
DeFiNES: Enabling Fast Exploration of the
Depth-first Scheduling Space for DNN

Accelerators through Analytical Modeling
Linyan Mei†, Koen Goetschalckx†, Arne Symons and Marian Verhelst

Department of Electrical Engineering - MICAS, KU Leuven, Leuven, Belgium
Email: {linyan.mei, koen.goetschalckx, arne.symons, marian.verhelst}@kuleuven.be

Abstract—DNN workloads can be scheduled onto DNN accel-
erators in many different ways: from layer-by-layer scheduling to
cross-layer depth-first scheduling (a.k.a. layer fusion, or cascaded
execution). This results in a very broad scheduling space, with
each schedule leading to varying hardware (HW) costs in terms
of energy and latency. To rapidly explore this vast space for a
wide variety of hardware architectures, analytical cost models
are crucial to estimate scheduling effects on the HW level.
However, state-of-the-art cost models are lacking support for
exploring the complete depth-first scheduling space, for instance
focusing only on activations while ignoring weights, or modeling
only DRAM accesses while overlooking on-chip data movements.
These limitations prevent researchers from systematically and
accurately understanding the depth-first scheduling space.

After formalizing this design space, this work proposes a
unified modeling framework, DeFiNES, for layer-by-layer and
depth-first scheduling to fill in the gaps. DeFiNES enables
analytically estimating the hardware cost for possible schedules
in terms of both energy and latency, while considering data access
at every memory level. This is done for each schedule and HW
architecture under study by optimally choosing the active part of
the memory hierarchy per unique combination of operand, layer,
and feature map tile. The hardware costs are estimated, taking
into account both data computation and data copy phases. The
analytical cost model is validated against measured data from
a taped-out depth-first DNN accelerator, DepFiN, showing good
modeling accuracy at the end-to-end neural network level. A
comparison with generalized state-of-the-art demonstrates up to
10× better solutions found with DeFiNES.

I. INTRODUCTION

Deep Neural Networks (DNNs) are well established and
various kinds of hardware accelerators are being developed
to make their execution efficient. A crucial aspect when
developing such accelerators is how the DNNs will be mapped
onto them. Different execution orders can lead to differences in
energy, latency and memory footprint that are orders of mag-
nitude large. Therefore, it is important to be able to quickly
assess the cost for a given schedule, DNN, and accelerator.
In order to do this, without developing and running compute
intensive simulations, an analytical model that supports all
kinds of schedules, DNNs, and accelerators is required.

Analytical models have already been developed to predict
the performance of a single layer of a DNN running on an

†These authors contributed equally to this work.

DRAM*

GB*

LB*

(a) Single-layer-at-a-time (SL)

(b) Layer-by-layer (LBL)

(c) Depth-first (DF) / Layer fusion

L1 …
Tn L2 …

Tn L3 …
Tn

T1 T1 T1

L1

PE Array

L2 L3 See each layer as detached
workload.
All layers:
• Inputs (I) from DRAM.
• Outputs(O) to DRAM.
• Weights (W) from DRAM.

Consider the transition
between layers.
Except for the last layer:
• Layer’s outputs can stay on-
chip to be next layer’s inputs
if fit (skip DRAM).
All layers:
• Weights from DRAM.

W

Split each layer into small
tiles and process each tile
across layers depth-firstly.
for Tile in T1 to Tn:

for Layer in L1 to L3:
compute Layer-Tile

• Layer-tile’s outputs can stay
on-chip at an even lower level
to be next layer-tile’s input
if fit (skip DRAM & GB).
• Weights of the 1st tile (T1)
from DRAM.

Timeline

I O

PE Array

W I O

PE Array

W I O

O
n-

ch
ip

L1 L2 L3

DRAM

GB

LB

PE Array

W

Timeline

I O

PE Array

W I O

PE Array

W I O
O

n-
ch

ip

DRAM

GB

LB

PE Array

W

Timeline

I O

PE Array

W I O

PE Array

W I O

O
n-

ch
ip

The 1st tile (T1)

(* In this Fig1 example, we
assume all memory levels
are shared by W/I/O.)

Fig. 1. Going from (a) Single-layer-at-a-time scheduling to (b) Layer-by-
layer scheduling and to (c) Depth-first scheduling to keep activations in lower
memory levels. “L”: neural network Layer; “T”: Tile; “LB”: Local buffer
(small on-chip memory); “GB”: Global Buffer (larger on-chip memory).

accelerator [17], [21], [35]. However, these ignore cross-layer
scheduling possibilities, which can lead to very sub-optimal
DNN-level solutions because passing data between layers can
have a big impact on the overall system performance [3], [34].
A high level example is shown in Fig. 1. In subfigure (a),
representing single layer scheduling, intermediate feature maps
are always written to and read from the highest memory level.
We call this ‘Single-Layer’ (SL) in this paper. However, if
the feature maps are small enough, it is possible to keep
them in lower, more efficient, memory levels, as shown in
subfigure (b). This is dubbed ‘Layer-By-Layer’ (LBL) in this
paper. Furthermore, if the feature maps are too big for this
optimization, one can explore ‘Depth-First-like’ (DF [6]; a.k.a.
layer fusion [1], or cascaded execution [32]) scheduling, which
means only parts of the intermediate feature maps instead of

1

ar
X

iv
:2

21
2.

05
34

4v
4

 [
cs

.A
R

]
 1

4
Ju

n
20

24

the whole feature maps are computed at a time and passed
between layers. This decreases the size of data to be passed
between layers in a single transaction, which in turn enables
the use of an even smaller and more efficient memory level
to pass this data (subfigure (c)).

Some accelerators [1], [7], [12], [18], [23], [24] already
used some forms of such DF scheduling. However, without
a method to quickly explore different DNN accelerators and
DF scheduling options, it is hard to say how well these
solutions approximate optimality and to quickly estimate the
performance of an accelerator in development.

Analytical cost models with support for DF scheduling are
thus required to quickly explore and develop optimal systems.
Although such models already exists [3], [15], [34], [36], [39],
they are all limited in one or more of the following aspects:

• Model only partial hardware cost, like only latency or
only DRAM-access, and ignore other relevant costs;

• Do not consider an on-chip multi-level memory hierarchy,
only distinguish between on-chip and off-chip memory;

• Do not study the full DF space (defined in Section II);
• Only consider memory accesses for feature map (a.k.a.

activation) while ignoring the impact of weights.
This work proposes a unified modeling and cost estimation

framework, DeFiNES1, for LBL as well as various forms of
DF scheduling so as to systematically understand the enlarged
scheduling space towards greatly improved energy and latency.
The major highlights of this work are:

1) It identifies the full design space of DF scheduling,
which also includes SL and LBL by regarding them as
two extreme points in the DF design space (Section II);

2) It presents a Unified Analytical Cost Model that has
none of the aforementioned limitations (Section III)
and is validated against a taped-out depth-first-style
accelerator (Section IV);

3) It conducts three case studies based on the model,
studying the trade-offs between different DF schedules,
and the impact of workload and HW architecture on the
best DF strategy (Section V);

4) It compares DeFiNES against SotA frameworks, show-
ing an up to 10× better results by including the cost
of on-chip memory accesses and accesses caused by
weights in the exploration (Section VI).

II. DEPTH-FIRST DESIGN SPACE IDENTIFICATION

This section describes the DF design space with three axes,
using the well understood LBL inference as a starting point.

Consider processing multiple layers of a network, as in Fig.
2(a)&(b). One can calculate the final output feature map in one
go, for which the complete input of the last layer is required.
This in turn requires the complete output of the second to
last layer, and so on. Ultimately, this leads to LBL inference,
which completely executes each of the layers one at a time
starting from the first layer.

1DeFiNES is open-sourced at https://github.com/ZigZag-Project/DeFiNES

Tile sizeBig Small

(b) LBL (1 tile / layer) (d) Tile size 1x1

2
2

1
1

(c) Tile size 2x2

Layer 1, Tile 1

Layer 2 , Tile 1

Layer 3 , Tile 1

Layer 1

Layer 2

Layer 3

Layer 1
K=3; C=1; OX,OY=8;

FX,FY=3

Layer 2
K=6; C=3; OX,OY=6;

FX,FY=3

Layer 3
K=9; C=6; OX,OY=4;

FX,FY=3

Being used/generated
Will be used/generated

(a) Workload and legend

… …

Fully used/generated

Cached for H reuse
Cached for V reuse

New to-cache data

Fig. 2. DF design space’s first axis: Tile size. For layer dimension notation
in (a): K is for output channel; C is for input channel; OX and OY are feature
map spatial dimensions; FX and FY are weight spatial dimensions.

(a) Fully-recompute (c) Fully-cached(b) H-cached V-recompute

Timeline Timeline Timeline

1
1

1
1

1
1

The 1st tile A regime tile The 1st tile A regime tile The 1st tile A regime tile

… .. … .. … ..

Fig. 3. DF design space’s second axis: Overlap storing mode. Workload is
Layer 2 and 3 in Fig. 2(a); Legend is shared with Fig. 2(a).

Alternatively, one can target to compute only a part of the
output of the final feature map. In this case, only parts of input
feature maps are needed, as in shown in Fig. 2(c). Inference
starts at the first layer, yet only that tile of its output feature
map that contributes to the target tile in the final output feature
map is calculated. It is then propagated throughout the other
layers to compute the target tile in the final feature map.

This illustrates the first axis in the design space: the choice
of tile size, by which we mean the size of the last layer’s
portion that we want to compute atomically. The general trade-
off of tile size selection is given in Fig. 4 (subfigures (b)↔(c)
or (d)↔(e)). Choosing a larger/coarser tile size enhances local
weight reuse but requires more features to be passed between
layers at once, which may require a higher level memory.

Note that in this work, 1) we assume the computation order
over tiles is left-to-right, then top-to-bottom and 2) cross-layer
tiling is only done across the spatial dimensions (horizontal
and vertical dimensions) of the feature maps. It is not done
across the channel dimensions because in most convolution
layers all input channels are required to calculate any output
feature, which makes cross-layer tiling across the channel
dimensions impossible. However, intra-tile temporal mappings
can still have loop tiling over all the dimensions within that
tile, including the channel dimensions.

