
A Domain-Specific Language for the Specification
of Adaptable Context Inference

André C. Santos, Pedro C. Diniz
INESC–ID

Lisbon, Portugal
acoelhosantos@ist.utl.pt, pedro@esda.inesc-id.pt

João M. P. Cardoso
FEUP – University of Porto

Porto, Portugal
jmpc@acm.org

Diogo R. Ferreira
IST – Technical University of Lisbon

Lisbon, Portugal
diogo.ferreira@ist.utl.pt

Abstract—Context-aware mobile applications can benefit from
context inference adaptation based on run-time operating con-
ditions, such as battery life or sensor availability. Developing
applications with such adaptable behavior, however, is notoriously
cumbersome, as developers need to deal with low-level system
interfacing and programming issues. In this paper we describe a
domain-specific language (DSL) and a middleware infrastructure
to support the specification, deployment and maintenance of
run-time adaptable context inference processes. We illustrate the
benefits of our approach via a case study, highlighting the new
abstractions that facilitate the specification of adaptable behavior
using different algorithms and the corresponding varying param-
eter settings, with a specific goal of minimizing the energy while
maintaing acceptable end-application performance and accuracy.

Index Terms—mobile devices; context-awareness; adaptable
context inference; domain-specific language; middleware.

I. I NTRODUCTION

Mobile applications that make use of context information
can provide a rich and more personalized set of services,
such as tour guides [1], support for health care systems [2]
or enhanced social networking [3]. To support these advanced
services, mobile applications acquire context information, such
as user location or user activity, through inference processes
that rely on sensor data analysis and reasoning methods
ranging from simple operations to sophisticated algorithms [4].

The increasing sophistication of these applications creates
a tremendous pressure on the limited resources of mobile
devices, in particular energy, making it very desirable to take
into account the run-time operating conditions when perform-
ing inference. Mobile applications can leverage adaptations to
keep context inference processes running despite changes in
operating conditions (e.g., battery running low) or application
requirements (e.g., increase context accuracy).

Possible adaptations include the use of different processing
algorithms; different algorithm parameters tuned to specific
contexts; distinct sensors that provide similar data; or simply
different periods at which the inference is computed. As an
example, Fig. 1 illustrates the impact of power consumption
and CPU load on a mobile device (Nokia N95 smartphone)
for a user activity context inference technique using a Fast-
Fourier-Transform (FFT) and a k-Nearest-Neighbor (kNN)
classifier over different windows of accelerometer data. Within
this technique power consumption and CPU load decrease, but

accuracy improves, as FFT processing window size increases.
As can be seen, there is a substantial impact on the operating

conditions of the mobile device by changing a key algorithm
parameter of the context inference process. Considering win-
dows of 512 and 2048 samples, in the latter the accuracy
increases slightly (82% to 89%) while almost requiring double
the resources. In fact, in many situations, the inference process
could opt for different algorithms and/or parameter settings
that provide alternative inference configurations exhibiting
reduced resource use without any significant loss in context
inference accuracy and thus of application performance.

Unfortunately, the current development approaches for
context-aware applications are still too rigid. At present, if
developers want to implement such adaptations, they must
do it by engaging in a complex, time-consuming and thus
error-prone programming efforts. To mitigate these issues, we
propose an approach for the development of context-aware
applications that provides high-level abstractions for specify-
ing the run-time adaptation of the context inference processes.
Specifically, this paper makes the following contributions: (1)
a platform-independent domain-specific language (DSL) for
the specification of dynamically adaptable context inference
processes; (2) a middleware platform for infrastructural sup-
port responsible for the interpretation and execution of context
inference processes specified in the DSL; (3) the evaluation
of the proposed approach in application scenarios and in a
case study application. We expect that the joint approach of
a DSL and a middleware will lead to an easier development
of adaptable context inference, allowing mobile context-aware
applications to deliver acceptable performance and enhanced
functionality while optimizing resource usage and application
resiliency despite changes in run-time operating conditions.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of the middleware and DSL
approach, which are further detailed in Sections III and IV,re-
spectively. Section V presents a case study. We survey related
work in Section VI, and conclude the paper in Section VII.

