
An Integrated Framework for AI Assisted
Level Design in 2D Platformers

Antonio Umberto Aramini
Politecnico di Milano, Milano, Italy

antonio.aramini@mail.polimi.it

Pier Luca Lanzi
Politecnico di Milano, Milano, Italy

pierluca.lanzi@polimi.it

Daniele Loiacono
Politecnico di Milano, Milano, Italy

daniele.loiacono@polimi.it

Abstract—The design of video game levels is a complex and
critical task. Levels need to elicit fun and challenge while avoiding
frustration at all costs. In this paper, we present a framework to
assist designers in the creation of levels for 2D platformers. Our
framework provides designers with a toolbox (i) to create 2D
platformer levels, (ii) to estimate the difficulty and probability of
success of single jump actions (the main mechanics of platformer
games), and (iii) a set of metrics to evaluate the difficulty and
probability of completion of entire levels. At the end, we present
the results of a set of experiments we carried out with human
players to validate the metrics included in our framework.

I. INTRODUCTION

Modern game development tools (like Unreal Engine1 and
Unity2) are powerful and flexible but constraint the actions of
human designers to the positioning of objects (game elements)
in scenes (levels) and to the tweaking of parameters exposed
by the developers (e.g. how fast an enemy runs or how much
health it has). These tools don’t provide feedback neither about
the functional characteristic of a level (e.g. its difficulty and
feasibility), nor about the type of player experience a level
will enable. Accordingly, designers either perform extensive
playtest or build ad-hoc tools to support their content creation
activities [1].

In the recent years, artificial intelligence tools have been
proposed to assist game designers in the creation of game
content like for example the generation of levels that affect
players in terms of emotions [2], [3] or that satisfy structural
constraints on the position of game elements [4], [5], [6].
In this context, level generation is usually based on design
metrics extracted from the level structure (e.g., the position of
game elements) or gameplay features (e.g., using data describ-
ing players’ skill and playing style obtained with sessions of
playtesting).

In this paper, we present a framework for the design of
levels for 2D platformers that extends previous approaches
[2], [3] by providing immediate feedback about the functional
properties of levels such as (i) the difficulty and probability
of success of single jumps (the main mechanic of platformer
games), and (ii) a set of statistics to evaluate the difficulty and
probability of completion of entire levels.

1https://www.unrealengine.com/
2https://unity3d.com/

Our framework has been developed as a modular extension
of the popular Unity game engine and it is smoothly integrated
in its editor. It provides a tool to design platformer levels using
a set of structural features (e.g., fixed and moving platforms,
deadly obstacles), to modify the available games mechanics
(e.g., to specify whether the character can run, whether it can
double jump or whether the players can control the character
trajectory while jumping), and to modify the parameters of
the underlying Unity 2D physics engine (e.g. the gravity or
the jump vertical takeoff speed).

The framework maps the structural features of a level into a
graph in which nodes represent platforms and edges represent
feasible jump trajectories between platforms. Trajectories are
computed in real time based on the structural properties of
the level and on its functional gameplay properties (e.g., the
character range of speed, the type of player controls, and
the physics engine parameters). Given two platforms (that
is two nodes in the graph), an edge is created if there is a
feasible jump that takes from one platform to the other one;
each edge is characterized by a difficulty value and a prob-
ability of success. The difficulty is computed by evaluating
all the trajectories that start from an optimal position; this
is determined from the structure of the platforms and other
functional properties such as the minimum and maximum
speed that the character can reach in such position. The
probability of success is computed by evaluating a sample of
trajectories starting from random points in the vicinity of the
optimal position generated using a noise function that models
the player’s skill level (the lower the noise the higher the
skill). Thus, the difficulty value takes into account mainly the
structural properties of the level and the set up of the physics
engine. In contrast, the probability of success takes into
account functional properties including the player skill. The
difficulty and the success probability are gameplay features
obtained without actually performing sessions of playtesting
and provide key feedback on the designed content. These
two metrics are combined to evaluate the difficulty and the
probability of completion of entire levels. At the end, we
performed a set of experiments involving human subject to
provide a preliminary validation of the our models of jump
difficulty and success probability.

ar
X

iv
:1

80
4.

09
15

3v
1

 [
cs

.A
I]

 2
4

A
pr

 2
01

8

https://www.unrealengine.com/
https://unity3d.com/

Our approach extends previous works by considering a
larger number of game elements (more platforms, obstacles,
etc.) and by intrinsically taking into account the parameters of
the underlying physics engine so as to provide a more realistic
model of the game mechanics.

