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Abstract—Exponential growth of bandwidth demand, spurred
by emerging network services with diverse characteristics and
stringent performance requirements, drives the need for dynamic
operation of optical networks, efficient use of spectral resources,
and automation. One of the main challenges of dynamic,
resource-efficient Elastic Optical Networks (EONSs) is spectrum
fragmentation. Fragmented, stranded spectrum slots lead to poor
resource utilization and increase the blocking probability of in-
coming service requests. Conventional approaches for Spectrum
Defragmentation (SD) apply various criteria to decide when,
and which portion of the spectrum to defragment. However,
these polices often address only a subset of tasks related to
defragmentation, are not adaptable, and have limited automation
potential. To address these issues, we propose DeepDefrag, a novel
framework based on reinforcement learning that addresses the
main aspects of the SD process: determining when to perform de-
fragmentation, which connections to reconfigure, and which part
of the spectrum to reallocate them to. DeepDefrag outperforms
the well-known Older-First First-Fit (OF-FF) defragmentation
heuristic, achieving lower blocking probability under smaller
defragmentation overhead.

Index Terms—Spectrum defragmentation,
learning, Service blocking ratio.

Reinforcement

I. INTRODUCTION

The ongoing drastic growth in bandwidth-intensive applica-
tions with dynamic behaviour and high-performance require-
ments, including high-resolution video on demand, cloud com-
puting, Internet of Things applications, and content delivery
networks, strains the optical backbone networks. To satisfy
these requirements in a cost-efficient manner, the network must
support dynamic, automated, and resource-efficient operations.
Elastic Optical Networks (EONs) [1] are considered a future-
proof solution to satisfy these needs due to their ability to al-
locate spectrum at a fine granularity that matches the spectrum
requirements of various service requests served by lightpaths.
However, spectrum fragmentation is a major challenge for
the resource efficiency of dynamic EONs [2] where service
requests can arrive and depart at any point in time.

Spectrum Fragmentation (SF) is generated by the dynamic
departures of optical connections that leave relatively small,
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isolated, unused spectrum chunks scattered across the available
fiber bandwidth [3]. Accommodating newly arriving service
requests requires the availability of contiguous and continuous
spectrum slots, which is not possible under fragmented spec-
trum conditions with a detrimental effect to Service Blocking
Ratio (SBR).

Various Spectrum Defragmentation (SD) strategies have
been proposed to help solve this issue. SD plays a crucial role
in consolidating the spectrum usage, improving the utilization
of the spectrum grid and reducing the SBR [4]. SD aims at
reorganizing the spectrum allocation of different connections
such that more (incoming) services can be accommodated,
maximizing the spectrum use. The main tasks of SD in dy-
namic network scenarios entail: (i) deciding on the best time to
perform SD, amidst arbitrary arrival and departures of service
requests; (ii) deciding on the number and the order of distinct
network connections to be reconfigured, and (iii) finding the
alternative spectral resources and reallocating the reconfig-
ured connections. Spectrum reallocation aimed at minimizing
spectrum fragmentation by reconfiguring a minimum number
of connections has been proven to be NP-complete already
in the static scenario, where the set of connections does not
change over time [5]. Traffic dynamicity further exacerbates
the problem complexity since the set of connections present
in the network constantly changes.

SD schemes can in general be classified as proactive or
reactive [2]. Proactive schemes are executed regardless of
whether the network is experiencing spectrum blocking, and
are run either periodically or based on some threshold. Reac-
tive schemes, on the other hand, are triggered by the blocking
of service requests. SD can be performed by reallocating the
spectrum only, or by combining it with connection rerouting.
SD approaches that do not interrupt the running services
are known as hitless [6]. Examples of hitless SD techniques
include push-pull retuning [7], where the spectrum occupied
by a connection to be re-allocated is first expanded to include
the target spectrum as well, and then shrunk; and make-before-
break [4], where a new connection is established over the target
spectrum before the original one is torn down.

The main objective of SD is to decrease the SBR. However,
frequent reallocation of a large number of connections is



undesirable because of the extra reconfiguration overhead.
Hence, SBR, the number of connection reallocations, and the
number of SD cycles should be considered jointly in order
to balance the benefits and drawbacks of SD. Moreover, SD
methods should adapt to the changing network conditions to
ensure the most appropriate set of actions at a given time.
Existing SD approaches rely on, e.g., integer linear program-
ming (ILP) models [8] or heuristic algorithms [9] that, guided
by deterministic thresholds and policies, address a subset of
the listed tasks. However, none of the prior solutions is able
to address all of the aforementioned SD tasks simultaneously,
and they require precise parametrization to achieve acceptable
performance.

