A Domain-Specific Language for the Specification
of Adaptable Context Inference

André C. Santos, Pedro C. Diniz Joao M. P. Cardoso Diogo R. Ferreira
INESC-ID FEUP — University of Porto IST — Technical University of Lisbon
Lisbon, Portugal Porto, Portugal Lisbon, Portugal
acoelhosantos@ist.utl.pt, pedro@esda.inesc-id.pt jmpc@acm.org diogo.ferreira@ist.utl.pt

Abstract—Context-aware mobile applications can benefit from accuracy improves, as FFT processing window size increases
context inference adaptation based on run-time operating an- As can be seen, there is a substantial impact on the operating
ditions, such as battery life or sensor availability. Devaping ., qitions of the mobile device by changing a key algorithm
applications with such adaptable behavior, however, is natriously t f th text inf C ideri .
cumbersome, as developers need to deal with low-level syste parameter or the context interence _process. onsiaering wi
interfacing and programming issues. In this paper we deschie a dows of 512 and 2048 samples, in the latter the accuracy
domain-specific language (DSL) and a middleware infrastruture increases slightly (82% to 89%) while almost requiring deub
to support the specification, deployment and maintenance of the resources. In fact, in many situations, the inferenoegss
run-time adaptable context inference processes. We illusite the could opt for different algorithms and/or parameter sgin

benefits of our approach via a case study, highlighting the ne . . - . - S
abstractions that facilitate the specification of adaptabé behavior that provide alternative inference configurations exmpgit

using different a|gorithms and the Corresponding Varying param- reduced resource use without any Signiﬁcant loss in context
eter settings, with a specific goal of minimizing the energy hile inference accuracy and thus of application performance.

maintaing acceptable end-application performance and acgacy. Unfortunately, the current development approaches for
context-aware applications are still too rigid. At presdht
developers want to implement such adaptations, they must
do it by engaging in a complex, time-consuming and thus
error-prone programming efforts. To mitigate these issues
propose an approach for the development of context-aware
Mobile applications that make use of context informatioapplications that provides high-level abstractions fazcify-
can provide a rich and more personalized set of servic@sg the run-time adaptation of the context inference preess
such as tour guides|[1], support for health care systéms Rpecifically, this paper makes the following contributioiy
or enhanced social networkind [3]. To support these advhncg platform-independent domain-specific language (DSL) for
services, mobile applications acquire context informatsuch the specification of dynamically adaptable context infeeen
as user location or user activity, through inference prsees processes; (2) a middleware platform for infrastructucgd-s
that rely on sensor data analysis and reasoning meth@gdst responsible for the interpretation and execution oftext
ranging from simple operations to sophisticated algoréid. inference processes specified in the DSL; (3) the evaluation
The increasing sophistication of these applications eseabf the proposed approach in application scenarios and in a
a tremendous pressure on the limited resources of mohilese study application. We expect that the joint approach of
devices, in particular energy, making it very desirableatiket a DSL and a middleware will lead to an easier development
into account the run-time operating conditions when penfor of adaptable context inference, allowing mobile contexaiae
ing inference. Mobile applications can leverage adaptatio applications to deliver acceptable performance and emthnc
keep context inference processes running despite changefunctionality while optimizing resource usage and appima
operating conditions (e.g., battery running low) or apgticn resiliency despite changes in run-time operating conattio
requirements (e.g., increase context accuracy). The remainder of this paper is organized as follows. Sec-
Possible adaptations include the use of different prongsstion [l presents an overview of the middleware and DSL
algorithms; different algorithm parameters tuned to dpeciapproach, which are further detailed in Sections 11 @ndrB/,
contexts; distinct sensors that provide similar data; ompdy spectively. Sectiof V presents a case study. We surveecklat
different periods at which the inference is computed. As amork in Sectior_Vl, and conclude the paper in Secfion VII.
example, Fig[illustrates the impact of power consumption
and CPU load on a mobile device (Nokia N95 smartphone)
for a user activity context inference technique using a-Fast The architecture of our approach, depicted in Ef. 2, is
Fourier-Transform (FFT) and a k-Nearest-Neighbor (kNNjased on a specification DSL and a supporting middleware
classifier over different windows of accelerometer datahifti infrastructure, targeted for mobile device environmeitise
this technique power consumption and CPU load decrease, dpproach aims at enabling the use of adaptable behavior in

Index Terms—mobile devices; context-awareness; adaptable
context inference; domain-specific language; middleware.