II. RELATED WORK

Computer-aided design tools have become widely used in
many production pipeline to reduce development time and
costs. These tools often involve the procedural generation
of one or more types of artifact; notable examples include
SpeedTree3, which allows the automatic generation of veg-
etation in 3D environments, Volcano [7], that creates 3D
models of swords by exploiting interactive evolution, and
the Procedural Building Generator [8], that generates 3D
buildings based on designer constraints and guidelines. In this
section, we overview the most relevant work on difficulty
metrics in video games and on computer-aided design tools for
content generation in 2D platformers; we refer the reader to
[9] for a more general and exhaustive discussion of procedural
content generation (PCG) in games.

Smith et al. [10] dissected level components in terms of
their roles and structure to better understand the design behind
levels and to provide designers a common vocabulary for
the items forming the game worlds. In a similar fashion,
Dahlskog and Togelius [11] discussed the potential roles of
design patterns in PCG, identifying them in levels of the
original Super Mario Bros.; they also proposed how these
patterns can be combined to create new levels that comply
with specific constraints, while retaining variety of contents;
this classification of patterns was then used to generate levels
by using micro-patterns as building blocks in a search-based
algorithm [12]. Pedersen et al. [3] investigated the relationship
between level design parameters, individual playing character-
istics, and player experience; later extensions to this works
included a much larger data set and an extensive valida-
tion through algorithms and human players [4]; Nygren et
al. [13] investigated the design of levels with multiple paths
and puzzle-based contents. The approaches above have been
further investigated in [2] by analyzing how the session size,
the different actions in game and the structural design patterns
affect the players experience. Launchpad [14] and Tanagra [5]
applied the idea of rhythm group: a small level segment
consisting of a rhythm of player actions (also referred as beats)
and a level geometry that corresponds to that rhythm. The
Occupancy-Regulated Extension (ORE) algorithm introduced
in [15], relies on the idea of occupancy, i.e., the positions (or
anchors) that player can occupy during gameplay; anchors
are thus used to iteratively expand the existing content by
merging human-authored chunks. Sorenson and Pasquier [16]
proposed a generative system for 2D platformer games in
which creation process was driven by generic models of
challenge-based fun based on existing theories of game design.
They also presented a formulation of challenge of a jump

3http://www.speedtree.com/

between platforms c(t), inspired to the work of Compton and
Mateas [17], that is proportional to the number of potential
player trajectories that successfully traverse the gap. Mourato
et al. [18] extended the model of [16] by adding the concept of
time-based challenge, moving platforms, and opponents. They
proposed a model of difficulty based on the probability of
jump success as a function of (i) the maximum distance from
the gap d for which the jump is feasible and (ii) the player
skill. Ferreira et al. [19] presented a multi-population genetic
algorithm for generating levels by evolving four elements
(terrain, enemies, coins and blocks), each one with its own
encoding, population, and fitness function; at the end of the
evolution the best four elements are combined to build the
level. Non-negative Matrix Factorisation (NMF) [20] follows
a combinatorial approach and generates novel content through
exploring new combinations of patterns using levels from
five dissimilar content generators. Reis et al. [21] proposed
a system that uses human computation to evaluate the quality
of small portions of levels generated by another system and
the tested sections are combined into a full level; their results
show that the approach can create better levels both in terms
of visual aesthetics and fun. StreamLevels [22] supports the
description of level structures using streamlines that can be
drawn or uploaded as real players trace data. Super Mario
Maker, as a commercial game and design tool, offers an
easy and intuitive interface to create levels; each level is
represented as a grid in which game elements (i.e. blocks,
enemies, and power-ups), selected from a palette, can be
placed. The design tools in the game do not include automated
checks for playability or difficulty, thus the designer has to
beat the levels in order to upload them on the Internet. For
what concerns difficulty estimation, a clear rate (e.g. number
of completions on number of tries) is displayed for each level
and, once a sufficient number of players have played the level,
an undisclosed algorithm, probably taking into consideration
parameters such as the average number of deaths per player
and their locations in the level, assigns a difficulty value from
one (minimum difficulty, labeled as Easy) to four (maximum
difficulty, labeled as Very Hard).

III. MODELING 2D PLATFORMERS

Our framework captures the relevant features of platformer
games by including the most common types of platforms,
character movements, and jump actions found in existing
games.