Driven by the need to automate complex networking prob-
lems, Reinforcement Learning (RL) has recently been demon-
strated as a promising technique for, e.g., optical network
slicing [10] and resource assignment [11], [12]. The key
advantage of RL is that it leverages knowledge obtained by
observing the environment to independently guide its decisions
and maximize a long-term reward without being explicitly
programmed to do so. Deep Reinforcement Learning (DRL)
combines RL with deep neural networks, allowing to param-
eterize action policies and analyze complex systems for high-
dimensional input data, such as traffic matrices.

In this paper, we propose DeepDefrag, a novel DRL-based
framework that jointly addresses all of the aforementioned
tasks associated with the SD process. DeepDefrag decides on
the timing and composition of the SD actions, i.e., the number,
order, and target spectrum for reconfigured connections. The
proposed framework adapts to the network state to select the
appropriate course of actions, and can also consider the prior-
ities of the network operator such as minimizing the number
of connection reallocations. We assess the performance of
the framework through extensive simulations, demonstrating
that DeepDefrag outperforms a state-of-the-art heuristic, i.e.,
Older-First First-Fit (OF-FF), algorithm in several aspects.

II. RELATED WORK

A variety of approaches have been investigated in the litera-
ture to mitigate the impact of SF, including an ILP formulation
to address proactive parallel SD in EONs [8], and heuristic
algorithms for hitless bandwidth defragmentation [13]. ILP
models and heuristic algorithms for three defragmentation
techniques, denoted as Push-Pull, Hop-Tuning, and Replan-
ning were proposed in [9]. Heuristic approaches from [14]
use different service attributes to select the best connection to
reallocate. The Older-First (OF), Bigger-First (BF), Longer-
Lasting-First (LLF), and Longer-Path-First (LPF) algorithms
use service age, size, remaining holding time, and path length
to guide their proactive defragmentation decisions, respec-
tively. A First-Fit (FF) spectrum assignment policy is then
applied to reallocate the spectrum slots. In [15], the authors
analyzed the performance of different SD algorithms such
as lowest-slot-index-first, holding-time-aware, and proactive-
reactive defragmentation in terms of blocking probability,
entropy, and SF ratio. A trade-off between SD gain and the

degree of lightpath disruptions was further investigated in
[16], and a mathematical model is developed to optimize the
fragmentation ratios over all links while taking into account
both spectrum continuity and contiguity constraints.

Machine learning techniques have recently found a useful
application in SD as well. An unsupervised machine learning
technique for rearranging the fragmented spectrum based on
lightpath clustering was presented in [17]. In [18], Elman
neural networks were used to forecast traffic demands, and the
spectrum was allocated using a two-dimensional rectangular
packing model that reduces unnecessary fragmentation.

In [11], the authors proposed a DRL-based routing, mod-
ulation and spectrum assignment (RMSA) algorithm that de-
cides on both routing and spectrum assignment concurrently,
resulting in reduced blocking probability. The work in [19]
modeled the connection admission control and Routing and
Spectrum Assignment (RSA) problems as a Markov Decision
Process (MDP), and defined the concept of deterministic
policy for RSA problem in the policy iteration algorithm. The
study in [20] highlighted DRL as a competitive alternative
to established and well-known solutions when it comes to
optimization problems in optical networks, e.g., Routing and
Wavelength Assignment (RWA). A recent study in [21] applied
DRL to solve the on-demand, reactive hitless SD problem.
Upon an unsuccessful RMSA attempt, a DRL agent selects one
of the pre-defined stretch schemes that extends the size of the
fragmented spectrum to accommodate for blocked services. In
spite of the strong potential of DRL in solving complex optical
networking problems, benefits of this technique in addressing
the SD problem remain to be assessed. To this end, we
propose a novel, DRL-based framework for proactive SD and
investigate the related challenges and network performance
improvements.