Because neighboring tiles of the output feature map can re-
quire overlapping parts of earlier feature maps, one can choose

2

https://github.com/ZigZag-Project/DeFiNES

L1 T1

L2 T1

T2

T2

T3

T3

L3 T1

L4 T1

T2

T2

T3

T3

ST1

ST2

Between-Stack I & O

Per-Stack I & O
Per-Stack W

DRAM

GB

LB More
reuse

PE

W I O

L1T1 …

…

…

…

T1

T1

T1

T2

T2

T2

T2

Tn

Tn

Tn

Tn

ST1
L1

L2

L3

L4

Per-Stack WDRAM

GB

LB Less
reuse

Per-Stack
I & O

PE

W I O

(b) Fuse shallower; Tile coarser

(e) Fuse deeper; Tile finer

L1T1 …

…T1

T2

T2

Tn

Tn

ST1
L1

L2

L3

L4

Between-Stack I & O

Per-Stack W

DRAM

GB

LB Less
reuse

Per-Stack
I & O

PE

W I O

(c) Fuse shallower; Tile finer

L1 T1

L2

T2 T3

T3

L3

L4 T1 T2

T3

T3

ST1
Per-Stack W

Per-Stack I & O

DRAM

GB

LB More
reuse

PE

W I O

T1

T1 T2

T2

(d) Fuse deeper; Tile coarser

L1 T1 Per/Between-Stack I & ODRAM

GB

LB Per-Stack
W

PE

L2 T1

L4 T1

L3 T1

ST1

ST2

ST3

ST4

W I O

(a) SL (1 layer per stack)

Trade-off:

 Tile finer (→):
Less per-stack activation (+)

Less local-memory weight reuse (-)

 Fuse deeper (↓):
More per-stack weight (-)

Less between-stack activation (+)

…

…

T1

T1

T2

T2

Tn

Tn

ST2

Fig. 4. Impact of tile size (first axis) and fuse depth (third axis). ST: fused-layer STack.

either to recompute those overlapped features, or to cache them
in some memory in order to reuse them across tiles, as shown
in Fig. 3. This choice can be made separately for both spatial
dimensions and is considered the second axis. It has four
modes: fully-recompute Fig. 3(a), horizontally-cached with
vertical recompute Fig. 3(b), vertically-cached with horizontal
recompute, and fully-cached Fig. 3(c). In this work, we don’t
further consider vertically-cached with horizontal recompute,
as transposing both the feature maps and, correspondingly, the
weights results in the same, yet transposed, outputs, vertically-
cached with horizontal recompute and horizontally-cached
with vertical recompute are fundamentally the same. Choos-
ing caching over recompute requires extra memory space to
store the cached data in. However, it decreases recomputation
overhead and the tile size in earlier layers, as Fig. 3 shows.

So far, this section discussed the scheduling options within
one stack of fused layers. The final and third axis is the choice
of which layers are fused into a stack. Fusing more layers
generally requires more low level weight memory capacity but
saves accesses to higher level memories for activations. This
can be seen in Fig. 4 by comparing subfigures (b) vs. (d),
or (c) vs. (e). Because increasing the memory capacity of the
lower level memories decreases their efficiency, the lower level
memory can become fruitless if one fuses too many layers.

Note that LBL inference and SL can be positioned in this
design space. On the first axis, the tile size can be set equal
to the DNN’s final output feature map (Fig. 2(a)) to get a
schedule that is effectively LBL. There is only one stack and
it executes each layer completely before moving on the next.
One can also choose to only have one layer in every stack
(the third axis) (Fig. 4(a)), which leads to a SL schedule as we
assume features are passed between stacks through the highest
memory level. The second axis has no impact in these cases
(LBL and SL) as there is only one tile and thus no overlap
between tiles.

III. UNIFIED ANALYTICAL COST MODEL

This section describes the Unified Analytical Cost Model
presented in this work, capable of predicting inference costs
(energy and latency) of DNNs on a given hardware architec-
ture, with support for the full design space of Section II. An
overview of the model is depicted in Fig. 5.

The base idea is to use an existing mapping search engine
and a cost model that optimize and predict costs for a single
layer (step 5 below). However, because of their single-layer
limitation, these tools assume every single layer’s input and
output feature maps need to come from and go to the highest
level input and output memories, respectively. DeFiNES then
provides the Unified Analytical Cost Model as a layer on top
of this to provide depth-first compatibility, which it achieves
with the following steps:

Inputs: The inputs consist of the workload, the HW ar-
chitecture and the DF parameters. The workload is a neural
network which may have convolution layers, branches, pooling
layers, strides, depthwise layers, etc. The HW architecture
consists of an array of Processing Elements (PEs) and a
memory hierarchy. The latter can have memories that are
shared between operands (inputs, outputs and weights), dif-
ferent number of levels for different operands, and memories
that are unrolled over one or more dimensions of the PE array.
The final input consists of the DF parameters, which identify
a point in the design space of Section II, dubbed the ‘DF
strategy’. The fuse depth, i.e. the numbers of layers to fuse
together for each stack (third axis), can be given manually or
determined automatically. In the latter case, layers are added
to the fused stack as long as the total number of weights in
the stack fit in the highest on-chip memory level that holds
weights. In the presence of branching, either all layers between
two points where there are no branches are added to a stack,
or none of them. If such a set of layers by itself does not fit
in the highest on-chip memory level of weights, none of the
layers in this set are fused. In other words, each of them is in
a 1-layer stack.

3

Conv
3x3

1280x720

Conv
3x3

1282x722

Conv
3x3

1284x724

Workload

HW Architecture

PE Array

WR
eg I O

IOLB W

G
B WIO

E
xt WIO

DF parameters

Tx

Ty

Tile size

Overlap storing
mode
Fully-recompute

H-cached &
 V-recompute
Fully-cache

INPUTS DEPTH FIRST COST MODEL (repeat for all stacks)
1) Tile the
 stack's output

2) Backcalculate tile sizes
 and calculate size of
 data to be cached

3x2

Conv
3x3

3x2

Conv
3x3

Conv
3x3

5x4

7x6

4) Collect inputs at
 determined
 Memory Level

PE Array

I

Prev. O

Cached data

Data copy action
cost model

5) Get the optimal cost
 for adjusted layers
 with adjusted
 memory hierarchy

Single-layer
mapper

(LOMA [29])

Single-layer
cost model

(ZigZag [21])

Repeat steps 2-5
for all tiles

Fuse depth*

Stack 1

Stack 2

?

6) Accumulate all results
 of evaluated cost models

Layers & data
copy actions

Tiles

Repeat
steps 3-5
for all
layers

3) Determine and set top level memories

Priority:

PE Array

WR
eg I O

IOLB W

WIO

WIO

G
B

E
xt

OUTPUTS

Energy and latency
for each stack

Weights

Current layer I

Current layer O

Cached data
for H reuse

Cached data
for V reuse

Support branch/stride

Support multi-level mem. hier. with different
 operand memory sharing schemes.

Support any dimensional PE array of any size,
 optional inner PE register file, and different
 inter-PE interconnect. (data sharing) patterns;

Fig. 5. DeFiNES’ overview. (*: optional input, can be set automatically.)

…
…

… … … … … … … …

…

…
…

… … … … … … … …

…

…
…

… … … … … … … …

…

9 tile types 6 tile types

3 tile types60

72

960=60x16

36

54
0=

72
x7

+3
6…

……

Tt1
(1 times)

Tile type2 (15 times)

Tile type 3
(repeat 112 times)

Fig. 6. Tile type count of difference tile sizes and overlap storing modes. The
workload used in this example is FSRCNN [5], whose final output feature
map’s spatial dimension is 960×540. The 3-tile-type example is further used
in Fig. 9 and Fig. 10.

With the stacks of fused layers from the workload, hard-
ware, and DF parameters defined, steps 1-6 are done per stack.

1) Tile the stack’s output (for each stack): Given a stack,
the output feature map is partitioned into tiles of the size given
by the DF parameters. As in Fig. 6, the tile size does not
have to be a divider of the total feature map size. Because of
this and because tiles in the first row/column do not have
cached data available yet – and similarly the tiles in last
column/row do not have to store overlap for their neighbors
– not all tiles are identical. Therefore, DeFiNES identifies
which tiles are completely identical and which are different, a
process that leads to different ‘tile types’. For each tile type,
steps 2-6 need to be executed only once as the results can
just be replicated for identical copies of the tile, leading to

a significant decrease in DeFiNES’ runtime.2 The number
of different tile types also reflects on the code and control
complexity of implementing the solution as each tile type can
have different set of parameters and temporal mapping, which
all need to be programmed into the accelerator.

2) Backcalculate tile size and calculate the size of data
to be cached (for each tile in each layer): From the tile size of
the last output feature map in the stack, the required tile size
of the last layer’s input is calculated. Next, the ‘to-compute’
tile size of the previous layer is calculated. Without caching
for reuse, this simply equals the required tile size of the last
layer’s input. However, with caching for reuse across tiles, not
all these features need to be calculated as some can be fetched
from the cached data, as can be seen in Fig. 3(b)&(c). This
process is repeated for all layers in the stack and as such the
input tile size and to-compute output tile size for each layer
in the stack is determined.

During this process of backcalculation, the algorithm also
keeps track of how much data (from earlier or for future
overlapping tiles) of each type in Fig. 7 should be cached.
In case of branching, this is handled as in Fig. 8.

In the shown example, the left and right branch need cached
features from different places in the feature map. In such a
case, the overall region of features to be cached is set by
combining all outermost edges of the to-cache regions, so that
all branches always have the cached features they need to
operate in overlap caching mode, as can be seen in the middle,
combined visualization of FM1 in Fig. 8.

3) Determine and set top level memories (for each tile in
each layer): Given the data sizes calculated in step 2, step 3
determines the highest memory level each type of data (layer

2To give a rough idea of how fast DeFiNES (written in Python) runs when
we submitted the paper: the Fully-recompute / H-cached V-recompute / Fully-
cached with a tile size of (60,72) case of Fig. 6 took 23 / 34 / 84 seconds on
1 thread of an Intel Xeon Processor E3-1270 v5, respectively.

4

Required Storage Computing data . Cached data for H reuse . Cached for V reuse .
Computing data in 2 largest consecutive tiles All cached data (per ST) All cached data (per ST)

3 Data Storing Modes

Fully-recompute ✔
H-cached V-recompute ✔ ✔

Fully-cached ✔ ✔ ✔

Fig. 7. The required data storage for different overlap storing modes. ST: fused-layer STack.

Fig. 8. DeFiNES’ handling of branching. Legend is shared with Fig. 2(a).
The grey pixels do not contribute to the right branch. ‘FM’: feature map.

inputs, layer outputs, and cached data for H-cached and/or V-
cached modes) should be stored in. In these decisions, data is
prioritized as in Fig. 5(3), with higher-priority data assigned
to the lower, more efficient memory levels.