A. Platforms

Platforms are concrete blocks where the character can lean
on, and represent the fundamental elements that make it pos-
sible for the character to travel from one point to another in a
level. In our framework, platforms are defined by their position
and their length; they can be static, having a fixed position,
or they can be dynamic, moving along a defined trajectory.
Platforms can also be fading and as soon as the character
reaches it, the platform starts to fade until it disappears letting
the character fall; they can have spikes that hurt the character

http://www.speedtree.com/

when it jumps on or move over them. Finally, platforms can
be tagged as starting or exit platform, if they are respectively
the first or the last platform of the level. All the platforms are
characterized by a list of parameters that specify the platform
type (e.g., fixed, moving, fading), behavior (e.g., its moving
trajectory, its moving or fading speed), and special properties
(e.g., whether it is a starting or ending platform, whether it is
a checkpoint of some type).

B. Player’s Character Movement

Jumping in platformer games is characterized by several
design choices and physics parameters [23]. We selected a set
of parameters and mechanics to build a framework that is as
flexible as possible, while being also accessible to designers.
In particular, we modeled the movement of the character as
an uniformly accelerated motion until either the maximum
walking speed or running speed are reached. The framework
also allows to customize the acceleration of the character
when a control input is given (i) to start the movement,
(ii) to change the movement direction, and (iii) to stop the
movement; it is also possible to set an infinite acceleration,
that is the character reaches the maximum speed instantly.
The character movement in the air is also modeled as an
uniformly accelerated motion until the maximum air speed
is reached. It is possible to customize the acceleration of the
character while it is in the air, as previously described for the
movements on the ground. For jumps, we allow to customize
the gravity constant, the take off speed (i.e., the initial vertical
speed when the player’s character jumps), and the maximum
falling speed (i.e., the maximum vertical speed of the player’s
character during a fall); it is also possible to disable jump at
all as well as to allow double jumps, i.e., a second jump while
the character is in the air after a previous jump. Finally, it is
possible to choose between static or dynamic jump models: in
the first case, the jump height is not influenced by how long the
jump input is given (i.e., typically how long the jump button
is pressed), so that every jump reaches the same height; with
a dynamic jump model, if the jump button is released when
the character is still moving upward, then his vertical speed is
instantly set to zero, stopping his ascent; this makes it possible
for the player to control the height of each jump.

C. Level Navigation

Given a level and a model of movement, we can represent
the navigation of the character through the level by computing
a directed graph in which, nodes represent platforms and direct
edges represent connections between platforms. Note that, we
use direct edges since a platform may be reachable from
another platform, but not vice versa.

The level navigation directed graph is built as follows. For
each pair of platforms in the level, one tagged as starting and
one tagged as target, we check whether the character can reach
the target platform from the starting platform; for this purpose,
we generate a set of jump trajectories based on (i) all the
movement parameters described above, (ii) the position of the
two platforms, and (iii) how the player approaches the jump,

Fig. 1. Two trajectories. Target point is shown in green. The orange trajectory
fails to reach the target point. The red trajectory reaches the target point.

i.e., still, walking, running, or performing a double jump; then,
we check if the generated trajectories allows to reach the target
platform and, if such check is successful for at least one of
the generated trajectories, we update the graph. We repeat this
process for all the pairs of platforms.

D. Jump Trajectories

A jump trajectory is defined by (i) the take off po-
sition, (ii) the jump direction, (iii) the take off speed
vector, (iii) the state of the jump button (whether it is
pushed down). Jump trajectories are represented as a list
of piecewise defined functions yi(x) and the direction d:
(y1(x), y2(x), ..., yn−1(x), yn(x), d). Each segment identifies
a different type of motion. For example, the first segment y1(x)
may correspond to the character moving with a uniformly
accelerated motion on the horizontal axis; while in the next
segment y2(x), the character may be speed constant so that the
functions describing the motion in the two intervals are dif-
ferent. Given a trajectory and the platform start position xi,s,
end position xi,e and ordinate yp, we say that a point (xp, yp)
is reachable if yi(xp) > yp and either xi,s ≤ xp ≤ xi,e (if
jumping to the right) or xi,e ≤ xp ≤ xi,s (if jumping to
the left). Basically, a point is reachable if the character is in a
more elevated position and horizontally aligned with the target.
Figure 1 shows two trajectories generated from the border of
the platform on the left and a target point (in green), that is part
of the border of the platform on the right; the orange trajectory
fails the reachability check, whereas the red trajectory passes
the reachability check as it is above the target.