I. INTRODUCTION

II. APPROACHOVERVIEW

1: infAct IS fftKnnlnf(FftNSanpl es=2048){IDLE, WALK, JOG} ;
Accuracy (%) ™ Power (mW) B CPU Load (%) 2:
3: RUN peri od=1sec] {
158 4: /1 default inplenentation
5: activityContext = infAct();
130 6:}
122 7:
8: RULES{
9: EVENT: ENERGY. LEVEL. LON|| CPU.LOAD.HI GH // Rule A
87 10: infAct 1S fftKnnlnf(FftN Sanpl es=512);
11: }
I Il 12: EVERY RUN: RUN. ELAPSEDTI ME > RUN. period{ // Rule B
| | | | | | 13: RUN. period = 2sec;
41 14: }
L. | || L] L 15: }
5 5 Fig. 3. DSL code for adaptable user activity context infeeen
32 64 128 256 512 1024 2048

FFT Processing Window Size (# samples)
is externally defined in the DSL using a specific syntax with

Fig. 1. A ti d CPU load for differEiT . : L
9 webealetiouiiunliiseiiti) o ner domain semantics. As the DSL specification is implemented

processing window sizes. Measurements acquired using tiéaNEnergy

Profiler (NEP) on a Nokia N95 smartphone. by the middleware, the application developer can thus foous

the main application logic since the context-related camce
g;;;f;;;;f;ﬁg;h Middleware are encapsulated by the middleware components, and require
" Desiiaions “ Contextinference Manager —— | —— the middleware to deliver, by periodic subscription or by

,,,,,,,,,,, DSL Interpreter

Control
Interface

F ~aaional | jndividual queries, the generated context informatiore Tke
Modules

: | -Wark_ﬂow -Ru!e Context
Lo) ‘ [Lerwne) Lo v | of this approach implies specifying the inference process a
T p v adaptations using the DSL,; providing the middleware with th

7777777777777777 T required methods for inference; and also registering fatex

Processing Comm.
notifications or simply querying for contexts.

i
I APL e
i
Conle)_(l-A!Mare f
Application ‘

Fig. 2. Architecture of the proposed DSL and middleware aagin.

