since they simply detect any 
anomalies between the signatures of these common objects. 

Our proposed algorithm simultaneously addresses both 
problems of registration and suppression of common objects via a 
series of local sparse optimization processes. We construct a 
redundant dictionary from the reference data and use that 
dictionary to approximately represent the new incoming test data. 
The concept of sparsity in our approach contains a principal 
component analysis (PDA) flavor – only the most influential 
signatures are allowed to contribute to the linear approximation. 
However, unlike classic PDA approaches, ours is completely 
deterministic: the algorithm operates directly on the collected data 
and we have not made any effort in training the dictionary either. 
Finally, our subspace approach is locally adaptive: at the image 
patch level, we search for the optimal subspace that can be 
constructed from the reference data via a sparsity-guidance 
optimization process. This search feature accomplishes both 
critical tasks of registration and change detection simultaneously. 

2. SPARSITY-DRIVEN JOINT IMAGE 
REGISTRATION AND CHANGE DETECTION 

2.1. Notation 
Bold-faced lowercase characters denote vectors while bold-faced 
uppercase characters denote matrices. The lowercase subscript i and 
j used throughout the paper is reserved to index either image pixel 
as in xij or image patch location Xij. The Lp-norm of the vector x is 
defined as
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whereas the L0-norm of x is simply its number of significant (non-
zero) elements.  

Figure 1.  Set up for our SIRE – CD algorithm.  
 
2.2. Compressed Sensing (CS) Framework 
Supposing x is a length-N signal, it is said to be K-sparse (or K-
compressible) if x can be well approximated using K<<N
coefficients under some linear transform (e.g. DWT, DFT, or some 
constructed dictionary). Such a signal can be acquired through a 
series of incoherent linear projections 

                         y = x                                                (1) 
where y is the vector with M entries containing the measurements 
and  represents an M  ×  N incoherent sensing matrix. The CS 
framework asserts that x can be faithfully recovered from only M = 
O( K log N ) measurements via solving the following sparsity-
driven problem 
                                                                                                    (2) 

and the original signal can be reconstructed as x*  =   *. Under 
some mild conditions, the L0-norm minimization problem above can 
be efficiently solved by recasting it as a convex linear programming 
problem [5] 
            (3)                                                                                                      

In any case, the reconstructed signal can be roughly regarded as the 
sparsest (or most compressible) solution from many candidate 
solutions of the under-determined equation in (1). 
 Although our work is certainly inspired by CS, there are 
quite a few significant differences: (i) we do not need CS 
measurements via random projections – our SAR data is already 
collected; (ii) the sparsifying transform  is constructed from data 
patches; and (iii) most importantly, our algorithm operates at local 
image patch level – the sparsity K changes from patch to patch. In 
fact, behavior of K allows us to perform effective change detection. 

2.3. Sparse Representation via Dictionary of Reference Data 
Consider the two SAR images X and Y (as depicted in Figure 1) 
which cover the same physical area but are collected at two 
different times. We would like to first register the two images X
and Y, and then identify any changes between them. The test 
image Y is divided into many overlapping image patches Yij, each 
represented as an M x N matrix. Define yij as an MN × 1 column 
vector constructed from stacking N columns of Yij, i.e., 
                          yij = [ y:,j

T y:,j+1
T … y:,j+N–1

T]T                            (4) 

where
                         y:,j

T =  [yi,j yi+1,j  … yi+M–1,j].                             (5) 
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Figure 2.  Sparse representation of test image patch yij via a dictionary of 
previously collected reference data xij.

Next, define the corresponding (M+2 M) × (N+2 N) search area 
Sij in the reference image X as follows 

                                                                                                      (6) 

Obviously, the size of the search area controls the robustness of the 
algorithm with respect to registration. With this set-up, SIRE-CD 
can effectively handle any local registration mismatch within the 
range NM , . From the above search area Sij, we construct 
the dictionary Dij which consists of (2 M+1)(2 N+1) atoms, each 
of exactly the same dimension as the test vector yij as follows 
   Dij =  [ xi- M,j- N x i- M,j- N+1  … x i- M+1,j- N  … xi+ M,j+ N ]      (7) 
where each MN × 1 atom xij is constructed in similar fashion as in 
(1) and (2) but from the reference data X. The dictionary Dij

contains all possible reference image patches Xij (in vectorized 
format xij) that fit within the search area Sij as described in (4)-(5). 
 