E. Generating Jump Trajectories

For each pair of starting and target platforms, the frame-
work generates a jump trajectory based on the position and
size of the two platforms. We identified four types of jumps:
(i) trivial, (ii) simple, (iii) falling, and (iv) re-entrant. Trivial
jumps identify the case of overlapping platforms (Figure 2a)
when it is almost impossible to fail: if the target platform is
above the starting one, the character just needs to perform a
jump while standing still and slightly move toward the target

platform; if the target platform is below the starting one,
the character just needs to fall straight to land on the target
(Figure 2a).

Simple jumps identify generic jump configurations when the
platforms do not overlap (Figure 2b). To generate the jump
trajectories, the takeoff point is selected among the left and
the right edges of the starting platform, based on the position
of the target platform. The vertical takeoff speed depends
on whether (i) the character approaches the jump standing
still (the horizontal speed is zero) or (ii) the character is
moving to the takeoff point; whether (iii) the running input
button is pushed (on) or (iv) not (off). Accordingly, four
jump trajectories are generated (Figure 2b) If double jump is
enabled, for each one of the four trajectories, two additional
trajectories are generated by assuming that the second jump
is performed either at the apex of the first jump or when
the character reaches the same vertical coordinate of the
initial takeoff point. Overall, up to twelve trajectories can be
generated for a simple jump: four for a single jump and eight
for double jumps.

When the target platform is below the starting platform and
the latter covers the former completely, the character performs
a falling jump (Figure 2c). In this case, the takeoff point is
selected among the edges of the starting platform, choosing
the closest one to the target platform. Two jump trajectories
are generated assuming that the characters simply falls down
from the takeoff point with a takeoff speed equal to zero. When
double jump is enabled, two additional jump trajectories are
generated if double jump is enabled as follows.

When the target platform is above the starting platform
and the horizontal projection of the former covers the latter
(Figure 2d), the character will perform a re-entrant jump:
first it has to jump away from the starting platform; next it
jumps back toward the target platform. Re-entrant jumps are
possible only if double jump is enabled; the takeoff point is
selected among the edges of the starting platform, by choosing
the closest one to the target platform. Jump trajectories are
generated similarly to the case of simple jumps by assuming
that the character jumps standing still or while running toward
the takeoff point. In the latter case, we compute the horizontal
takeoff speed, as the highest speed that the character can reach.
Figure 2d shows an example of the four jump trajectories
generated.

The approach we described assumes that the platforms are
static. When dynamic platforms are involved, the bounding
boxes of the moving platforms are discretized according to the
direction of their trajectories. Then, the reachability analysis
is performed considering all the possible positions of the
dynamic platforms within its bounding box using the platform
width or height as a step between adjacent positions.

IV. MODELING JUMP SUCCESS PROBABILITY

Players can perform the same jump between two platforms
in many different ways, thus the same jump can follow
several different trajectories. In our framework, the success
probability of a jump is evaluated by applying a noise function

to generate, for each jump trajectory, a set of random takeoff
positions around the optimal takeoff position. In particular, our
framework supports three noise functions: Uniform, Gaussian
without resampling and Gaussian with resampling. The suc-
cess probability of the jump is estimated as the percentage
of successful sampled trajectories. The noise functions have
several parameters such as (i) the average reaction time of the
player Rt (ranging between 0.01s and 1s); (ii) the player skill
value Ps (with values from 1 to 50); (iii) the absolute value
of either the horizontal speed |vx| or the vertical speed |vy|
at which the character approaches the jump. These parameters
can be set by the designer or empirically estimated. Intuitively,
the higher Rt and |vx| (or |vy|) are, the more the noise affects
the sample trajectories, moving them away from the optimal
ones; the higher Ps is, the lower the effect of the noise
becomes.

For each random takeoff point, the framework generates
a sample of trajectories; a jump difficulty coefficient takes
into account the level of challenge that different types of
the two platforms might introduce (e.g., two moving and
distant platforms compared to two static platforms); the
success probability is then computed as the percentage of
successful sampled trajectories weighted by the inverse of
the jump difficulty coefficient. Note that, if the optimal jump
trajectory is unsuccessful (i.e., there are no feasible jumps),
the framework counts the respective sample trajectories as
unsuccessful without actually generating them. Furthermore,
if the target platform is dynamic and moves along a trajectory,
the success probability is computed as the average of the
estimated probabilities obtained by using the target optimal
position (i.e., the position resulting in the lowest difficulty) and
the adjacent ones. In the following, we present and example
of how success probability is computed for simple jumps;
we refer the reader to [24] for an extended discussion of
how probabilities are computed for all the possible jump and
platform types combinations.