Context
Provider

Y

IIl. M IDDLEWARE INFRASTRUCTURE

The middleware provides applications and the DSL with a
supporting infrastructure for the development and use apad
the context inference process, through strategies and thid¢ able context inference (see Hig. 2), supporting abstnastioat
dynamically control the inference workflow. transparently provide services to deal with issues from- low
The DSL exposes the concepts of domain componentsyel details to commonly used operations. The middleware
allowing the inference process to be concentrated on a sethus dependent on the target platform and execution en-
of clearly exposed inference operations and adaptatia@srulvironment. Internally, the middleware is composed of saver
Furthermore, support for the DSL is provided by a middlewammponents, namely@ntext inference managexDSL inter-
infrastructure that interprets, executes and implemehés tpreter, acontext provideraresource manageand a number of
various DSL elements in run-time. The DSL component is @abntext modulesCollectively the components coordinate the
paramount important as it is platform-independent prongpti inference process, implement the DSL specification, manage
reusability, robustness, and enhanced productivity acdifs resources, and provide context to applications.
ferent platforms. As it captures the semantics of a domh#n, t In order to obtain context information, a context-aware
DSL provides key abstractions to specify adaptable infe#en application needs a mechanism for interfacing with the mid-
such as: defining input and output inference parameters; diéeware platform. The middleware provides a set of APIs to
fault implementation execution; and rules for adaptatmgid support the interaction between the context provider aed th
of the inference workflow. An example of a DSL descriptiompplication. The context provider is the interface middiesv
associated with the case presented in [Hig. 1 is shown ifiFigc8mponent responsible for supplying context information t
The DSL defines how and when the inference processapplications by on-demand context queries or event sub-
computed (Fid.13, lines 3-6) and the rules defining strasegie scriptions involving periodic updates. The context infere
adapt the inference when specific events or conditions pccuranager is the middleware component that controls the in-
i.e., when the battery of the device reaches a low level, whésrence process through the DSL interpreter and the control
CPU reaches high load or when the inference elapsed tiéerface sub-components. The DSL interpreter is respémsi
takes longer than the defined period (Fig. 3, lines 8-1%yr interpreting the context inference process descritsdgu
Adaptations consider computing the inference techniquk wihe DSL. The DSL interpreter relies on a workflow engine
a lower value for the number of samples parameter (Hig. &d on a rule engine for executing the instructions written i
line 10), or increasing the inference period (Fi§. 3, ling.13 the DSL specification. The run-time interpretation estiles
Using our approach, the use of context information by applike relation between each section of the DSL specification
cations becomes transparent, as adaptable inferenceitlehand specific elements of the middleware. The control interfa

supports the interaction of the context inference managfér w O el
the resource manager and the context modules. The con<_* ; ‘ |
modules represent the method implementations necessary o Ly Comext
the inference. Adaptations are triggered as the contegt-inf L | Proceseing L‘—‘
ence manager monitors the status of specific resourcesﬁnro i !
the resource manager, which supplies a proxy to locate &]]] ,
- sensors used | - sampling frequency | - processing method | - algorithm used | - notification frequency

acquire data from both internal and external sensors of t ()) D~ bufter size } - algorithm parameters, - (..
. . ' o) 1 - inference frequency
mobile device (e.g., accelerometer, battery, memory atéxt, | I ‘
CPU load). The resource manager is also responsible for

cleaning, correcting and preprocessing raw sensor datg asi Fig. 4. Generalized context inference workflow diagram.
pool of methods (e.g., average over a stream of values)dwall

conversion, (de)compression, (un)marshaling of data, etc o) S
allows the description of the inference process, which in

IV. SPECIFICATIONDSL another general-purpose language would require extensive

When developing context-aware applications, deve|opé}gogrammingto accomplish. Our DSL allows the specification
have to deal with context-related issues in addition to tiff the most important components of the context inference
main application logic. Often, context-related code, ryainProcess within a single description by primarily speciyin
for context inference, is entangled with application codél) sensors and algorithms used for inference; (2) parasete
complicating further development and maintenance. Mazgovused for adaptation; (3) structuring of the inference psece
if the developer is aiming at adaptation of the context isfiee INto execution blocks; and (4) a set of priority-organizels
process, this requires a significant amount of conditiond®r adaptation to certain conditions and events.
event-based and periodic coding to be included.

With a DSL it is possible to mitigate these problem
and easily express computations in the context-awarenesk the DSL, a context inference process and its adaptable
domain, allowing a concise, more intuitive, specificatidn doehavior is specified by three main sectiongclarations
resources, inference behavior and their processes. Our n@perations andrules (see DSL component in Figl 2).
goal in designing the DSL was to create an appropriate setDeclarations are the initial DSL structural section that
of abstractions that reduced the development effort for tleclares necessary variables, methods, and default perame
programmer when performing tasks associated with conteslues that are used within the operations section (Hig. 3,
inference. We define a set of high-level abstractions fopileg line 1). The role of this section is to associate the DSL to
and periodic tasks, asynchronous event handling, conditithe middleware by bridging DSL elements to middleware
testing, and rule declarations, among others. A dedicate@mponents. Mainly, the association is established by the
specification of context inference allows a more powerfuhatch of methods whose respective implementations exist
mechanism to define inferences and most importantly théir context module components of the middleware. Such im-
adaptation rules, as opposed to a external libraries or.ARks plementations of methods for inference are supplied by the
information specified in the DSL thus allows rapid prototypi application developer. For example, in line 1 of Hig. 3, the
of adaptable context inference processes, flexible adaptaibfAct inference method used within the DSL is implemented
behavior management and clear evaluation of conflictingstul by the middleware’s context moduféKnninf. This imple-