Note that the top memory level assigned to different data
types can differ between tiles and layers. Fig. 9 gives an
example of this for a stack in fully-recompute mode, based
on the data sizes from Fig. 10.

To be able to use the single-layer mapper and cost model,
which assume inputs and outputs come from and go to the
top level memory, we remove the initial assignments from the
HW architecture’s definition of operands to higher memory
levels. We then give this mapper and cost model that adjusted
hardware architecture as its input to prevent it from fetching
data from or storing data to unnecessarily high memory levels.

4) Collect inputs at determined memory level (for each

L1 L2 L3 L4 L5 L6 L7 L8 L1 L2 L3 L4 L5 L6 L7 L8 L1 L2 L3 L4 L5 L6 L7 L8

Tile type and Layer (L)

R
e
g

LB
G

B
D

R
A

M
To

p
 M

e
m

 L
e
v
e
l

Tile type 1
(1 time)

Tile type 2
(15 times)

Tile type 3
(112 times)

W

I

O

Fig. 9. A visualization of the determined top memory level of each unique
layer-tile-combination for operands W, I, and O. The DF schedule is taken
from the 3-tile-type example in Fig 6. The HW architecture is the Idx 2 in
Table I. It is worth noting that: 1) for weights, all the layers of the first tile
take weights from DRAM, and the other layer-tile-combinations take weights
from LB; 2) for input and output, all the tiles’ first layer gets input from
DRAM, all the tiles’ last layer writes output back DRAM, and in between
either GB or LB is taken as each of their top memory level.

L1 L2 L3 L4 L5 L6 L7 L8 L1 L2 L3 L4 L5 L6 L7 L8
Tile type and Layer (L)

4K

16K

LB:64K

256K

GB:1M

D
a
ta

 s
iz

e
 (

B
y
te

) Tile type 2
(15 times)

Tile type 3
(112 times)

I

O

I+O

Fig. 10. A visualization of activation data size in tile type 2 and 3 of the
example in Fig. 9. The capacities of LB and GB are marked out on y-axis.
Fig. 9 and Fig. 10 together show that 1) when the total activation size (I+O)
can fit into LB (e.g., Tile type 2 - L6), the LB is the top memory for both I
and O; 2) when the total activation size (I+O) cannot fit into LB while either
I or O can fit (e.g., Tile type 3 - L6), I is prioritized to use LB as its top
memory level while O is pushed to GB.

tile in each layer): A single layer-tile-combination can have
input feature data that is located in different memory levels,
for instance the newly created output of a previous layer can
be in a lower memory level than cached data from a previous
tile. Therefore, before calling the single-layer mapper and cost
model, we model the action of collecting these data into the
single memory level that was decided to serve as the top level
memory for inputs in step 3.

Each such data collecting action is defined as a data copy
action, which is modelled by its to-move data type and
amount, the source memory level, and the destination memory
level. The cost of data copy action is calculated by the data

5

copy action cost model. This model takes in 1) a list of
data copy actions (those actions can theoretically happen in
parallel) and 2) the HW architecture (with all the memory
port type, port connection, word-length, and per-word access
cost defined) to analyze the energy and latency this bundle of
data copy actions costs, taking into account possible memory
port conflicts in the concurrent actions.

5) Call single-layer mapper and cost model (for each tile
in each layer): At this point, the single layer temporal mapping
search engine and cost model are used to get the cost for a
single layer-tile-combination. For this paper, we used LOMA
[29] as the mapping search engine and ZigZag [21], [22] to
extract the cost. Note that other single-layer mappers and cost
models (such as [9], [16], [17], [25], [26], [35] and so on) can
also be plugged in DeFiNES to serve the purpose.

6) Accumulate results (for each stack, across all tiles and
layers): Finally, the results of all cost models evaluated in
steps 4 and 5 are summed together to get the final energy and
latency cost for the stack.

IV. VALIDATION

To extract costs for a single layer-tile-combination, De-
FiNES makes use of the ZigZag framework, which is already
well validated against several measured hardware [4], [13],
[28], as well as other SotA cost model [35], for single-
layer execution. To also ensure good cost modeling of depth-
first/layer-fused execution of complete networks, DeFiNES is
validated with end-to-end network. We validate full network
performance predictions of DeFiNES by comparing them
against hardware measurements of DepFiN [7], one of the
few existing depth-first neural network processors. For this
comparison, we describe DepFiN’s core and memory hierarchy
in DeFiNES’ terminology and fix the full temporal mapping
to match DepFiN’s. We further use three neural networks for
the validation: 1) FSRCNN [5], 2) MC-CNN fast [33], and
3) a simple custom reference network that exists of 10 layers
of K=32 and Fx=Fy=3 followed by a final layer of K=16 and
Fx=Fy=1 and operates on 1280×720×3 inputs.

First, Fig. 11 (a) gives the validation results for latency,
which shows that DeFiNES’ predictions match within 3% for
the second and third network. For the first network, FSRCNN,
the error is slightly higher at 10%. This is because of the stalls
caused by DepFiN’s controlling microprocessor that can not
fully keep up with the frequent layer switching due to the very
small kernels found in FSRCNN. This control flow limitation
is not modeled in DeFiNES.

FSRCNN MCCNN REF.
0
1
2
3
4
5

La
te

nc
y

(1
0M

 c
yc

le
s)

10
0%

90
%

10
0%

97
%

10
0%

98
%

FSRCNN MCCNN REF.
0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
en

er
gy

10
0%

10
6%

10
0%10

3%

10
0%

10
0%Measurement

Prediction
(a) (b) Measurement

Prediction

Fig. 11. Compare DeFiNES’ results against DepFiN [7] chip measurements.

Second, energy is more challenging to match end-to-end,
as it is very sensitive to several fine-grain design and layout
aspects such as: 1) sparsity, which is used by DepFiN to gate
off logic activity to save power; 2) Place-and-Route effects,
which cause data transfers to be more expensive than just
the memory read/write costs and also includes a sparsity-
dependent effect; 3) Process, Voltage, and Temperature (PVT)
variations. Although these aspects hinder accurately predicting
absolute energy consumption, we argue that for the purpose of
scheduling optimization it is relative modeling accuracy which
matters most in order to be able to choose the best option. Fig.
11 (b) show the relative energy per inference of the 3 networks,
normalized to the reference network inference energy to cancel
out the impact of PVT aspects, while aspects 1 and 2 are
lumped into the unit cost of the MACs and energy per access
of DeFiNES. As can be seen on Fig. 11 (b), the model show
to match within 6% of measurements, building confidence to
use DeFiNES for further scheduling optimizations.

V. CASE STUDIES

Empowered by DeFiNES, three case studies are conducted
in order to answer three key DF scheduling questions: CS.1)
Given a HW architecture and a DNN workload, how do
different DF strategies impact the overall energy and latency?
CS.2) Given a HW architecture and multiple DNN work-
loads (some are activation-dominant while some are weight-
dominant), how does the scheduling choice change across
different workloads? CS.3) Given multiple HW architectures
(some are designed for LBL processing while some are man-
ually tuned to be more DF-friendly) and the DNN workloads
from CS.2, how do different architectures behave on their
optimal scheduling strategies?

A. An overview of experiment settings

Table I summarizes the key attributes of different HW
architectures and DNN workloads used in the case studies.

For HW, five DNN accelerators are selected as the archi-
tecture baselines for the case studies: Meta-prototype [28],
TPU [14], Edge TPU [38], Ascend [19], and Tesla NPU [31].
To make a fair and relevant comparison, we normalized all of
them to have 1024 MACs and maximally 2MB global buffer
(GB) but kept their spatial unrolling and local buffer settings
(Table I(a) Idx 1/3/5/7/9). Besides, under the concern that
all these architectures were originally designed for SL/LBL
processing and it thus may or may not be very beneficial to
apply DF schedules on them, we manually constructed a DF-
friendly versions of all architectures, denoted with ‘DF’ in the
end of the name (Table I(a) Idx 2/4/6/8/10). The guidelines
that were followed to construct a DF-friendly version from
a SL/LBL architecture are: 1) spatial unrolling is unchanged;
2) the total on-chip memory capacity is unchanged; 3) Input
and Output activation are preferably shared in a lower level
memory; and 4) Weights should have an on-chip global buffer.
These guidelines are heuristic-based, and we leave the DF HW
architecture optimization problem to future work.

6

TABLE I
(A) THE FIVE HW ARCHITECTURES AND THEIR DF-FRIENDLY VARIANTS AND (B) FIVE DNN WORKLOADS USED IN THE CASE STUDIES

Idx HW
Architecture

Spatial Unrolling
(1024 MACs)

Reg. per MAC
or MAC group Local Buffer 2nd level

LB
Global Buffer
(max: 2MB)

1 Meta-proto-like
K 32 | C 2 | OX 4 | OY 4 W: 1B; O: 2B

W: 64KB; I: 32KB / W: 1MB; I&O: 1MB
2 Meta-proto-like DF W: 32KB; I&O: 64KB /
3 TPU-like

K 32 | C 32
W: 128B; O: 1KB / / I&O: 2MB

4 TPU-like DF W: 64B; O: 1KB I&O: 64KB / W: 1MB; I&O: 1MB
5 Edge-TPU-like

K 8 | C 8 | OX 4 | OY 4 W: 1B; O: 2B
W: 32KB / I&O: 2MB

6 Edge-TPU-like DF W: 16KB; I&O: 16KB / W: 1MB; I&O: 1MB

7 Ascend-like
K 16 | C 16 | OX 2 | OY 2 W: 1B; O: 2B

W: 64KB; I: 64KB;
O: 256K / W: 1MB; I&O: 1MB

8 Ascend-like DF W: 64KB; I&O: 64KB I&O: 256K
9 Tesla-NPU-like

K 32 | OX 8 | OY 4 W: 1B; O: 4B
W: 1KB; I: 1KB / W: 1MB; I&O: 1MB

10 Tesla-NPU-like DF W: 1KB; I: 1KB W: 64KB;
I&O: 64KB

W: 1MB;
I&O: 896KB

Idx Workload Aver./Max.
Feature Map

Total
Weight

1 FSRCNN 10.9 MB /
28.5 MB 15.6 KB

2 DMCNN-VD 24.1 MB /
26.7 MB 651.3 KB

3 MCCNN 21.8 MB /
29.1 MB 108.6 KB

4 MobileNetV1 760 KB /
3.8 MB 4 MB

5 ResNet18 895 KB /
5.9 MB 11 MB

(a) 10 HW Architectures (5 baseline designs and their DF-friendly variants) (b) 5 DNN Workloads

1
4

16
60

24
0

96
0

X-
Di

m
 T

ile
 S

ize
 (T

x)