III. PROBLEM FORMULATION

We consider a scenario where an EON serves dynamic traf-
fic. The network topology is represented by a graph G(V, E),
comprising a set of nodes V' and a set of links E. The net-
work receives service requests defined by D;(s;, d;, b;, a;, h;),
where s; and d; are the source and the destination nodes, b;
is the requested bit rate, while a; and h; are the arrival and
the holding times. The network serves the service requests by
assigning a physical route, a modulation format and spectral
resources, i.e., by solving the RMSA problem. The required
number of spectrum slots, denoted as n;, is determined by the
spectrum efficiency of the modulation format, which is related
to the length of the selected path [21]. If a path with n; + 1
continuous and contiguous spectrum slots is found (the extra
slot accounts for the guardband), the connection is established
and the request is served. Otherwise, the request is blocked.

To mitigate the impact of spectrum fragmentation on the
SBR, we perform periodic defragmentation. Solving the SD
problem means reallocating the spectrum used by the existing
connections with the ultimate goal of consolidating the free
spectrum available for future use. We consider a proactive
defragmentation scenario where only spectrum reallocation is
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Fig. 1. The DeepDefrag scheme decisions taken and implemented during network operation.

possible, i.e., no rerouting is performed. When reallocating
the spectrum of a connection, spectrum jump is allowed, i.e.,
the target and the original spectrum can be separated by slots
occupied by other connections. We consider a hitless, make-
before-break scenario.

The first challenge in the considered SD problem is to deter-
mine the best time to perform a defragmentation operation. At
any point in time, the network snapshot consists of spectrum
slots either occupied by existing connections, or free, possibly
stranded due to fragmentation. The second challenge is to
determine the set of connections to be reconfigured and the
order of doing so, as well as to identify and allocate alternative
spectrum slots to the connections. During SD, the standard
spectrum continuity and contiguity constraints must hold.

IV. THE DEEPDEFRAG SCHEME
A. System Model

Figure 1 illustrates the DeepDefrag scheme under dynamic
traffic, highlighting the SD cycles triggered amidst service ar-
rivals and departures. Upon each connection departure, Deep-
Defrag decides whether to initiate a defragmentation cycle or
not. If a new SD cycle is initiated, DeepDefrag iteratively
chooses a connection to reconfigure and the target spectrum to
reallocate it to until the cycle ends. An example with SD cycle
comprising two connection reallocations is shown in the left-
hand inset in the bottom of the figure. The figure also shows
two variables used by DeepDefrag. 6 is a network control flag
with value O when the network is not undergoing an SD cycle,
and 1 when an SD cycle is in progress. The selected action «
equals the index of the connection selected for re-allocation,
while o = () represents the stop action.

For the example shown in the figure, § = 0 and a # ()
when the SD cycle starts and the first connection is reallocated.
DeepDefrag can then choose to continue the current defrag-
mentation cycle by reallocating another connection, or to stop
by returning « = (). In the example, DeepDefrag chooses to
reallocate another connection, after which the SD cycle stops.

The time between two successive SD cycles is referred to as
SD period. The scheme can also choose not to initiate an SD
cycle upon a connection departure. This is depicted in Fig. 1
upon the departure of the second connection, and the detailed
actions and values of the decision variables are shown in the
inset on the right hand side. Here, the algorithm decides not
to take any action (o = (), while a defragmentation cycle is
not in progress (0 = 0).

At each SD cycle, the DeepDefrag scheme considers a set
of options, as illustrated in Fig. 2, with the snapshot of a small
network example. The considered network state comprises six
services established in the network, denoted as D; to Dkg.
Their routing is depicted in Fig. 2 a), while the spectrum
assignment across the 12 available spectrum slots on each
link is shown in Fig. 2 b). Connections considered eligible for
reallocation are those using fragmented spectrum slots, which
means that there is at least one free spectrum slot between
them and their neighboring connections both at the lower and
at the higher end of their used spectrum (considering that one
guardband slot is a part of the spectrum allocated to each
connection). In the example, only services D; and D, are
eligible for reallocation.

DeepDefrag then considers several options for reallocating
the spectrum of the eligible connections, as illustrated in Fig.
2 c¢). Each option represents reallocating one connection to
the beginning or to the end of the existing free blocks along
the path of that connection. For service D;, two free blocks
along links 1-2 and 2—4 can be considered for its allocation:
slots 1-4 and 9-12. Therefore, service D has four alternative
spectrum options, which are at the beginning (denoted as o3
and o0}) and at the end (0? and o}) of the two candidate blocks.
Alternatives for service D, are at the beginning and at the end
of the only free block on links 1-3 and 34, i.e., slots 7-12,
denoted as o} and o7 in the figure. We use the event model
from Fig. 1 and the intuition introduced in Fig. 2 to design a
DRL agent that solves the SD problem.
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Fig. 2. A simple network example (a) with two connections eligible for defragmentation (b) and the different options for their spectrum reallocation (c).