. mentation is further configured with a default initial valios
A. Language Features and Requirements FftNrSamples parameter. The inference method also specifies

A context inference process transforms raw sensor dditee output activity contextDLE, WALK, andJOG.
into useful context information. Often, this process ismiedi ~ The operations section is responsible for specifying themma
statically and thus exhibits a fixed behavior. However, theorkflow for the inference process. It defines the necessary
inference of context information should be dynamic, mainlyequential steps that identify the context informationjolvh
because of the volatile nature of context and the varyimgn include several layers of inference and specific infaxen
operating conditions of mobile devices. Fig. 4 depicts application cases. This section is built with a main exeruti
overview of a generalized context inference process, whiblock, and subsequent sub-block structures that can beedefin
considers three main stagefsita acquisitiondata processing to frame specific areas of the inference workflow. Such sub-
and context identification Each stage embodies methods tblock structures are used to concentrate operation steps th
accomplish a task, which expose parameters that can be usey be activated or deactivated, allowing a more dynamic
to configure the process. Changes to this process accomptisiacture. Execution blocks can be associated with exatuti
the context identification with a different impact on seVeraroperties such as the inference periodicy. Lines 3 to 6 of
metrics such as execution time, energy, power and CPU lo&il. [3 define aRUN block corresponding to the operations

The DSL concept focuses on the development of conteséction, parameterized to execute with a 1 second period. In
inference processes. The domain-specificity allows tdlorthis example, an output context variable is defined as thdtres
high-level abstractions to be composed in a structure ttaftthe inference method being applied.

' ' '
L 4 L

g. Language Structure

. - _ _ 1: infPos IS positionlnf =SENSCR. GPS, ition};
The rules section specifies the adaptation strategies thﬂtIn 0 1S positionini (sensor) {posi ti on}

are applied when triggering events or valid condition tegti 3' RN peri od=ssec] {POS()_

occurs. Common triggering conditions are memory, CPUs: } '

energy, sensor status, and context, which are availableser & RULES(

within the DSL. The adaptations are described by means af EVERY 5nin: ENERGY. LEVEL < 50%

rules that adjust the behavior of the inference processfigmbc o i Pos IS&ﬁofF{\lisgfi ﬁf‘?"s’;;”s*:)k’jg'éﬁ{sm -
within the operations section. Rules can be assigned am orde

that accommodate several sequential adaptation behaw?gs EVENT: ﬁ%&g?wugﬁﬁ{/;ﬁfkgm

e.g., when battery life starts decreasing one might start by infPos I'S positionlnf(sensor=SENSOR W Fi);
adjusting some technique parameters, and only if_ battéey Iiig EVENT: SENSOR. W Fi UNAVAI LABLE

decreases to an even lower level then one might replace && SENSOR. GSM AVAI LABLE{

one technique for another. The existence of multiple rufé infPos IS positionlnf(sensor=SENSCR GSM ;
blocks assigned to different conditions or events couldseatro: }

conflicts, as incompatible actions could be enforced if mlgt

rules where activated simultaneously. Conflicts are solwed Fig. 5. DSL specification for a location context inferenceqass adaptable
prioritization, where rule blocks are prioritized by theirder to sensor availability and device energy.