A. Evaluating Simple Trajectory Jumps

In simple jumps, the noise functions affect the horizontal
coordinate of the optimal takeoff point. When using the
uniform noise model, the random takeoff points are selected
with a uniform probability distribution from an interval of
size δ around the optimal position. When using the Gaussian
without resampling or the Gaussian with resampling noise
functions, the random takeoff points are sampled from a
Gaussian distribution. The two Gaussian noise functions differ
in how they manage the sampling of takeoff positions near the
platform border which might actually be outside the platform.
The Gaussian without resampling noise function counts the
takeoff points that are off the starting platform as unsuccessful
sample trajectories, whereas the Gaussian with resampling
noise function generates a new random takeoff point until
it is on the starting platform. Thus, the former models the
possibility of failing a jump because the player pressed the
jump button too late while moving toward the optimal takeoff
point.

Figure 3a reports the four trajectories for a simple jump
scenario defined using different parameters (Section III-E).
The red trajectories fail to reach the target platform, whereas
the green one is successful; the optimal takeoff point is
highlighted with a blue dot. The interval δ associated to the
successful optimal trajectory is displayed in black. Figure
3b shows the trajectories sampled using the Uniform noise
function—in red the unsuccessful ones, in green the successful
ones. The estimated probability of success for the jump is
0.075.

If double jump is enabled, the character can perform a
second jump while in the air and the framework will take into
account the possibility of this event. Figure 3c shows, for the
sake of simplicity, only the optimal trajectories that involve the
player pressing the run button; for each initial jump trajectory,
we show the corresponding two double jump trajectories: one
starting at the peak of the first trajectory (the blue dot), for
reaching the maximum height possible; one starting at the
same y coordinate of the first takeoff (the yellow dot), for
reaching the longest distance possible.

Figure 3d shows two trajectories for the initial jump and
highlights the sampling intervals for the takeoff position of
the second jump. Note that, we sample the x coordinate of
the double jump random takeoff points from these intervals,
whereas the y coordinate is obtained evaluating the respective
first jump trajectory in the sampled x coordinate. Figure 3e
shows the sample trajectories obtained using the Uniform noise
function to generate the random takeoff points; the estimated
probability of success for the jump in this scenario is 0.208,
which is not affected by the difficulty coefficient.

V. EXPERIMENTAL VALIDATION

We performed a set of experiments to validate our model
for the estimation of the success probability of jumps and to
select the most adequate noise model. We used our tool to
build a simple game and deployed it online as a web app. The
game was structured in 16 screens, each one asking the players
to jump across two platforms organized in different ways: (i)
2 screens involved trivial jumps across two nearby platforms
with no possibility of failing; (ii) 6 screens involved simple
trajectory jumps across two platforms, which were positioned
to have a gap of variable width between them; (iii) 4 screens
involved Falling trajectories with the starting platform posi-
tioned above the target one; (iv) 4 screens involved Reentrant
jumps across two platforms, with the starting platform below
the target one, requiring good skills and timing. The player
could walk, run, jump or double jump.

We asked users with different skill levels to perform from
10 up to 50 jumps for each session. Users could repeat the
experiment as many times as they wanted. At first, users were
asked to complete a sequence of warm up jumps, randomly
selected from the 16 screens; the same jump was never
presented twice in a row. Next, users were presented with the
actual series of jumps and at the end they had the opportunity
to fill an optional form to provide some information about
their age, how much they liked platformers and how difficult

TABLE I
A SUMMARY OF THE DATA COLLECTED FOR EACH JUMP TRIAL.

screen ID Trajectory Type #Jumps #Successes %Success
0 Simple 156 136 0.872
1 Simple 131 80 0.611
2 Simple 158 114 0.722
3 Simple 159 104 0.654
4 Simple 153 33 0.216
5 Reentrant 150 53 0.353
6 Reentrant 139 76 0.547
7 Reentrant 134 43 0.321
8 Reentrant 148 32 0.216
9 Trivial 157 139 0.885
10 Falling 151 142 0.940
11 Falling 156 143 0.917
12 Trivial 157 156 0.994
13 Falling 140 128 0.914
14 Falling 141 93 0.660
15 Simple 131 64 0.489

the jump trials felt. For each jump we recorded (i) the identifier
of the screen (screen ID); (ii) the coordinates of the takeoff
position; (iii) the coordinates of the landing position (only
if the user managed to land on the target platform); (iv) the
horizontal speed at which the character took off; (v) whether
the target platform was successfully reached; and (vi) the jump
trajectory.