1 4 18 72 27
0

54
0

Y-Dim Tile Size (Ty)

9.
6

6.
0

5.
9

5.
9

7.
2

8.
4

3.
8

2.
8

2.
8

2.
8

3.
5

3.
7

2.
6

2.
0

2.
0

2.
3

2.
4

16
.9

2.
4

1.
9

2.
1

2.
2

13
.2

18
.7

2.
6

2.
0

2.
1

9.
3

17
.9

19
.2

2.
7

2.
2

2.
2

13
.4

19
.1

19
.1

101
Energy (mJ)

(a) Energy (mJ) colorbar

1
4

16
60

24
0

96
0

X-
Di

m
 T

ile
 S

ize
 (T

x)

1 4 18 72 27
0

54
0

Y-Dim Tile Size (Ty)

29
9

76
75

75
75

75
75

19
19

19
19

20
81

21
20

21
22

25
73

18
20

20
24

24
75

19
20

25
25

29
75

20
20

22
28

29

102103
Latency (million cycles)

(b) Latency (million cycles) colorbar

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

47.3 15.8 8.4 6.6 7.4 8.4
15.8 6.0 3.6 3.1 3.5 3.7
8.1 3.4 2.3 2.4 2.5 16.9
6.5 3.5 2.5 2.3 13.4 18.7
7.6 3.5 2.5 14.3 18.2 19.2
8.3 3.7 2.6 14.3 19.4 19.1

Fully-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

1026 310 169 134 131 134
310 97 52 42 40 41
165 50 30 26 26 34
133 44 26 23 32 32
131 41 26 32 32 29
132 42 25 29 30 29

Fully-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

9.6 6.0 5.9 5.9 7.2 8.4
3.8 2.8 2.8 2.8 3.5 3.7
2.6 2.0 2.0 2.3 2.4 16.9
2.4 1.9 2.1 2.2 13.2 18.7
2.6 2.0 2.1 9.3 17.9 19.2
2.7 2.2 2.2 13.4 19.1 19.1

H-cached V-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

488 124 123 122 128 134
148 37 37 37 40 41
92 23 23 24 25 34
77 19 20 21 30 32
75 20 20 27 31 29
75 20 20 26 29 29

H-cached V-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

5.5 2.7 2.6 2.6 2.6 2.7
2.4 1.9 1.9 1.9 2.0 2.2
2.4 1.8 1.8 2.0 2.2 9.7
2.3 1.8 2.1 2.2 8.5 17.6
2.6 2.0 2.1 9.3 17.8 19.0
2.7 2.2 2.2 13.4 19.1 19.1

Fully-cached, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

299 76 75 75 75 75
75 19 19 19 19 20
81 21 21 21 22 28
73 18 20 20 26 30
75 19 20 27 31 29
75 20 20 26 29 29

Fully-cached, Latency

101

Energy (m
J)

101

Energy (m
J)

101

Energy (m
J)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

Fig12 Overall Energy and Latency Comparison

(c) Fully-recompute, Energy

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

47.3 15.8 8.4 6.6 7.4 8.4
15.8 6.0 3.6 3.1 3.5 3.7
8.1 3.4 2.3 2.4 2.5 16.9
6.5 3.5 2.5 2.3 13.4 18.7
7.6 3.5 2.5 14.3 18.2 19.2
8.3 3.7 2.6 14.3 19.4 19.1

Fully-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

1026 310 169 134 131 134
310 97 52 42 40 41
165 50 30 26 26 34
133 44 26 23 32 32
131 41 26 32 32 29
132 42 25 29 30 29

Fully-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

9.6 6.0 5.9 5.9 7.2 8.4
3.8 2.8 2.8 2.8 3.5 3.7
2.6 2.0 2.0 2.3 2.4 16.9
2.4 1.9 2.1 2.2 13.2 18.7
2.6 2.0 2.1 9.3 17.9 19.2
2.7 2.2 2.2 13.4 19.1 19.1

H-cached V-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

488 124 123 122 128 134
148 37 37 37 40 41
92 23 23 24 25 34
77 19 20 21 30 32
75 20 20 27 31 29
75 20 20 26 29 29

H-cached V-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

5.5 2.7 2.6 2.6 2.6 2.7
2.4 1.9 1.9 1.9 2.0 2.2
2.4 1.8 1.8 2.0 2.2 9.7
2.3 1.8 2.1 2.2 8.5 17.6
2.6 2.0 2.1 9.3 17.8 19.0
2.7 2.2 2.2 13.4 19.1 19.1

Fully-cached, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

299 76 75 75 75 75
75 19 19 19 19 20
81 21 21 21 22 28
73 18 20 20 26 30
75 19 20 27 31 29
75 20 20 26 29 29

Fully-cached, Latency

101

Energy (m
J)

101

Energy (m
J)

101

Energy (m
J)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

Fig12 Overall Energy and Latency Comparison

(d) Fully-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

47.3 15.8 8.4 6.6 7.4 8.4
15.8 6.0 3.6 3.1 3.5 3.7
8.1 3.4 2.3 2.4 2.5 16.9
6.5 3.5 2.5 2.3 13.4 18.7
7.6 3.5 2.5 14.3 18.2 19.2
8.3 3.7 2.6 14.3 19.4 19.1

Fully-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

1026 310 169 134 131 134
310 97 52 42 40 41
165 50 30 26 26 34
133 44 26 23 32 32
131 41 26 32 32 29
132 42 25 29 30 29

Fully-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

9.6 6.0 5.9 5.9 7.2 8.4
3.8 2.8 2.8 2.8 3.5 3.7
2.6 2.0 2.0 2.3 2.4 16.9
2.4 1.9 2.1 2.2 13.2 18.7
2.6 2.0 2.1 9.3 17.9 19.2
2.7 2.2 2.2 13.4 19.1 19.1

H-cached V-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

488 124 123 122 128 134
148 37 37 37 40 41
92 23 23 24 25 34
77 19 20 21 30 32
75 20 20 27 31 29
75 20 20 26 29 29

H-cached V-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

5.5 2.7 2.6 2.6 2.6 2.7
2.4 1.9 1.9 1.9 2.0 2.2
2.4 1.8 1.8 2.0 2.2 9.7
2.3 1.8 2.1 2.2 8.5 17.6
2.6 2.0 2.1 9.3 17.8 19.0
2.7 2.2 2.2 13.4 19.1 19.1

Fully-cached, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

299 76 75 75 75 75
75 19 19 19 19 20
81 21 21 21 22 28
73 18 20 20 26 30
75 19 20 27 31 29
75 20 20 26 29 29

Fully-cached, Latency

101

Energy (m
J)

101

Energy (m
J)

101

Energy (m
J)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

Fig12 Overall Energy and Latency Comparison

(e) H-cached V-recompute, Energy

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

47.3 15.8 8.4 6.6 7.4 8.4
15.8 6.0 3.6 3.1 3.5 3.7
8.1 3.4 2.3 2.4 2.5 16.9
6.5 3.5 2.5 2.3 13.4 18.7
7.6 3.5 2.5 14.3 18.2 19.2
8.3 3.7 2.6 14.3 19.4 19.1

Fully-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

1026 310 169 134 131 134
310 97 52 42 40 41
165 50 30 26 26 34
133 44 26 23 32 32
131 41 26 32 32 29
132 42 25 29 30 29

Fully-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

9.6 6.0 5.9 5.9 7.2 8.4
3.8 2.8 2.8 2.8 3.5 3.7
2.6 2.0 2.0 2.3 2.4 16.9
2.4 1.9 2.1 2.2 13.2 18.7
2.6 2.0 2.1 9.3 17.9 19.2
2.7 2.2 2.2 13.4 19.1 19.1

H-cached V-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

488 124 123 122 128 134
148 37 37 37 40 41
92 23 23 24 25 34
77 19 20 21 30 32
75 20 20 27 31 29
75 20 20 26 29 29

H-cached V-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

5.5 2.7 2.6 2.6 2.6 2.7
2.4 1.9 1.9 1.9 2.0 2.2
2.4 1.8 1.8 2.0 2.2 9.7
2.3 1.8 2.1 2.2 8.5 17.6
2.6 2.0 2.1 9.3 17.8 19.0
2.7 2.2 2.2 13.4 19.1 19.1

Fully-cached, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

299 76 75 75 75 75
75 19 19 19 19 20
81 21 21 21 22 28
73 18 20 20 26 30
75 19 20 27 31 29
75 20 20 26 29 29

Fully-cached, Latency

101

Energy (m
J)

101

Energy (m
J)

101

Energy (m
J)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

Fig12 Overall Energy and Latency Comparison

(f) H-cached V-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

47.3 15.8 8.4 6.6 7.4 8.4
15.8 6.0 3.6 3.1 3.5 3.7
8.1 3.4 2.3 2.4 2.5 16.9
6.5 3.5 2.5 2.3 13.4 18.7
7.6 3.5 2.5 14.3 18.2 19.2
8.3 3.7 2.6 14.3 19.4 19.1

Fully-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

1026 310 169 134 131 134
310 97 52 42 40 41
165 50 30 26 26 34
133 44 26 23 32 32
131 41 26 32 32 29
132 42 25 29 30 29

Fully-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

9.6 6.0 5.9 5.9 7.2 8.4
3.8 2.8 2.8 2.8 3.5 3.7
2.6 2.0 2.0 2.3 2.4 16.9
2.4 1.9 2.1 2.2 13.2 18.7
2.6 2.0 2.1 9.3 17.9 19.2
2.7 2.2 2.2 13.4 19.1 19.1

H-cached V-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

488 124 123 122 128 134
148 37 37 37 40 41
92 23 23 24 25 34
77 19 20 21 30 32
75 20 20 27 31 29
75 20 20 26 29 29

H-cached V-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

5.5 2.7 2.6 2.6 2.6 2.7
2.4 1.9 1.9 1.9 2.0 2.2
2.4 1.8 1.8 2.0 2.2 9.7
2.3 1.8 2.1 2.2 8.5 17.6
2.6 2.0 2.1 9.3 17.8 19.0
2.7 2.2 2.2 13.4 19.1 19.1

Fully-cached, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

299 76 75 75 75 75
75 19 19 19 19 20
81 21 21 21 22 28
73 18 20 20 26 30
75 19 20 27 31 29
75 20 20 26 29 29

Fully-cached, Latency

101

Energy (m
J)

101

Energy (m
J)