2.4. Sparse Optimization 
For every given test image patch xij, we attempt to solve the 
following inverse problem for the sparsest coefficient vector ij

            (8) 

where
ijS  is the mean of the reference search area Sij in (6) and 

Iij is the size-MN identity matrix that is employed to account for 
noises and any real changes [6]. In other words, we solve the 
following problem 
            (9) 

and find the best sparse approximation of the test image patch yij as 
a linear combination of the corresponding local reference image 
patches stored in the dictionary Dij

           (10) 

There are numerous techniques for solving (9) for the sparsest 
solution available in the compressed sensing community: linear 
programming, orthogonal matching pursuit, gradient projection, 
subspace pursuit, sparsity adaptive matching pursuit, etc. [5]–[8]. 
In this paper, we employed subspace pursuit [8] with the input 
sparsity K set to 2–5% the image patch dimension. 

2.5. Change Detection 
Define several measures of prediction error as follows 
           (11) 
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where 2
ijS  is the variance of the reference search area Sij. The 

accuracy of the sparse representation above and the degree of 
sparsity roughly measured as the L1-norm of the optimal coefficient 

vector
1

ˆ ij are critical information for us to determine if changes 

have taken place within the image area near location ij or not.
Let us consider the first hypothesis where there is no 

change in the image scene. In the ideal noiseless case, if the 
signatures from the test image and the reference image are 
identical, the solution ijˆ vector would  include only one nonzero 

element of unity magnitude. In reality, there are always subtle 
changes between the signatures from the two images. Thus, the 
solution ijˆ would include a few nonzero small-magnitude 

elements to compensate for the differences and its L1-norm is 
insignificant. On the other hand, when there are changes within the 
local image scene, the test image patch cannot be well represented 
by the linear combination of reference atoms in the dictionary 
(since we impose the restriction that sparsity K is very low 
compared to the dimension of the test image patch). This yields a 
noisy prediction and the resulting differences would indicate the 
changes. Here, the resulting L1-norm of the best solution

1
ˆ ij would be significantly higher, indicating a detected change. 

2.6. Algorithm Summary and Parameter Settings 
In short, the overall proposed CD algorithm operates as follows

Inputs: reference image X and test image Y
Parameter settings: 
o Image patch size: 11NM to m22
o Targeted sparsity level: K=0.02MN to K=0.05MN
o Search window size: M=M, N=N
o 50% overlap between image patches: i=M/2; j=N/2

Partition test image Y into overlapping test image patches 
For each test image patch Yij

o Construct local dictionary Dij from the reference as in (7) 
o Solve the L0-norm optimization problem in (8)-(9) 
o Compute the sparse prediction patch as in (10) 
o Compute the residual prediction errors from (11) 

Increment i and j by i and j to cover the entire test image.  
Outputs: The global prediction , L1-norm coefficient map L, and 

scaled change detection É image are generated from averaging all 

local patches ij, 1
ˆ ij , éij, respectively, in overlap-add fashion. 

3. RESULTS 
3.1. Change detection results using SAR Simulated Data 
To validate the theory, we first test our SIRE-CD algorithm on 
simulated imagery. Figure 3a shows a reference SAR image 
formed using SAR simulation data. There are eight clutter objects 
of different amplitudes.  Figure 3b depicts a test SAR image that is 
collected and generated at a different time. There are three new 
targets introduced in the scene. The first and second targets are 
located in the clear area. The third target is located right next to the 
first clutter object. Its amplitude is lower than its neighboring 
clutter object. All clutter signatures presented in both scenes are 
different between the test and the reference image. The differences 
in the signatures (shapes and amplitudes) represent the radar 
calibration mismatch between two different runs. In addition to the 
signature mismatches, there is also a misalignment between the 

two images due to variations in geometry (radar aperture) between 
the two runs. Figure 3c shows the standard difference change 
detection result using the test and reference images after applying 
a global image registration. The suppression of signatures for these 
common objects completely fails due to the local image 
registration problem and the changes in signatures between runs.