The experiment involved 58 users; 26 of them also com-
pleted the form; the users who provided additional information
were between 20 and 40 years old and reported an above the
average liking of platformers. Overall, we recorded informa-
tion about 2361 jumps, 1477 of which performed by the 26
users who also completed the form.

Table I reports a summary of the information collected with
the experiments for each jump screen (identified by screen ID)
available to the players: the jump type (Trajectory Type), the
total number of times the jump screen was presented to the
users (#Jumps), the total number of times the jump screen
was successfully completed by the users (#Successes) and the
ratio of successes for the jump screen (%Success). All jump
trials reported an experimental success probability greater than
30% except trials #4 and #8 that were completed 21.6% of
the times. The former required jumping while running and
performing a well timed double jump; the latter was a Reen-
trant jump involving featuring a moving starting platform. The
two trivial jumps (#9 and #12) reported a success probability
close to one; in particular, jump #12 was failed only once
out of 157 tries. Re-entrant configurations appears to be the
hardest to tackle, whereas falling configurations appeared to
be the easiest ones.

We estimated the success probability of each configuration
using the three noise models and employing different com-
binations of average reaction time Rt and player skill Ps. We
compared the probabilities estimated by our framework against
the experimental data collected using the Mean Absolute Error
(MAE).

Figure 4a shows MAE values for the Uniform noise func-
tion. Tables II and III report MAE values and the respective

TABLE II
MEAN ABSOLUTE ERROR (MAE) VALUES FOR THE Gaussian without

resampling (GNR) AND THE Gaussian with resampling (GR) NOISE
FUNCTIONS WITH RESPECT TO DIFFERENT COMBINATIONS OF Rt AND Ps.

MAE Rt=0.01s Rt=0.05s
GNR GR GNR GR

Ps=1 0.229 ± 0.044 0.233 ± 0.042 0.225 ± 0.044 0.224 ± 0.043

Ps=5 0.269 ± 0.044 0.295 ± 0.050 0.302 ± 0.050 0.303 ± 0.051

Ps=15 0.286 ± 0.048 0.293 ± 0.051 0.306 ± 0.053 0.306 ± 0.053

Ps=25 0.292 ± 0.050 0.293 ± 0.051 0.306 ± 0.053 0.306 ± 0.053

Ps=50 0.293 ± 0.051 0.293 ± 0.051 0.306 ± 0.053 0.306 ± 0.053

TABLE III
MEAN ABSOLUTE ERROR (MAE) VALUES FOR THE Gaussian without

resampling (GNR) AND THE Gaussian with resampling (GR) NOISE
FUNCTIONS WITH RESPECT TO DIFFERENT COMBINATIONS OF Rt AND Ps.

MAE Rt=0.1s Rt=0.5s
GNR GR GNR GR

Ps=1 0.220 ± 0.046 0.217 ± 0.045 0.231 ± 0.050 0.225 ± 0.049

Ps=5 0.297 ± 0.047 0.298 ± 0.047 0.260 ± 0.045 0.260 ± 0.045

Ps=15 0.315 ± 0.051 0.315 ± 0.051 0.262 ± 0.047 0.262 ± 0.047

Ps=25 0.316 ± 0.051 0.316 ± 0.051 0.262 ± 0.047 0.262 ± 0.047

Ps=50 0.316 ± 0.051 0.316 ± 0.051 0.261 ± 0.047 0.261 ± 0.047

standard error computed for the two Gaussian noise models
according to different combinations of Rt and Ps. Figures 4b
and 4c compare MAE values for each Gaussian noise model.

By observing the performance metrics, we see that the three
noise models keep MAE values below 0.32. In particular, for
the Uniform noise model, the minimum is 0.227, correspond-
ing to Ps = 5; for what concerns the Gaussian models, the
minimum MAE value is 0.217, corresponding to the Gaussian
with resampling noise function with Ps = 1 and Rt = 0.1s.