B. Markov Decision Process Model

The DeepDefrag scheme proposed in this paper uses DRL
to solve the SD problem introduced in the previous section.
DRL is an area of machine learning concerned with intel-
ligent agents that leverage deep learning to take actions in
an observation environment with the goal of maximizing a
cumulative reward. In the following, we present the MDP
model of DeepDefrag, including the definitions of observation
and action space, and reward function.

1) Observation Space: in DeepDefrag, the observation
space exposes the current state of the network and the reallo-
cation options to the agent. The agent observes the state of the
environment and makes decisions based on the observations.
Hence, the observation should reflect the critical aspects of
the problem. The observation space of DeepDefrag has several
components. Stateij = (SZ‘, di7 Qi Ny T4, li7 fi, ti, fijv tija Zij)
represents the set of attributes for reallocation option j of
service D;. Apart from the service attributes defined in Sec.
III, the environment is characterized by the remaining time of
the service r;, the number of links [/; along the path allocated
to the service, the currently assigned starting spectrum slot
fi, and the total number of available slots along path ¢;. f;;
and t;; represent the new candidate starting slot and the size
of the free spectrum block used by option j for reallocating
connection D;, respectively. z;; € {0, 1} indicates whether
option j is at the beginning (= 0) or at the end (= 1) of the
free block.

2) Action Space: the actions that can be selected by the
agent are defined by the action space. In DeepDefrag, at each
decision step, the agent selects one of the existing options.
After processing the eligible connections (see Fig. 2 for
details), each possible action in the action space is defined as a
vector of elements (D;, f;;) for different eligible connections
and reallocation options, plus {) that represents the stop action.
When an SD cycle is not in progress, stop action means that
there is no need to reallocate more connections.

3) Reward function: the reward function, defined by (1),
measures the immediate gain achieved by each action taken
by DeepDefrag.

1- SBR h=0,1Ana=0

Reward={ 1—SBR— Ps— Pe 0=0ANa#0
1 SBR - Pe —1ha#0

(1)

We encourage the agent to minimize SBR by adopting it as
the main term of the function. The value of SBR refers to the
ratio between the blocked and the total number of processed
service requests. When no connection reallocation takes place
(a = (), the reward is equal to 1 — SBR to capture the objective
of minimizing the blocking (the top term in (1)). To limit the
number of SD cycles and reallocated connections, each new
SD cycle and each connection reallocation is associated with
a penalty, denoted with Ps and Pe, respectively. When the
agent initiates the cycle by reallocating a connection, both
penalties are applied (the middle term in (1)). When an SD
cycle is in progress, each connection reallocation is penalized
(the bottom term in (1)). Note that these penalty values can
be set based on the cost incurred by the network operator at
each reallocation instance.

V. SIMULATION SETTINGS

To evaluate the performance of DeepDefrag, we carry out
simulations of a dynamic traffic scenario and assess the value
of SBR, as well as the reconfiguration actions’ frequency
and volume. We use the NSFNET topology with 14 nodes
and 22 links, each supporting 320 spectrum slots. Service
requests are generated based on a Poisson process. We set
the traffic load to 170 Erlang to achieve approximately 10%
SBR for the scenario without defragmentation. 80% of service
requests is long-lived with an average holding time of 25 time
units and exponential distribution, while the remaining 20%
of requests have an average holding time of 12.5 time units.
The considered bit rate is 100 Gbit/s for 50%, 200 Gbit/s for
30%, and 400 Gbit/s for the remaining 20% of the requests.
BPSK, QPSK, 8-QAM, and 16-QAM modulation formats are
utilized with a maximum reach length of 10000 km, 2000
km, 1250 km, and 625 km, and with slot capacity of 12.5
Gbit/s, 25 Gbit/s, 37.5 Gbit/s, and 50 Gbit/s, respectively [12].
The transmission reach of the signal determines the candidate



modulation formats, and the one with the highest spectral
efficiency is selected. Shortest available route (among 5 pre-
computed shortest paths) and first-fit spectrum assignment
are used to obtain the RMSA solutions for all considered
scenarios.