101

Energy (m
J)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

Fig12 Overall Energy and Latency Comparison

(g) Fully-cached, Energy

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

47.3 15.8 8.4 6.6 7.4 8.4
15.8 6.0 3.6 3.1 3.5 3.7
8.1 3.4 2.3 2.4 2.5 16.9
6.5 3.5 2.5 2.3 13.4 18.7
7.6 3.5 2.5 14.3 18.2 19.2
8.3 3.7 2.6 14.3 19.4 19.1

Fully-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

1026 310 169 134 131 134
310 97 52 42 40 41
165 50 30 26 26 34
133 44 26 23 32 32
131 41 26 32 32 29
132 42 25 29 30 29

Fully-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

9.6 6.0 5.9 5.9 7.2 8.4
3.8 2.8 2.8 2.8 3.5 3.7
2.6 2.0 2.0 2.3 2.4 16.9
2.4 1.9 2.1 2.2 13.2 18.7
2.6 2.0 2.1 9.3 17.9 19.2
2.7 2.2 2.2 13.4 19.1 19.1

H-cached V-recompute, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

488 124 123 122 128 134
148 37 37 37 40 41
92 23 23 24 25 34
77 19 20 21 30 32
75 20 20 27 31 29
75 20 20 26 29 29

H-cached V-recompute, Latency

1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

5.5 2.7 2.6 2.6 2.6 2.7
2.4 1.9 1.9 1.9 2.0 2.2
2.4 1.8 1.8 2.0 2.2 9.7
2.3 1.8 2.1 2.2 8.5 17.6
2.6 2.0 2.1 9.3 17.8 19.0
2.7 2.2 2.2 13.4 19.1 19.1

Fully-cached, Energy
1 4 16 60 240 960

X-Dim Tile Size (Tx)

1
4

18
72

270
540Y-

Di
m

 T
ile

 S
ize

 (T
y)

299 76 75 75 75 75
75 19 19 19 19 20
81 21 21 21 22 28
73 18 20 20 26 30
75 19 20 27 31 29
75 20 20 26 29 29

Fully-cached, Latency

101

Energy (m
J)

101

Energy (m
J)

101

Energy (m
J)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

102

103 Latency (m
illion cycle)

Fig12 Overall Energy and Latency Comparison

(h) Fully-cached, Latency

Fig. 12. The total energy and latency for meta-proto-like DF architecture
processing FSRCNN with different DF strategies.

For HW modeling, CACTI7 [2] is used to extract all
the SRAM costs (pJ/word access). Other HW costs, such
as Unit MAC, register, and DRAM access cost are scaled
accordingly based on the SRAM cost, following the scaling

(1,1) (4,4) (16,18) (60,72) (240,270)(960,540)
Tile Size (Tx,Ty)

1010

1011

M

AC
 O

p Fully-recom.
H-cac. V-recom.
Fully-cac.

Fig. 13. MAC operation count for different DF strategies.

factors reported in [37]. All the on-chip memory’s banking
and bandwidth (bit/cycle) are selected in such a way that PE
array can get enough data to work at its full speed for ideal
workload, while the DRAM bandwidth is fixed to 64bit/cycle
to mimic the on-off-chip communication bottleneck.

For workload, five DNN workloads are used in the case
studies: FSRCNN [5], DMCNN-VD [30], MCCNN [33], Mo-
bileNetV1 [10] and ResNet18 [8]. Table I(b) shows that FS-
RCNN, DMCNN-VD, and MCCNN are activation-dominant
(all the layers have large feature maps), whereas MobileNetV1
and ResNet18 are weight-dominant (feature maps are smaller
and gradually decrease across layers).

Note that the HW architectures picked for these case studies
are not DF-specific. This enables exploring whether or not
these non-DF-specific HW architectures (and their variants
with some memory size/sharing adjusting) can benefit from DF
scheduling on both activation- and weight-dominant DNNs.

Another thing to point out is that in DeFiNES, users can
self-define the optimizing target (energy, latency, EDP, any
memory access, a combination of them, etc.). For the case
studies, we prioritized energy.

B. Case Study 1: Impact of Depth-first strategy

This case study discusses how much DF strategies impact
results when mapping a DNN onto an accelerator, exemplified
by FSRCNN and Meta-proto-like DF (2 in Table I(a)) as the
targeted workload and HW architecture.

For the DF scheduling space’s three axes (tile size, overlap
storing mode, and fuse depth), this case study focuses on
exploring the first two axes. The third axis, fuse depth, is fixed
to the whole DNN since the total weight size of FSRCNN is
small (15.6KB as shown in Table I(b) Idx 1) and thus all
weights fit in Meta-proto-like DF architecture’s weight on-

7

(a) Layer’s Activation (I, O) (b) Layer’s Weight (c) Data copy action (d) Total memory access = (a)+(b)+(c)

Fig. 14. Memory access of different data types at different memory levels for meta-proto-like DF architecture processing FSRCNN with different DF strategies.

101

En
er

gy
 (m

J)

(1,1) (4,4) (16,18) (60,72) (240,270) (960,540)
Tile Size (Tx,Ty)

102

103

La
te

nc
y

(m
illi

on
 c

yc
le

s)

Fully-recom.
H-cac. V-recom.
Fully-cac.

Fig15 Total Energy and Latency
 of selected design points

Fig. 15. The total energy and latency for design points in Fig. 14.

chip local buffer (32KB as shown in Table I(a) Idx 2). So,
there is no benefit to not fuse the whole DNN into one stack,
according to the trade-off introduced in Fig. 4.

For the first two axes, we swept 110 tile sizes (different
spatial dimension tile size (Tx,Ty) combinations) for each of
the three overlap storing modes. A subset of the results is
shown in Fig. 12, in which the total energy and latency of three
overlap storing modes with different tile sizes are visualized.
Note that the figure map size of the last layer of FSRCNN
is 960×540, thus all the bottom right blocks in each heatmap
(with Tx=960 and Ty=540) correspond to LBL processing.
Their energy and latency numbers (19.1 and 29 resp.) are the
same because different overlap storing modes do not make a
difference for LBL, as discussed in Section II.

The rest of this subsection firstly summarizes the main
messages delivered by Fig. 12, and then uncovers the causes
by using the memory access breakdown of the different types
of data of Fig. 14.

Four major observations can be extracted from Fig. 12:
1) Considering different tile sizes under the same overlap
storing mode, both too small and too large tile sizes are sub-
optimal. The best point is always somewhere in the middle. 2)
Considering the same tile size across different overlap storing
modes, the order of energy consumption is for most cases:
fully-cached < H-cached V-recompute < fully-recompute. 3)
Different tile sizes and modes heavily impact energy and
latency (up to 26× difference for energy and 57× for latency).

4) Fully-recompute prefers larger tile sizes than fully-cached.
To understand the reasons behind, Fig. 13 and Fig. 14

take out all the diagonal scheduling points from Fig. 12,
and respectively plot their MAC operation count and memory
access count (in number of data element) for each memory
level in the hierarchy (LB, GB, and DRAM) that is contributed
by layers’ activation, weight and data copy action. Fig. 15
further shows the total energy and latency of these diagonal
scheduling points.

For layers’ activation, Fig. 14(a) presents two clear trends.
Firstly, DRAM and GB access do not depend much on the
used mode. When the tile size is small, like (1,1), (4,4) or
(16,18), there is little GB and LB memory access because
all the activations per tile can fit into LB. When the tile size
is increased to a certain point, like (60,72), the GB access
suddenly increases due to activations no longer fitting in LB
and thus GB being the top activation memory level. Further
increasing the tile size till reaches LBL (960, 540) and the
DRAM access catches up as a consequence of the intermediate
activations no longer being able to fit on-chip. Secondly,
LB access is very sensitive to the used mode for small tile
sizes, with the order of access always: fully-recompute > H-
cached V-recompute > fully-cached. This is because more
MAC operations are performed when doing re-computation,
especially in small tile sizes, as shown in Fig. 13, which
requires more LB access.

For layers’ weight, Fig. 14(b) shows that all the tile sizes
have the same DRAM and GB access, which is reasonable
because all the weights of FSRCNN can fit into weight LB.
However, for the fully-cached mode, LB weight access is much
higher for (1,1) than all other tile sizes. This is because the
spatial unrolling of the HW architecture includes OX 4 | OY 4
(Table I(a) Idx 2), and thus tile size (1,1) causes a severe under-
utilization of the PE array. This in turn reduces the spatial
data reuse of the weight’s LB. In other words, when the tile
size (Tx,Ty) ≥ (4,4), the spatial unrolling OX 4 | OY 4 can
be fulfilled and thus one data read out from weight LB can
serve 16 MACs. In contrast, it can only serve 1 MAC unit per
access when the tile size is (1,1). For the other modes, it is

8

high mainly for the same reason as for activations: there is a
relatively large recompute overhead.

Fig. 14(c) uncovers memory access contributed by data copy
actions. As discussed in Section III, data copy actions happen
when the required input data of current tile are not all in
its lowest-fitting memory level, which could be because the
previous layer’s output and/or the cached data for reuse have
a different lowest-fitting memory level. With this in mind,
Fig. 14(c) is explainable. Firstly, for small tile sizes ((1,1)-
(16,18)): 1) fully-recompute mode has large memory access at
all memory levels due to the large overlap re-fetching across
different tiles of the first DNN layer; 2) fully-cached mode
has large memory access at GB and LB memory levels due to
the cached data being located in GB while the input’s lowest-
fitting memory level is LB. Secondly, in middle tile size region
((60,72)-(240,270)), different modes’ behaviors converge and
the data copy actions mainly come from moving previous layer
outputs down to the top memory level of the next layer’s input.
Lastly, in large tile region, no data copy action is needed as
all input, output, and cached data are located in DRAM.

Fig. 14(d) shows the total memory access, and Fig. 15
visualizes the overall energy and latency, which together
with the memory access breakdown discussed earlier help
us to better understand the heatmaps in Fig. 12: for fully-
recompute mode, the small tile sizes’ sub-optimality comes
from data re-fetching and MAC re-computation of the large
overlap region; for fully-cached mode, the small tile sizes’ sub-
optimality comes from the large weight access and cached data
movement; for all the modes, large tile sizes’ sub-optimality
is due to large DRAM access of activation.

This case study shows that different DF strategies vary a lot
on energy and latency, and DeFiNES can analyze/reason about
them, taking the advantages of the unified analytical model.