A. Level difficulty and probability of success

We extended the evaluation of difficulty and success proba-
bility from single jumps to the case of entire levels viewed
as multiple sequences of consecutive jumps. We defined a
path as the sequence of jumps that the character performs
to move through a level; a path is list of directed edges
(e1, e2, ..., eL−1, eL). Note that we only consider acyclic paths
and thus a node of the graph (a platform) can be visited only
once in a path. We also assume that each jump is independent
from the others, accordingly we evaluate success probability
and difficulty of a path P as,

p(P) =
∏
ei∈P

p(ei) (1)

dt(P) =
∑
ei∈P

d(ei) (2)

The probability of success p of a path P (equation 1) is
computed as the product of the success probabilities of the
jumps in the path (all the edges p(ei)). The difficulty dt of a
path P (equation 2) is the sum of the edge difficulties d(ei).
The dt metric is agnostic to the position of the jump in the
level (e.g. the first jump has the same weight of the last jump
in the path), thus it provides a rough estimate of the path
difficulty also in terms of its length; dt can also be viewed as
a metric to roughly estimate the player’s fatigue.

A level can be traversed in multiple ways from start to
finish, accordingly, our framework applies depth first search

on the graph representing the level to extract the paths that
are feasible without dying (e.g., because failing a jump or by
exhausting the character health because of harmful obstacles
like spikes). Our framework supports the visualization of the
minimum difficulty path, where the difficulty metric can be
selected by the designer among the set of metrics that we
previously discussed. Figure 5 shows the minimum difficulty
path (in red) with respect to the dt metric for an example level;
each one of the edge composing the path is displayed together
with its difficulty and probability of success.

VI. CONCLUSIONS

We presented a framework for the design and evaluation
of levels for 2D platformers that we developed as a modular
extension of a popular game engine Unity. The framework
takes into account the structural features of levels (e.g., the
platforms’ types and positions) and the functional features of
the level (e.g., the underlying physics, the character moving
and jumping capabilities) to evaluate levels in real time in
terms of difficulty and probability of success for single jumps
and for the whole level. We performed a preliminary set of
experiments involving human players to validate the approach
we use to evaluate the difficulty and the probability of success
of single jump actions.

We plan to extend this work in two ways. First, we want to
validate the method proposed for the evaluation of entire levels
by collecting gameplay data with human players using levels
with different characteristics. Next, we plan to add a search-
based procedural content generator in order to let designers
create levels with specific properties or metrics values.

REFERENCES

[1] A. Baldiraghi, “Simple mechanics, complex puzzle creation. can
computer-aided puzzle design help us create fair, fun and interesting
challenges?” [Online]. Available: https://www.gamasutra.com/blogs/
AndreaBaldiraghi/20160810/278907/

[2] N. Shaker, G. N. Yannakakis, and J. Togelius, “Digging deeper into
platform game level design: Session size and sequential features,” Pro-
ceedings of the European Conference on Applications of Evolutionary
Computation (EvoApplications), 2012.

[3] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player
experience in super mario bros,” IEEE Conference on Computational
Intelligence and Games, 2009.

[4] N. Shaker, G. N. Yannakakis, and J. Togelius, “Towards automatic
personalized content generation for platform games,” Proceedings of the
Sixth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2010.

[5] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” IEEE Transactions on Computational Intelligence and
AI in Games, 2010.

[6] ——, “Tanagra: Reactive planning and constraint solving for mixed-
initiative level design,” IEEE Transactions on Computational Intelli-
gence and AI in Games, 2011.

[7] D. Loiacono, R. Mainetti, and M. Pirovano, “Volcano: An interactive
sword generator,” Games, Entertainment, and Media, 2015.

[8] J. M. Peña, J. Viedma, S. Muelas, and A. L. L. Peña, “Designer-
driven 3d buildings generated using variable neighborhood search,” IEEE
Conference on Computational Intelligence and Games, 2014.

[9] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation
in Games: A Textbook and an Overview of Current Research. Springer,
2016.

[10] G. Smith, M. Cha, and J. Whitehead, “A framework for analysis
of 2d platformer levels,” Proceedings of the 2008 ACM SIGGRAPH
symposium on Video games, 2008.

https://www.gamasutra.com/blogs/AndreaBaldiraghi/20160810/278907/
https://www.gamasutra.com/blogs/AndreaBaldiraghi/20160810/278907/

[11] S. Dahlskog and J. Togelius, “Patterns and procedural content generation
revisiting mario in world 1 level 1,” Proceedings of the Workshop on
Design Patterns in Games (DPG 2012), 2012.

[12] ——, “A multi-level level generator,” IEEE Conference on Computa-
tional Intelligence and Games, 2014.

[13] N. Nygren, J. Denzinger, B. Stephenson, and J. Aycock, “User-
preference-based automated level generation for platform games,” IEEE
Conference on Computational Intelligence and Games, 2011.