The performance of DeepDefrag is evaluated through com-
parison with three heuristic algorithms denoted as OF-FF,
RND, and No-SD. In the OF-FF strategy, the set of eligible
connections is defined according to their age, such that the
longest-running connections are reconfigured first. First-fit
spectrum allocation is then used to find new spectrum slots
for the reconfigured connections. This strategy is used for
benchmarking purposes since studies show that it performs
very well in terms of SBR [14]. OF-FF has two parameters:
the SD period, i.e., the number of request arrivals between
two defragmentation periods, and the number of connections
to be reallocated at each cycle. The values of both parameters
are fixed throughout the network lifetime. We analyze the
performance of OF-FF under different configurations and
report on two most representative settings that enable a fair
comparison with DeepDefrag. Configuration where both the
SD period and the number of reallocations are set to 10,
denoted as OF-FF(10,10), obtains the same SBR as DeepDe-
frag, allowing us to compare their defragmentation overheads.
Configuration with the SD period length of 20 and the number
of reallocations equal to 4, denoted as OF-FF(20,4), has the
same defragmentation overhead as DeepDefrag, allowing us to
examine their SBR. The random heuristic RND randomly se-
lects one of the options from the action space (including stop).
Finally, the No-SD approach reveals the network performance
when defragmentation is not undertaken.

We implement the DeepDefrag scheme and environment
extending the Optical RL-Gym [22], a framework for creating
RL environments that model optical network problems such as
resource management and reconfiguration. Stable-Baselines3
[23], an open-source implementation of DRL algorithms in
Python, is applied to train the RL agent. We use the Deep
Q-Networks algorithm (DQN) [24] with a learning rate of
5% 107% and a discount factor of 0.95. The adopted neural
network has 5 layers with 256 neurons each. The penalty
factors Ps and Pe are set to 0.3 and 0.05, respectively, to
model a higher cost of an SD cycle initiation than a connection
reallocation. The episode length is set to 200 decision steps,
and the training is performed over 9000 episodes. Results
presented in the next section are obtained by assessing the
performance of the agent as it is trained. For statistical
purposes, in the following comparison comments, we average
the results over the last 500 episodes.

VI. NUMERICAL RESULTS

Figure 3 shows the SBR values for the different schemes,
indicating advantages of DeepDefrag. Considering the rolling
500-episode average, DeepDefrag lowers the blocking rate by
10% compared to the No-SD scenario with no defragmenta-
tion. The OF-FF(10,10) and OF-FF(20,4) schemes yield on av-
erage 10.8 % and 3% lower SBR than No-SD, which is aligned
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with the result reported by [14]. Compared to OF-FF(20,4),
which has the same defragmentation overhead, DeepDefrag
reduces the SBR by 6.2%. This confirms the efficiency of
defragmentation actions performed by DeepDefrag in reducing
the SBR.

Figure 4 depicts the number of connection reallocations
per 100 arrivals for the different strategies. On average,
upon convergence, DeepDefrag reallocates only 20.2 connec-
tions per 100 request arrivals, closely matching OF-FF(20,4).
Moreover, DeepDefrag reallocates 80% connection fewer than
OF-FF(10,10), which is the OF-FF configuration with the same
SBR as DeepDefrag.

Figure 5 shows the number of SD cycles. Also in this case,
DeepDefrag outperforms all the benchmark SD heuristics,
triggering only 4.9 SD cycles per 100 request arrivals on
average. This is a 51% reduction compared to OF-FF(10,10).
After analyzing the learning aspects in Figs. 4 and 5, we can
see that DeepDefrag learns how to reduce the SD overhead in
terms of connection reallocations and defragmentation cycles
in 5500 training episodes, as indicated by the decline in the
reconfiguration frequency and volume. As the above analysis
shows, DeepDefrag outperforms the considered SD heuristics
in all examined metrics.
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VII. CONCLUSIONS

This paper proposes DeepDefrag, a novel framework based
on the Deep Reinforcement Learning (DRL) that addresses
several aspects of the Spectrum Defragmentation (SD) prob-
lem in an integrated manner. It determines whether and when
to perform SD, which connections to reallocate and in which
order, and finds new spectrum to be used by the connec-
tion. Simulation results indicate the ability of DeepDefrag
to efficiently reduce the blocking rate while using fewer
SD cycles and reallocating a lower number of connections
than the state-of-the-art heuristic approaches, demonstrating
its applicability to dynamic network conditions and strong
potential for automating SD.
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