of specification (in Fig[13, Rule A has higher priority than

Rule B). At any given moment, only one rule block can

be activated, being the highest priority rule block where th V. CASE STUDY APPLICATION

triggering condition is valid. If a rule is applied and aftards This section presents a case study for experimental eval-

its triggering condition is no longer valid, the contextérénce uation of the proposed approach. The case study consists in

manager performs a roliback on the executed rule and thfk'scontext-aware application that is present in a smartphone

on the previous executed adaptation, returning to the defagnd infers the user's physical activity through accelerati
configuration. Lines 8 to 15 of Fid] 3 define a rules sectio

Hata 6tanding normal walking race walkingand running).
composed of two rule b.IQCkS’ one for a energy and CPU e\./eme inference process is adaptable being composed of a two-
and another for a condition test on the inference elapsesl ti

Tevel hierarchy and adjustable in the inference period and

Rule management is conducted solely in this section and thaL@orithms due to energy and CPU concerns. The use of a

adding, removing or gdmng rules can be accomplished Wuhohierarchical inference scheme allows for a refinement of the
an added programming overhead. computational complexity associated with context infeeen
Algorithms that are specific to certain contexts relieve the
application from having to use a single more sophisticated
algorithm in order to distinguish all necessary contextsisT

. . L adaptation ultimately allows for lower CPU load, thus loingr
In this section we present another motivational DSL SPefia inference execution time and energy consumption. In

ification example considering a scenario of a IOC""tion'u"’ls‘gddition an increased inference period means a lower numbe

con'?_extt!nferenc? syst_tembA g:jowm? nur‘rtlrl;)etr Of]j[mobile phOQﬁ inferences computed and thus a reduction of the overall
applications are location-based systems that often requfiS CPU load compounding the overall energy reduction of the

capapilities for location context information. anortmaty, inference process and thus of the aggregate applicatiothe®n
EPS |n|cut:;5 ar; ?nacceglttable tgnergy cost and it n\}\?)';_eveg 88&/]’1 side, however, increasing the inference period mageau

€ avarabie at imes. Allernalives sensors (e.g., WIFiME contexts to be detected with some delay or even be missed
for location are required when energy needs to be saved (ea‘-i’rogether. Nonetheless, it may also allow skipping oveneso

when the phone is running low on battery) or when GPS .
1€ p running y) : }ﬁomentaneous, erroneous context inferences.
not available, even if it incurs on the loss of some localorat

accuracy (e.g.,[15]). Figl5 depicts a DSL specification fg&
this scenario, where a strategy for sensor change accordirig
to battery level or sensor unavailability is enforced. Libe In this experimental implementation, the goal is to provide
declares the inference functianfPos implemented by the the context inference with a behavior that identifies physi-
context modulgositionInf with the default sensor set to GPScal activities as accurately as possible while minimizihg t
Lines 3-5 define the context as a result from the output ehergy and CPU load by adjusting the inference period and
the infPos method. Lines 7-20 define the adaptability rulesnethod. This adaptable behavior is summarized as follows:
defined in order of priority: (1) every 5 minutes a test coiodit (1) initially the context inference is computed with a small
is evaluated to verify if the device's energy level (batjeisy inference period of 1 second; (2) for context identification
below 50%, in order to switch the sensor used for infereneefirst level inference method is usemhférencel — signal

to the GSM sensor; (2) if the GPS sensor is unavailable thdifferences and threshold classifier) to distinguish betwe

a switch to WiFi sensor is performed; (3) if the WiFi sensostanding walking and running contexts; (3) in the presence
is unavailable, then a switch to GSM sensor is enforced. of the walking context, a more complex method is used