Figure 4a shows the prediction image  using our SIRE-
CD. The algorithm has successfully aligned and matched 
signatures of the seven common objects. On the other hand, the 
transformation of the signatures of the first common object 
together with a weaker target located next to it, and the signatures 
of the two targets in the clear are less successful. Figure 4b shows 
the global difference image É whose pixels at three target locations 
show up clearly while signatures of the other four common objects 
are well suppressed. Figure 4c shows the false color plot of the L1
coefficient map L, which tabulates all locally-optimal L1-norm of 

coefficient vectors
1

ˆ ij . The response is highest at the location of 

the largest target in the clear (toward lower right corner) where the 
optimization search fails to yield a closely matched result and the 
best that it can offer is the set of coefficients ijˆ that are quite 

large in magnitude. This L1 coefficient map clearly shows valuable 
information that can be used to weight the change detection image 
to enhance the locations with target changes. Figure 4d shows the 
final change detection image using the weighted prediction error éij

as in (11): three target locations are detected while the clutter 
objects are completely eliminated. We have achieved a significant 
level of change detection performance using the SIRE-CD 
technique, even in this challenging case. Note that the technique 
handles very well the local registration mismatch. The sparsity-
driven optimization process adaptively decides what the best local 
alignment for each signature is.  

3.2. Change detection results using SAR imagery from 
ARL UWB SAR forward looking radar. 
The Army Research Laboratory has recently developed a forward-
looking SAR system for the detection of the obscured targets [9]. 
Figures 5a and 5b show the reference and test SAR images. There 
are seven ground-truth targets (labeled with circles). Some targets 
have very small signature amplitudes and are located next to large 
clutter objects, representing very challenging situations. Figure 5c 
shows the false color plot of the L1-norm coefficient map L,
already disclosing valuable information for the detection of targets. 
All seven targets are detected with two “legitimate” false alarms, 
one of which is caused by the spurious signal from the radar 
hardware. Figure 5d shows the residual change detection image 
scaled by the L1-norm coefficients and the standard deviations of 
the local reference patches as described in Section 2. 

4. SUMMARY 
In summary, we have presented a locally-adaptive sparsity-driven 
joint registration and change detection approach: at the image 
patch level, we search for the optimal subspace that can be 
constructed from the reference data via a L0- or L1-norm sparsity-
guidance optimization process. The accuracy level of this 
representation determines the detected changes between the 
reference and the test image. The perfect alignment between the 
reference and test images is achieved by the built-in registration—
the sparse optimization process automatically decides what the 
best local alignment for each signature is. Surprisingly, the L1-
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norm information is very effective in detecting the changes (target 
detection) between the two images. Combining this L1-norm
information and the change detection result should provide 
significant performance in change detection approach. We have 
demonstrated the SIRE-CD performance using both simulated and 
real forward-looking SAR data from ARL radar. Detailed 
statistical analysis/comparison is currently conducted and will be 
published in the near future. 
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a b c

Figure 3. Simulation SAR data. a) Reference image; b) Test Image; c) Difference change detection applied to two images (with global image registration). 

a b c d

Figure 4. Change detection result. a) Sparse prediction image ; b) Residual error image E; c) L1-norm coefficient map L; d) Scaled change detection image 
(residual image scaled by L1-norm) É.

a b c d

Figure 5.  Real data from the Army Research Laboratory UWB forward-looking SAR. a) Reference image X; b) Test image Y; c) L1-norm of optimal 
coefficient map L; d)  Change detection image É (residual image E scaled by L1-norm and standard deviation of reference search area). 
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