[14] G. Smith, J. Whitehead, M. Mateas, M. Treanor, J. March, and M. Cha,
“Launchpad: A rhythm-based level generator for 2-d platformers,” IEEE
Transactions on Computational Intelligence and AI in Games, 2011.

[15] P. Mawhorter and M. Mateas, “Procedural level generation using
occupancy-regulated extension,” IEEE Conference on Computational
Intelligence and Games, 2010.

[16] N. Sorenson and P. Pasquier, “The evolution of fun: Automatic level
design through challenge modeling,” in Proceedings of the International
Conference on Computational Creativity, Lisbon, Portugal, January 7-9,
2010., D. Ventura, A. Pease, R. P. y Pérez, G. Ritchie, and T. Veale, Eds.
computationalcreativity.net, 2010, pp. 258–267. [Online]. Available:
http://computationalcreativity.net/iccc2010/papers/sorenson-pasquier.pdf

[17] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proceedings of the Second Artificial Intelligence and
Interactive Digital Entertainment Conference, June 20-23, 2006,
Marina del Rey, California, J. E. Laird and J. Schaeffer, Eds.
The AAAI Press, 2006, pp. 109–111. [Online]. Available: http:
//www.aaai.org/Library/AIIDE/2006/aiide06-022.php

[18] F. Mourato, F. Birra, and M. P. dos Santos, “Difficulty in
action based challenges: Success prediction, players’ strategies and
profiling,” in Proceedings of the 11th Conference on Advances
in Computer Entertainment Technology, ser. ACE ’14. New
York, NY, USA: ACM, 2014, pp. 9:1–9:10. [Online]. Available:
http://doi.acm.org/10.1145/2663806.2663832

[19] L. Ferreira, L. Pereira, and C. Toledo, “A multi-population genetic
algorithm for procedural generation of levels for platform games,”
Proceedings of the 2014 Conference Companion on Genetic and Evo-
lutionary Computation Companion (GECCO Comp ’14), 2014.

[20] N. Shaker and M. Abou-Zleikha, “Alonewe can do so little, togeth-
erwe can do so much: A combinatorial approach for generating game
content,” Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2014.

[21] W. M. P. Reis, L. H. S. Lelis, and Y. Gal, “Human computation for
procedural content generation in platform games,” IEEE Conference on
Computational Intelligence and Games, 2015.

[22] L. N. Ferreira, “Streamlevels: Using visualization to generate platform
levels,” ACM Computers in Entertainment, 2015.

[23] M. Fasterholdt, “You say jump, i say how high?” Master’s thesis, IT
University of Copenhagen, 2015.

[24] A. U. Aramini, “An ai assisted framework for the design of 2d plat-
formers,” Master’s thesis, Politecnico di Milano, Milano — Italy, 2017.

(a)

(b)

(c)

(d)

Fig. 2. Generated trajectories for (a) trivial, (b) simple, (c) falling, and (d)
re-entrant jumps. Jump trajectories are green when the character is still; they
are yellow, when the takeoff speed is positive but the character is not running;
they are orange, when the takeoff speed is zero and the character is running;
they are red, when the takeoff speed is positive and the character is running.

http://computationalcreativity.net/iccc2010/papers/sorenson-pasquier.pdf
http://www.aaai.org/Library/AIIDE/2006/aiide06-022.php
http://www.aaai.org/Library/AIIDE/2006/aiide06-022.php
http://doi.acm.org/10.1145/2663806.2663832

(a)

(b)

(c)

(d)

(e)

Fig. 3. (a) Boundary trajectories for a simple jump configuration; the only
successful boundary trajectory is the one in green; the optimal takeoff point
is highlighted in blue. (b) The generated sample trajectories for the scenario
using a Uniform noise function.

(a)

(b)

(c)

Fig. 4. Bar chart comparing Mean Absolute Error (MAE) values for (a) the
Uniform noise function; (b) the Gaussian without resampling noise function;
(c) the Gaussian with resampling noise function.

Fig. 5. An example of minimum difficulty path (in red) displayed by the
framework.

	I Introduction
	II Related Work
	III Modeling 2D Platformers
	III-A Platforms
	III-B Player's Character Movement
	III-C Level Navigation
	III-D Jump Trajectories
	III-E Generating Jump Trajectories

	IV Modeling Jump Success Probability
	IV-A Evaluating Simple Trajectory Jumps

	V Experimental Validation
	V-A Level difficulty and probability of success

	VI Conclusions
	References