C. Application Scenarios

Implementation

: inferencel IS inferencel{STANDI NG WALKI NG RUNNI NG};
(inference2 — frequency signal analysis and nearest ne|ghz inference2 1S inference2(fftWndows512) {NORMAL WALKI NG,

bor classifier) to further distinguish betwesawalking pace 3! RACE_WALKI NG};
contexts; (4) whenever the inferred context remains comstas: RuN peri od=1sec] {

for at least the last three inferences, the inference peridd level1{

.. 6: cont ext =i nferencel();

is increased to 2 seconds; (5) as the battery level of the

device diminishes, the period is further increased and thieem 8 level 2{
. i . .9 I F(cont ext == WALKI NG
complex method is reconfigured with a smaller processing: THEN cont ext =i nf er ence2() :

window size parameter; (6) if the CPU reaches high Ioaéil ¥

then the inference level for identifying thealking paces is 13 !

deactivated; (7) if no rule is applied, the inference is agrtdd igf RU'-/E/S{RJI o A

at its default implementation state. 16: EVERY RUN: CONTEXT. H STORY. EQUALS(3) {
The DSL code for this case study is depicted in FiQ. 67 RUN. peri od=2sec;

Lines 1 and 2 declare the two inference methods as well @s /}/ Rule B

a default parameter value. The declared inference meth@éls EVERY 5min: ENERGY. LEVEL < 60% &&
| ENERGY. LEVEL > 30%

must be recognized by the middleware. Lines 4—-12 define the RUN. per i od=3sec;
operations section where the main inference loop is exdcut2é3f /}/ ule G
In this structural section, two operational blocks are defin 25} EVERY 5mi n: ENERGY. LEVEL < 30%
26: RUN. peri od=5sec;
levell andlevel2. The two blocks will allow the activation oo Tt erence2 1S i nf erencez(f{t W ndows256):

and deactivation of the two-level inference hierarchy dxfin 2s: }
Lines 14-33 specify the adaptation rules. There are fowsrup: // Rule D

. L . . : EVERY RUN: CPU. LOAD > 80%
defined by priority, one rule is history-relateRule A), two 31 level 2. of £ ()
rules are energy-relatedRgle B and C) and one rule is gg) }
CPU-related Rule D). The first rule captures the condition
regarding three consecutive identically inferred corgextd
specifies a corresponding increase of the inference pértoal.
subsequent energy rules define that below a specific battery
level, adaptations need to be performed. For a battery level
below 60% only the period is increased, but in contrast, for
a battery level below 30% the period is increased even morp Inference | Accuracy (%)| CPU Load (%)| Power Cons. (mW)|

Fig. 6. DSL code for the adaptable activity context infeeenc

TABLE |
INFERENCE COMPUTATIONAL IMPACT AND OVERALL ACCURACY

and theinference2 method is reconfigured with a different [peraur 922 243 244
fitwindow parameter value. The CPU rule defines that above g,e A 924 12.9 167
an 80% CPU load the operations bldekel2 is deactivated, Rule B 93.4 8.9 148
i.e., no longer being computed. Rule C 795 55 129

. . Rule D 100.0 3.1 123
B. Results and Discussion =

The case study highlights some key characteristics of the
DSL and middleware approach described in this paper. The
DSL includes simple, yet powerful elements, that allow confor the resources to process and dispatch events such as low
plex behavior to be defined in a flexible and agile form#nergy or high CPU load; (4) dealing with synchronization
without troublesome programming. As a comparison, wesues between the looping inference calls and the resource
implemented the same inference behavior usiByE since €Vvents; (5) use of extra conditional statements that wotdghe
it is a very common development language for smartphom? inference method calls according to resource events.
applications. The J2ME implementation required 250 lines o Considering the computational impact and also the accuracy
Java code. In contrast, our DSL implementation uses only 8Btained using such context inference process, summarized
lines of code, a reduction of more than 85%. More importantlyablell are results of the system execution, during 10 m#jute
our DSL specification translates in a substantial reducti@ver sets of random acceleration data samples of all aesvit
of code complexity. For example, adding a new rule wouldf interest. The accuracy provided is stable in most rules,
amount to additional boilerplate code #2ME, whereas in except onRule C where the frequency analysis algorithm
contrast in our DSL specification such addition would cansis performed over a smaller window of number of samples.
only in an additional rule block description. Accuracy is higher inRule D as it disables the inference