C. Case Study 2: Applying DF to Multiple Workloads

This case study studies how different workloads prefer
different DF strategies. To this end, we map all five workloads
of Table I(b) on the meta-proto-like hardware and compare five
different inference strategies:

• Single layer: layers are completely evaluated one at a
time, feature maps are always stored to and fetched from
DRAM in between layers;

• Layer-by-layer: layers are completely evaluated one at a
time, intermediate feature maps are passed on to the next
layer in the lowest memory level they fit in;

• Fully-cached DF with 4×72 tiles, which is the best
found in case study 1;

• The best strategy found when a single strategy is used
for all fused layer stacks;

• The best combination, where different stacks can use
different DF strategies.

Fig. 16 visualizes the results, which show some noteworthy
findings. Firstly, for the workloads with spatially large features
maps (FSRCNN, DMCNN-VD and MCCNN), their individual
best solutions (purple) are not significantly better than the best
solution found in case study 1 (green). The latter is thus a very

Fig. 16. Case study 2: Different workloads lead to different best solutions
(all results on meta-proto-like DF hardware)

good solution across a range of workloads similar to the one
it was found for, with a gain of 10× compared to SL.

Secondly, this solution does not perform as well on Mo-
bileNetV1 and ResNet18, which operate on spatially smaller
feature maps with more channels. On MobileNetV1 for in-
stance, it is 2.0× worse than the best found result. In these
workloads, the deeper layers are more weight-dominant, which
impedes fusing them into one stack. Hence, the combined best
solution applies DF to the first, activation-dominant layers and
LBL to the last, weight-dominant layers. This combination
achieves a gain of 5.7× over SL on MobileNetV1.

D. Case Study 3: A Joint DSE of Accelerator Architecture and
Scheduling for Multiple Workloads

This case study examines the effect of the accelerator’s
architecture on the optimal inference strategy. In particular,
it compares the default accelerators architectures, which were
designed with LBL inference in mind, against the manually
adjusted DF-friendly variants by looking at the geometric
average of performance across all five workloads of Table I,
with both LBL and DF best single strategy (for energy).

The results in Fig. 17 show that DF outperforms LBL on
all accelerator architectures except for TPU-like, including
the unadjusted default accelerators, on which the maximum
gain was 4.1×. TPU-like has poor support for DF schedules
due to the absence of on-chip weight buffers. With such
a buffer added in the DF-friendly variant, DF significantly
outperforms LBL, indicating the importance of designing with
DF compatibility in mind. This finding is further backed by
the overall comparison between the DF-friendly and default
variants, which shows that the DF-friendly variants are at least
as good as the defaults when using DF, with large gains of
6.0× and 4.3× for TPU-like and Edge-TPU-like hardware
respectively, and maximally 1.2% worse when using LBL.

9

Fig. 17. Case study 3: Different HW architectures’ energy and latency
(geometric mean across the 5 workloads) when applying layer-by-layer or
best DF scheduling strategies.

Overall the biggest difference (in geometric mean over the
five workloads) between LBL inference on default hardware
variants and DF on DF-friendly variants is found for the Edge-
TPU-like hardware and equals 4.9×.

VI. RELATED WORKS

Previous works on DNN DF processing can be split into
two categories, DF-supporting HW implementations and DF
modeling and exploration frameworks.

For DF-supporting HW implementations, designs [1], [7],
[11], [12], [18], [20], [23], [24] have demonstrated their
DF solutions and shown large benefits in terms of energy
and/or latency compared to the traditional single-layer/layer-
by-layer DNN accelerators for targeted workloads. These DF-
supporting designs each have a default depth-first processing
pattern, with manually selected tile size, overlap storing mode,
and fuse depth. For example, regarding the overlap storing
mode, [11] fully recomputed the intermediate overlapping data
while [18] assumed a horizontally-cached with vertical recom-
pute mode and [7] applied a fully-cached mode. Regarding
the depth of the stack of fused layers, [20] chose to fuse
just 2 layers at a time while [7], [18] preferred deeper fused
stack (8-20 layers). On the tile size, [23], [24] always treated
one row of an image as a tile, whereas [1], [12] adopted
a square tile size and [7] has a preferred tile size of 128
pixels along an image row. All these HW implementations are
optimized for one or a few types of predefined DF strategies,
and it is unclear if there are remaining combinations of HW
architectures and DF strategies that would perform better for a
targeted workload. Researching this would preferably be done
at a high abstraction level to save the time of fully simulating
and/or developing the HW architectures.

Therefore, several DF modeling and exploration frameworks
like DNNVM [36], Efficient-S [39], LBDF [27], ConvFu-
sion [34], Optimus [3], and DNNFuser [15] have been pro-
posed. These frameworks, listed in Table II, help to model
and optimize the DF schedule given HW architectures and
DNN workloads. In the optimizing part, many innovative
searching algorithms are introduced, such as the heuristic
subgraph isomorphism algorithm in DNNVM, the DAG-based
hardware-aware operator fusion algorithm in Optimus, and a
transformer-based mapper in DNNFuser. However, they all
have some important factors missing in the modeling part.

The rest of this section will discuss each missing factor (as
in Table II), and some of theirs impact (as in Fig. 18).

Firstly, from the DF scheduling space point of view, most
of these frameworks do not explicitly support exploring the
trade-offs between different overlap storing modes. As shown
in Fig. 6 and Section V-B (Case Study 1), this can have a
big impact on tile type count (related to code and control
complexity) and system energy/latency.

Secondly, from the HW modeling point of view, they
only focus on modeling/optimizing the DRAM access while
ignoring the data movement within the potential multi-level
on-chip memory hierarchy. In other words, they are agnostic
of on-chip memory hierarchy. This could cause substantial
losses, as proven by Fig. 18(a), which shows the experiment
results of mapping FSRCNN onto two HW platforms in three
ways: 1) Single-Layer (SL), 2) DF but only optimize for
DRAM traffic, 3) DF and optimized for the overall energy
(our work). The DRAM energy contribution is highlighted
by the diagonal hatching, which shows that DRAM energy
dominates in the SL case. Using DF and only optimizing
for DRAM traffic, the DRAM energy can indeed be largely
reduced, but omitting the on-chip energy (non-hatched part
in the red bar) from the optimization can make the latter
dominant. Only when considering the whole system, the best
DF solutions (orange bars) can be achieved. The parameters of
the found solutions (Fig. 18 right) show that when optimizing
for the overall energy (orange), the framework found a smaller
tile size compared to optimizing for DRAM only (red). This
can be explained: 1) When optimizing for DRAM only, the
tool will randomly pick one DF schedule that makes sure
all the intermediate data fit on chip, and thus DRAM access
is minimized. However, after achieving the minimal DRAM
access, there is still a lot of room for on-chip data traffic
optimization, which is overlooked in this case. 2) When
optimizing for the overall energy, it benefits from smaller tile
sizes since at a certain point, not only can all the data of
intermediate tiles fit in on-chip GB, but also fit in the LB. In
this case, the activation can be fully reused in LB, and GB
access is minimized (on top of the already minimized DRAM
access), resulting in a 5.64× energy gain for FSRCNN on the
meta-proto-like DF HW.

Thirdly, on top of modeling on-chip data traffic, we further
evaluated the benefit of performing multi-level memory skip-
ping over DRAM-only skipping, i.e. skipping (multiple) upper
(on-chip) memory level(s) when writing back the outputs of
intermediate tiles if it they fully fit in lower level memories.
Around 17%-18% energy gain is observed for the tested
workload-HW combination, as shown in Fig. 18(b). Due to
this step targeting optimizing on-chip memory energy, the gain
is not very significant if the MAC energy and the (already
minimized) DRAM energy are dominant, which is the case
here. This technique can bring larger gains for systems with
more dominant on-chip data traffic.

Fourthly, most of DF HW implementations and exploration
frameworks show the energy, latency, and/or DRAM access
gain that come from activation tiling, but do not mention

10

TABLE II
RELATED DF MODELING FRAMEWORK COMPARISON

DF Modeling
Framework

Overlap
storing mode1

Model on-
chip data

traffic2

Support multi-
level mem.
skipping3

Model
weight
traffic4

Optimizing
target5① ② ③

DNNVM [36] ✘ ✔ ✘ ✔ ✘ ✔ La
Efficient-S [39] ✔ ✘ ✘ ✔ ✘ ✘ La
LBDF [27] ✔ ✘ ✔ ✘ ✘ ✘ DRAM
ConvFusion [34] ✔ ✘ ✔ ✘ ✘ ✔ DRAM
Optimus [3] ✔ ✘ ✔ ✘ ✘ ✔ DRAM
DNNFuser [15] ✔ ✘ ✘ ✔ ✘ ✔ DRAM, Mem
DeFiNES (ours) ✔ ✔ ✔ ✔ ✔ ✔ En, La
Visualize each
factor’s impact

Fig. 6 &
Case Study 1 Fig. 18 (a) Fig. 18 (b) Fig. 18

(c) Fig. 18 (d)

1 Overlap storing modes (✔ support / ✘ no support)
① Fully-recompute; ② H-cached, V-recompute; ③ Fully-cached

2 ✔ Model on-chip data traffic
3 ✔ Support multi-level mem. skip.
4 ✔ Model weight traffic
5 Optimizing targets: DRAM: DRAM access; Mem: on-chip mem. usage;

La: Overall latency; En: Overall energy (opt.: optimize)

⇔ ✘ Only model/opt. DRAM access
⇔ ✘ Only support DRAM skipping
⇔ ✘ Only model/opt. activation traffic

much about the potentially higher weight energy costs due
to the loss of local weight data reuse. This can be harmful
for the overall system efficiency, as shown by the example
of Fig. 18(c). The energy portion caused by memory access
for activations, highlighted with square hatching, contributes
most of the energy in the SL case. However, just blindly
optimizing for activations while ignoring the weights ends up
in the green bars. While these indeed have minimal energy
caused by activations, the energy caused by weights’ memory
accesses dominates and causes a large penalty (non-hatched
part in the green bars). This is because the tool found very
small tile sizes as its best solution when only optimizing for
activation. This lets activations skip higher level memories as
much as possible, but at the same time largely reduces the low-
level memory’s weight data reuse, thus triggering more access
to higher level weight memories. So, only when considering
both the benefit and drawbacks that tiling can bring, the best
DF solution (orange bars) can be achieved. For the given
example, taking weights into account achieves a solution that
has 2.34× and 10.2× less energy than the solution found by
only considering activations for the meta-proto-like DF and
Edge-TPU-like DF hardware architectures, respectively.