Overall, using the DSL approach described here relieves thiethe detailedwalking contexts and thus only requires the
programmer from a wide range of conceptual and practigaiplementation to distinguish between three contexts. Re-
tasks namely: (1) creating appropriate mechanisms for tharding power consumption and CPU load, as the riles
scheduling of inferences; (2) guaranteeing mechanisms-to throughD reduce complexity of the inference by incrementing
cess information on system resources, i.e., battery lpegler the period, changing algorithm parameters and deactiyatin
consumption and CPU load; (3) creating listener interfacegerence levels leads to a decrease in the operationalanetr

V1. RELATED WORK and execution of dynamically adaptable context inference

Several approaches for context-aware application develgocesses. Our approach aims at reducing the contextt@dien
ment have been proposed, due to the increasing importanc@isfgramming effort by providing a high-level DSL that ab-
context-awareness, and also by the demand for solutiorss tostracts common concepts necessary for context infereisce, a
cilitate this complex type of development. Approaches spawell as information on the device operating conditions,-sup
mainly in the form of frameworks (e.g., JCAF [6]), middlewar ported by a modular middleware infrastructure. Thus, dgxel
(e.g., MobiPADSI[7], MidCASEI[B], CARISMA[[9]), and lan- ers will be able to define a wide range of adaptable inference
guages (e.g., Context[T10], Subjective:C]|[11], Eveni@)])1 systems for mobile devices, with an approach that reduces

Although these approaches have improved the overall dbe development complexity, takes into account the opegati
velopment of context-aware applications, to best of oumkno challenges in mobile platforms, and leverages adaptyliit
edge they have not specifically addressed the specificationosder to optimize the context inference process.
adaptable context inference processes. The main concern of
these approaches has been to assist the use of context by the .
applications. As example, MobiPADS][7] and CARISMA [9] The research work _presented was .part|ally supported by
do not address how a context is obtained, yet contexts arghda@o para a Céncia e a Tecnologig=CT) under grant
used to adapt services provided to applications. MobiPADY%Mber SFRH/BD/47409/2008.
additionally religs_ on an XML—b_ased Iangggge for service REFERENCES
interaction specification, supporting the definition of o

ts, but without addressing how they are computed. Odfl & B Abowd C. G. Atkeson, J. Hong, S. Long, R. Kooper, and
even_s’ . e . _g y - p : M. Pinkerton, “Cyberguide: A Mobile Context-Aware Tour @ej’
solution mainly distinguishes itself from previous apprioas Wireless Networksvol. 3, no. 5, pp. 421-433, 1997.
by focusing on the specification of context inference prof2l N.Bricon-Soufand C. R. Newman, “Context Awareness iraltreCare:
. . . . A Review,” International Journal of Medical Informati¢sol. 76, no. 1,
cesses and their management, considering system prapertie bp. 2-12, 2007.
and application requirements. We thus allow context-awarg] A. C. Santos, J. M. P. Cardoso, D. R. Ferreira, P. C. Dirnd
app”cation deve'opment based on a flexible programming P. Chainho, “Providing User Context for Mobile and Socidt\M)rking
. . Applications,” Pervasive and Mobile Computingol. 6, no. 3, pp. 324—
approach for control of dynamic run-time adaptable context 347 5010
inference. Additionally, our context-oriented DSL doest nO[4] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D.icNas,
extend some other host general-purpose language. It is inde A- Ranganathan, and D. Riboni, “A Survey of Context Modelliand
dent from anv underlvina lanauaae and device platform Reasoning TechniquesPervasive and Mobile Computingol. 6, no. 2,
penden y ying languag ice p ' pp. 161180, 2010.
therefore depending solely on the middleware infrastmgctu [5] z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving Energyfigiency
for execution. In fact, context-oriented programming (QOP of LO(?atiolﬂ Se?Sing on Smafg?lhorlesi" Fﬂroceedilr)gslof the 8th In-
concepts have commonly been put into practice as extensions Emﬁfg’;fl%;m 22?,\'}"’:828?0,'\4&_' gégggﬁs Applicatioms] Services
to several languages, each one with its own approach {6] J. Bardram, “The Java Context Awareness Framework (JCAR
the COP paradigm and with implementations suffering in Service Infrastructure and Programming Framework for €rAware
] Applications,” inPervasive Computinger. LNCS, vol. 3468. Springer,
general from a large execution overhead [13]. Contextl,[10] 5q05 op. 98-115.
Subjective-C[[11], and EventClJ [12] are interesting ex&®pl [7] A.T. S. Chan and S.-N. Chuang, “MobiPADS: A Reflective Mlieware
of COP languages that modify the behavior of a program by for Context-Aware Mobile Computing/EEE Transactions on Software

associating code definitions with context-related layémat t g Enggee}j'_r‘g’ivg: 29, no. ﬁ’jgﬁé 13;(12_:}.0%?5#9%%35; A See

ACKNOWLEDGMENTS

are activated according to the current context. Still, ncufo Oriented Middleware Enabling Context Awareness for Smantifn-
is given to context inference. ment,” in Proceedings of the International Conference on Multimedia
Th h b h h t teoxt and Ubiquitous Engineering (MUE '07) IEEE, 2007, pp. 946-951.
ere have been, however, some approaches 1o con % L. Capra, W. Emmerich, and C. Mascolo, “CARISMA: Contévare
inference adaptability due to the problematic energy ation Reflective middleware System for Mobile Application$ZEE Trans-

of mobile devices, whose battery is always finite. Energ)(— actions on Software Engineeringol. 29, no. 10, pp. 929-945, 2003.

. . . Q] P. Costanza and R. Hirschfeld, “Language Constructs Gontext-
based adaptation has been used to switch sensors in locat M Oriented Programming: An Overview of ContextL,” Proceedings of

based systems, where different sensors provide different p the 2005 Symposium on Dynamic Languages (DLS. '0BCM, 2005,
sition accuracies but also with different power consunmgio pp. 1-10.

) [11] S. Gonzélez, N. Cardozo, K. Mens, A. Cadiz, J.-C. léaht, and
(e.g., [E’])' Unfortunately* the adaptable behavior spedn’ls J. Goffaux, “Subjective—C: Bringing Context to Mobile Rtatn Pro-

application-specific and has not been addressed aiming at a gramming,” in Proceedings of the 3rd International Conference on

genera| and reusable approach. Software Language Engineering (SLE '1®jer. LNCS, vol. 6563.
Springer, 2010, pp. 246-265.
VIl. CONCLUSIONS [12] T. Kamina, T. Aotani, and H. Masuhara, “EventCJ: A Cot®riented

Programming Language with Declarative Event-based Corfteansi-
The increasing demand of context-aware applications and tion,” in Proceedings of the 10th International Conference on Aspect

; ; ; ; _ Oriented Software Development (AOSD "11ACM, 2011, pp. 253—-264.
services and the computational constraints of mobile dﬁS] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and Rerscheid, “A

vices require highly flexible and adaptable context i_nfemn _ Comparison of Context-Oriented Programming Languages?roceed-
approaches. In this paper we presented a domain-specific ings of the International Workshop on Context-Oriented gPaonming

language (DSL) and middleware approach for the specificatio ~ (COP '09). co-located with ECOOP 2009 ACM, 2009, pp. 6:1-6:6.

	Introduction
	Approach Overview
	Middleware Infrastructure
	Specification DSL
	Language Features and Requirements
	Language Structure
	Application Scenarios

	Case Study Application
	Implementation
	Results and Discussion

	Related Work
	Conclusions
	References