Lastly, different frameworks have different optimizing tar-
gets, as shown in the last column of Table II: some of
the frameworks only evaluate latency while ignoring energy,
whereas some only care about optimizing the DRAM ac-
cess. As DRAM-only optimization’s downsides have been
explained, here we focus on discussing latency- and energy-
optimized solution comparison. Fig. 18(d) shows the results:
pink/orange bars are the energy (and the corresponding dots
are latency) of our latency-/energy-optimized DF schedules
respectively. In this example, a clear latency-energy trade-off
is presented and the best found DF solution shows that the
energy-optimized DF schedule prefers a smaller tile size than
the latency-optimized one. This is because smaller tile sizes
on one hand help reduce energy by enabling skipping of more
memory levels while, on the other hand, it increases the data
preparation cycle (loading and offloading) overhead.

To summarize, our work models the complete DF design

Meta-proto-
like DF

Edge TPU-
like DF

0

10

20

E
n
e
rg

y
(m

J)
La

te
n
cy

(1
0
M

 c
yc

le
s)

() On-chip data traffic's impacta

b

c

d

a

b

c

d

(with FSRCNN)

Meta proto-
type like DF

Edge TPU-
like DF

() Weight's impact
(with ResNet18)

Meta-proto-
like DF

Edge TPU-
like DF

0

2

E
n
e
rg

y
(m

J)
La

te
n
cy

(1
0
M

 c
yc

le
s)

() On-chip memory skipping's
impact (with FSRCNN)

Meta-proto-
like DF

Edge TPU-
like DF

() Optimizing target's
impact (with ResNet18)

Single layer (SL)

Ours (Consider all listed factors; Opt. energy)

Only activations
Only DRAM access
Only DRAM skipping

Opt. latency

DRAM

Energy componentsDifferent scenarios

MAC
On-chip Mem
Activation

Latency

* Horizontally, Fig. (c) and (a) ((d) and (b)) share the same Y axis label and scale.

*

*

Best found
DF solution

(fully-cached,
stack, tile size):

Fig. : (1 stack)
Meta-proto-li. DF

Edge TPU-li. DF

120x4
4x72

120x4
4x18

Fig. : (1 stack)
Meta-proto-li. DF

Edge TPU-li. DF

60x135
4x72

30x135
4x18

Fig. : (All stacks)
Meta-proto-li. DF

Edge TPU-li. DF

28x28
14x28

28x28
14x28

Fig. : (All stacks)
Meta-proto-li. DF

Edge TPU-li. DF

4x7
14x28

2x2
14x28

5.64x

-18%
-17%

-30%

5.46x
2.34x

10.2x

-26%

+9% +6%

DRAM

DRAM

On chip (MAC+Mem) Weight (W) consumed

MAC
On-chip Mem

Activation (I/O) consumed

Fig. 18. Experiments to evaluate different factors in Table II.

space with support for detailed activation and weight, on- and
off-chip memory hierarchy analysis so as to better capture
the trade-offs between different DF strategies and optimizing
targets. These properties enable DeFiNES to make the overall
best choices without neglecting factors that may turn out to
be important otherwise. This makes DeFiNES a good addition
to the previously mentioned optimization-oriented frameworks
[3], [15], [34], [36], [39]. Together with those, we can better
design and schedule DNN accelerators.

VII. CONCLUSION

This work first presented a definition of the depth-first (a.k.a.
layer fusion, or cascaded execution) design space, and then
a cost model capable of handling this whole design space.
Furthermore, the cost model considers not only DRAM access
or only memory access due to activations, but also the full on-
chip memory hierarchy and memory access caused by weight
traffic. Large gains might be missed when not doing so (up to
10.2× in the shown examples; Fig. 18(c)).

Using this model, the case studies showed that depth-
first strategies can significantly outperform layer-by-layer ex-
ecution, even when the workload is not activation-dominant
(MobileNetV1 and ResNet18), and even when the hardware
is not designed for it: depth-first strategies outperformed layer-
by-layer on four of the five tested hardware architectures with
gains of up to 4.1×. However, some architectures may be
ill suited for depth-first, in which case small adjustments to
their design can lead to large improvements. For instance,
reassigning some of the on-chip memory capacity of the TPU-
like architecture enabled it to greatly benefit from depth-
first strategies, outperforming its default variant by 6×. These
examples show how DeFiNES allows to quickly examine the
complex design space of different combinations of depth-first
strategies and hardware architectures.

11

ARTIFACT APPENDIX

A. Abstract

Our artifact provides a guide to replicate the primary
experiments (case study 1) demonstrated in this paper. Since
case study 2 and 3 are equivalently performing case study 1
multiple times (for different workload and HW architecture
combinations) and will take a long time to run and generate
multi-Gigabytes of data, we here focus on case study 1.

The included materials are the source code of DeFiNES and
the scripts to auto-run the experiments, collect data, and make
the plots. In the end, we also provide the useful information
on experiment customization, i.e. users can use DeFiNES to
carry out their own DNN accelerator-schedule design space
exploration, considering both layer-by-layer and depth-first
scheduling possibilities.

B. Artifact Check-list (meta-information)

• Algorithm DeFiNES
• Program Python 3.9 program
• Compilation Normal python compilation
• Run-time environment

Linux or Windows with Anaconda installed
• Hardware General-purpose computer
• Execution Run python scripts
• Metrics

Energy, latency, memory access, MAC count, and so on.
• Output

Pickle files (.pkl) that include all the result details and
PDF files that corresponds to several figures in our paper

• Experiments
Applying different depth-first scheduling options for pro-
cessing one neural network workload (FSRCNN) on one
DNN accelerator (Meta-proto-like DF architecture)

• How much disk space required (approximately)?
150 MiB to store the artifact directory and the results

• How much time is needed to prepare workflow (ap-
proximately)?
20 minutes to install Anaconda
3 minutes to settle the python environment in Anaconda

• How much time is needed to complete experiments
(approximately)? 18 hours (with 1 CPU thread)

• Publicly available? Yes, archived on Zenodo and open-
sourced on GitHub

• Code licenses BSD 3-Clause License

C. Description

1) How to access: This artifact version is archived on Zen-
odo at https://doi.org/10.5281/zenodo.7384293. The project
is also open-source on GitHub at https://github.com/ZigZag-
Project/DeFiNES.

2) Hardware dependencies: Any PC with at least 4GB of
RAM

3) Software dependencies: Python 3.9 or higher, numpy,
networkx, sympy, matplotlib (We provide a .yml file to settle
the conda environment for you)

D. Installation

• Install Anaconda from https://www.anaconda.com/
• Download DeFiNES from https://github.com/ZigZag-

Project/DeFiNES and cd into the repo
• Create and activate the environment with the provided

environment.yml
conda env create -f environment.yml
conda activate DeFiNESenv

E. Experiment Workflow and Expected Results

After the previous Installation is done, two steps are re-
quired to run the case study 1 and reproduce the overall
comparison result (Fig. 12) and the detailed analysis results
(Fig. 13, Fig. 14, Fig. 15, Fig. 6(left), Fig. 9 and Fig. 10).

Note that these two commands need to run in sequence
under the repo folder.

1) Step 1: Run python main_artifact.py

• What does this script do?
It applies 108 depth-first scheduling options (3 modes
with 6×6 X-Dim and Y-Dim tile size combinations) for
processing FSRCNN on Meta-proto-like DF architecture.

• Run time?
18 hours with the default setting (using 1 CPU thread
and set loma_lpf_limit=8). loma_lpf_limit is
a speed-quality tradeoff tuning knob. User can change
its value in main_artifact.py. The larger it is, the
longer the program runs, and possibly the better the result
found. For all the experiments in the paper, we set it to
8 to guarantee the best results can be found.
For testing purpose, users can set loma_lpf_limit to
6, the total run time will be reduced dramatically from
18 hours to 45 minutes, while some design points’ best
found energy will increase by a few percents. So, the
figures plotted in this case will be slightly different than
the original ones in the paper.

• What results are expected? When the program fin-
ishes, an overall energy and latency comparison fig-
ure will be plotted for these 108 depth-first schedul-
ing options (Fig. 12), and 108 result pickle files (.pkl)
will be saved into the result_saving_path de-
fined in the main_artifact.py (by default, it is
.\result_pickle_files\).

2) Step 2: Run python plot_artifact.py

• What does this script do?
It extracts the required information from the generated
result pickle files and makes the plots.

• Run time? 1 minute
• What results are expected?

Multiple detailed analysis figures: Fig. 13, Fig. 14,
Fig. 15, Fig. 6(left), Fig. 9 and Fig. 10.

In the end, all the plots will be saved to .\result_plot\.

F. Experiment Customization

The goal of this work is to provide an open-source frame-
work for DNN accelerator architecture-schedule optimization,

12

https://doi.org/10.5281/zenodo.7384293
https://github.com/ZigZag-Project/DeFiNES
https://github.com/ZigZag-Project/DeFiNES
https://www.anaconda.com/
https://github.com/ZigZag-Project/DeFiNES
https://github.com/ZigZag-Project/DeFiNES

which allows users to plug in their own setting files and
perform customized design space exploration experiments.

For this, users need to provide DeFiNES with the inputs
listed in Fig. 5: a workload, a HW architecture, and some
depth-first scheduling parameters (in which the Fuse depth is
set automatically by DeFiNES, thus no need to provide).

This work has 5 workloads and 10 HW architectures
modelled for the case study 2 and 3. Users can perform
experiments on them, modify them to try new design options,
or create own workloads and/or HW architectures following
the same data formats in these example setting files. More
details on how to set the DeFiNES input files are provided on
the GitHub page.

An example command users can run (Use python
main.py --help to see what each argument means):

• python main.py --accelerator
inputs.HW.Edge_TPU_like --workload
inputs.WL.Edge_TPU_like.workload_mccnn
--dfmode 1 --tilex 16 --tiley 8

The results are saved as pickle files (.pkl) in the
pre-defined result_saving_path. User can use/modify
the functions provided in plot_artifact.py and
plot_helper_funcs.py to extract various data from the
pickle files and visualize the results.

We are continually improving the framework on GitHub,
and welcoming all questions and feedback. We hope our tool
can help other researchers to better explore and understand
the vast DNN accelerator architecture and scheduling design
space and can offer the best design solutions.

ACKNOWLEDGEMENTS

This work was supported by the Flemish Government
(AI Research Program), the European Commission through
the project CONVOLVE (101070374), and the Reality Labs,
Meta.

REFERENCES

[1] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016, pp. 1–12.

[2] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories,” ACM Trans. Archit. Code Optim.,
vol. 14, no. 2, Jun. 2017.

[3] X. Cai, Y. Wang, and L. Zhang, “Optimus: An Operator Fusion
Framework for Deep Neural Networks,” ACM Trans. Embed. Comput.
Syst., feb 2022. [Online]. Available: https://doi.org/10.1145/3520142

[4] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), 2016, pp. 367–379.

[5] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in European conference on computer
vision. Springer, 2016, pp. 391–407.

[6] K. Goetschalckx and M. Verhelst, “Breaking High-Resolution CNN
Bandwidth Barriers With Enhanced Depth-First Execution,” IEEE Jour-
nal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 323–331, 2019.

[7] K. Goetschalckx and M. Verhelst, “DepFiN: A 12nm, 3.8TOPs depth-
first CNN processor for high res. image processing,” in 2021 Symposium
on VLSI Circuits, 2021, pp. 1–2.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” arXiv e-prints, p. arXiv:1512.03385, Dec. 2015.

[9] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind Mappings: Enabling Efficient Algorithm-Accelerator
Mapping Space Search,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 943–958. [Online].
Available: https://doi.org/10.1145/3445814.3446762

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” arXiv e-prints, p.
arXiv:1704.04861, Apr. 2017.

[11] C.-T. Huang, Y.-C. Ding, H.-C. Wang, C.-W. Weng, K.-P. Lin, L.-W.
Wang, and L.-D. Chen, “ECNN: A Block-Based and Highly-Parallel
CNN Accelerator for Edge Inference,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: Association for Computing
Machinery, 2019, p. 182–195. [Online]. Available: https://doi.org/10.
1145/3352460.3358263

[12] D. Im, D. Han, S. Choi, S. Kang, and H.-J. Yoo, “DT-CNN: An
Energy-Efficient Dilated and Transposed Convolutional Neural Network
Processor for Region of Interest Based Image Segmentation,” IEEE
TCAS I: Regular Papers, vol. 67, no. 10, pp. 3471–3483, 2020.

[13] V. Jain, S. Giraldo, J. D. Roose, B. Boons, L. Mei, and M. Verhelst,
“TinyVers: A 0.8-17 TOPS/W, 1.7 uW-20 mW, Tiny Versatile System-
on-chip with State-Retentive eMRAM for Machine Learning Inference
at the Extreme Edge,” in 2022 IEEE Symposium on VLSI Technology
and Circuits (VLSI Technology and Circuits), 2022, pp. 20–21.

[14] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-Datacenter
Performance Analysis of a Tensor Processing Unit,” SIGARCH Comput.
Archit. News, vol. 45, no. 2, p. 1–12, jun 2017. [Online]. Available:
https://doi.org/10.1145/3140659.3080246

[15] S.-C. Kao, X. Huang, and T. Krishna, “DNNFuser: Generative Pre-
Trained Transformer as a Generalized Mapper for Layer Fusion in DNN
Accelerators,” arXiv e-prints, p. arXiv:2201.11218, Jan. 2022.

[16] S.-C. Kao and T. Krishna, “GAMMA: Automating the HW Mapping of
DNN Models on Accelerators via Genetic Algorithm,” in Proceedings
of the 39th International Conference on Computer-Aided Design,
ser. ICCAD ’20. New York, NY, USA: Association for Computing
Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3400302.
3415639

[17] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-
ishna, “Understanding reuse, performance, and hardware cost of dnn
dataflow: A data-centric approach,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
754–768.

[18] J. Lee, D. Shin, J. Lee, J. Lee, S. Kang, and H.-J. Yoo, “A Full HD
60 fps CNN Super Resolution Processor with Selective Caching based
Layer Fusion for Mobile Devices,” in 2019 Symposium on VLSI Circuits,
2019, pp. C302–C303.

[19] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend: a
Scalable and Unified Architecture for Ubiquitous Deep Neural Network
Computing : Industry Track Paper,” in 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2021, pp.
789–801.

[20] C.-H. Lin, C.-C. Cheng, Y.-M. Tsai, S.-J. Hung, Y.-T. Kuo, P. H.
Wang, P.-K. Tsung, J.-Y. Hsu, W.-C. Lai, C.-H. Liu, S.-Y. Wang, C.-
H. Kuo, C.-Y. Chang, M.-H. Lee, T.-Y. Lin, and C.-C. Chen, “7.1 A
3.4-to-13.3TOPS/W 3.6TOPS Dual-Core Deep-Learning Accelerator for
Versatile AI Applications in 7nm 5G Smartphone SoC,” in 2020 IEEE

13

https://doi.org/10.1145/3520142
https://doi.org/10.1145/3445814.3446762
https://doi.org/10.1145/3352460.3358263
https://doi.org/10.1145/3352460.3358263
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3400302.3415639
https://doi.org/10.1145/3400302.3415639

International Solid- State Circuits Conference - (ISSCC), 2020, pp. 134–
136.

[21] L. Mei, P. Houshmand, V. Jain, S. Giraldo, and M. Verhelst, “ZigZag:
Enlarging Joint Architecture-Mapping Design Space Exploration for
DNN Accelerators,” IEEE Transactions on Computers, vol. 70, no. 8,
pp. 1160–1174, 2021.

[22] L. Mei, H. Liu, T. Wu, H. E. Sumbul, M. Verhelst, and E. Beigne, “A
uniform latency model for DNN accelerators with diverse architectures
and dataflows,” in 2022 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). IEEE, 2022, pp. 220–225.

[23] F. Min, H. Xu, Y. Wang, Y. Wang, J. Li, X. Zou, B. Li, and Y. Han,
“Dadu-Eye: A 5.3 TOPS/W, 30 fps/1080p High Accuracy Stereo Vision
Accelerator,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 68, no. 10, pp. 4207–4220, 2021.

[24] H. Mo, W. Zhu, W. Hu, Q. Li, A. Li, S. Yin, S. Wei, and L. Liu, “A 12.1
TOPS/W Quantized Network Acceleration Processor With Effective-
Weight-Based Convolution and Error-Compensation-Based Prediction,”
IEEE Journal of Solid-State Circuits, vol. 57, no. 5, pp. 1542–1557,
2022.

[25] Y. Nellie Wu, P.-A. Tsai, A. Parashar, V. Sze, and J. S. Emer,
“Sparseloop: An Analytical Approach To Sparse Tensor Accelerator
Modeling,” arXiv e-prints, p. arXiv:2205.05826, May 2022.

[26] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A Systematic Approach to DNN Accelerator Evaluation,” in 2019
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019, pp. 304–315.

[27] M. Shi, P. Houshmand, L. Mei, and M. Verhelst, “Hardware-Efficient
Residual Neural Network Execution in Line-Buffer Depth-First Process-
ing,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 11, no. 4, pp. 690–700, 2021.

[28] H. E. Sumbul, T. F. Wu, Y. Li, S. S. Sarwar, W. Koven, E. Murphy-
Trotzky, X. Cai, E. Ansari, D. H. Morris, H. Liu, D. Kim, E. Beigne,
R. Labs, and Meta, “System-Level Design and Integration of a Prototype
AR/VR Hardware Featuring a Custom Low-Power DNN Accelerator
Chip in 7nm Technology for Codec Avatars,” in 2022 IEEE Custom
Integrated Circuits Conference (CICC), 2022, pp. 01–08.

[29] A. Symons, L. Mei, and M. Verhelst, “LOMA: Fast Auto-Scheduling
on DNN Accelerators through Loop-Order-based Memory Allocation,”
in 2021 IEEE 3rd International Conference on Artificial Intelligence
Circuits and Systems (AICAS), 2021, pp. 1–4.

[30] N.-S. Syu, Y.-S. Chen, and Y.-Y. Chuang, “Learning Deep Convolutional
Networks for Demosaicing,” arXiv e-prints, p. arXiv:1802.03769, Feb.
2018.

[31] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee,
B. Floering, A. Jalote, C. Hsiong, S. Arora, A. Gorti, and G. S.
Sachdev, “Compute Solution for Tesla’s Full Self-Driving Computer,”
IEEE Micro, vol. 40, no. 2, pp. 25–35, 2020.

[32] tvm rfcs, “Arm® ethos™-u cascading scheduler.” [Online].
Available: https://github.com/apache/tvm-rfcs/blob/main/rfcs/0037-arm-
ethosu-cascading-scheduler.md

[33] J. Žbontar and Y. LeCun, “Stereo Matching by Training a Convolu-
tional Neural Network to Compare Image Patches,” arXiv e-prints, p.
arXiv:1510.05970, Oct. 2015.

[34] L. Waeijen, S. Sioutas, M. Peemen, M. Lindwer, and H. Corporaal,
“ConvFusion: A Model for Layer Fusion in Convolutional Neural
Networks,” IEEE Access, vol. 9, pp. 168 245–168 267, 2021.

[35] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An Architecture-
Level Energy Estimation Methodology for Accelerator Designs,” in
2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2019, pp. 1–8.

[36] Y. Xing, S. Liang, L. Sui, Z. Zhang, J. Qiu, X. Jia, X. Liu,
Y. Wang, Y. Shan, and Y. Wang, “DNNVM: End-to-End Compiler
Leveraging Operation Fusion on FPGA-Based CNN Accelerators,”
in Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 187–188.
[Online]. Available: https://doi.org/10.1145/3289602.3293972

[37] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell,
K. Cao, H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar:
Using Halide’s Scheduling Language to Analyze DNN Accelerators,”
in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association

for Computing Machinery, 2020, p. 369–383. [Online]. Available:
https://doi.org/10.1145/3373376.3378514

[38] A. Yazdanbakhsh, K. Seshadri, B. Akin, J. Laudon, and
R. Narayanaswami, “An Evaluation of Edge TPU Accelerators for
Convolutional Neural Networks,” arXiv e-prints, p. arXiv:2102.10423,
Feb. 2021.

[39] S. Zheng, X. Zhang, D. Ou, S. Tang, L. Liu, S. Wei, and S. Yin, “Effi-
cient Scheduling of Irregular Network Structures on CNN Accelerators,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 11, pp. 3408–3419, 2020.

14

https://github.com/apache/tvm-rfcs/blob/main/rfcs/0037-arm-ethosu-cascading-scheduler.md
https://github.com/apache/tvm-rfcs/blob/main/rfcs/0037-arm-ethosu-cascading-scheduler.md
https://doi.org/10.1145/3289602.3293972
https://doi.org/10.1145/3373376.3378514

	Introduction
	Depth-first Design Space Identification
	Unified Analytical Cost Model
	blackValidation
	Case Studies
	An overview of experiment settings
	Case Study 1: Impact of Depth-first strategy
	Case Study 2: Applying DF to Multiple Workloads
	Case Study 3: A Joint DSE of Accelerator Architecture and Scheduling for Multiple Workloads

	Related Works
	Conclusion
	Abstract
	Artifact Check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment Workflow and Expected Results
	Step 1
	Step 2

	Experiment Customization

	References