II. A PPROACHOVERVIEW

The architecture of our approach, depicted in Fig. 2, is
based on a specification DSL and a supporting middleware
infrastructure, targeted for mobile device environments.The
approach aims at enabling the use of adaptable behavior in

!"#

$"#

%&#

'&# ()#
('# (&#

"))#

"*+# "*"# "*+#

"*(#

"$(#

"'(#

%# %# '# %# '#
""#

"!#

*)# %!# ")(#)$%# $")# "+)!#)+!(#

!!"#$%&'())*+,#-*+.&/#0*1(#23#)4567()8#

9'':%4';#2<8# $&/(%#25-8# =$>#?&4.#2<8#

Fig. 1. Average power consumption and CPU load for differentFFT
processing window sizes. Measurements acquired using the Nokia Energy
Profiler (NEP) on a Nokia N95 smartphone.

Middleware

Context-Aware
Application

Context Inference Manager

Resource Manager

DSL Interpreter

Context
Provider

API

Workflow
Engine

Rule
Engine

Context Inference
Specification (DSL)

Rules

Operations

Declarations

Comm.
Adapter

Processing
Pool

Sensors

Context
Modules

Additional
Context
Modules

Control
Interface

Fig. 2. Architecture of the proposed DSL and middleware approach.

the context inference process, through strategies and rules that
dynamically control the inference workflow.

The DSL exposes the concepts of domain components,
allowing the inference process to be concentrated on a set
of clearly exposed inference operations and adaptation rules.
Furthermore, support for the DSL is provided by a middleware
infrastructure that interprets, executes and implements the
various DSL elements in run-time. The DSL component is of
paramount important as it is platform-independent promoting
reusability, robustness, and enhanced productivity across dif-
ferent platforms. As it captures the semantics of a domain, the
DSL provides key abstractions to specify adaptable inference,
such as: defining input and output inference parameters; de-
fault implementation execution; and rules for adaptation logic
of the inference workflow. An example of a DSL description
associated with the case presented in Fig. 1 is shown in Fig. 3.
The DSL defines how and when the inference process is
computed (Fig. 3, lines 3–6) and the rules defining strategies to
adapt the inference when specific events or conditions occur,
i.e., when the battery of the device reaches a low level, when
CPU reaches high load or when the inference elapsed time
takes longer than the defined period (Fig. 3, lines 8–15).
Adaptations consider computing the inference technique with
a lower value for the number of samples parameter (Fig. 3,
line 10), or increasing the inference period (Fig. 3, line 13).

Using our approach, the use of context information by appli-
cations becomes transparent, as adaptable inference behavior

1: infAct IS fftKnnInf(FftNrSamples=2048){IDLE,WALK,JOG};
2:
3: RUN[period=1sec]{
4: // default implementation
5: activityContext = infAct();
6: }
7:
8: RULES{
9: EVENT: ENERGY.LEVEL.LOW || CPU.LOAD.HIGH{ // Rule A

10: infAct IS fftKnnInf(FftNrSamples=512);
11: }
12: EVERY RUN: RUN.ELAPSEDTIME > RUN.period{ // Rule B
13: RUN.period = 2sec;
14: }
15: }

Fig. 3. DSL code for adaptable user activity context inference.

is externally defined in the DSL using a specific syntax with
domain semantics. As the DSL specification is implemented
by the middleware, the application developer can thus focuson
the main application logic since the context-related concerns
are encapsulated by the middleware components, and require
the middleware to deliver, by periodic subscription or by
individual queries, the generated context information. The use
of this approach implies specifying the inference process and
adaptations using the DSL; providing the middleware with the
required methods for inference; and also registering for context
notifications or simply querying for contexts.

III. M IDDLEWARE INFRASTRUCTURE

The middleware provides applications and the DSL with a
supporting infrastructure for the development and use of adapt-
able context inference (see Fig. 2), supporting abstractions that
transparently provide services to deal with issues from low-
level details to commonly used operations. The middleware
is thus dependent on the target platform and execution en-
vironment. Internally, the middleware is composed of several
components, namely acontext inference manager, aDSL inter-
preter, acontext provider, aresource managerand a number of
context modules. Collectively the components coordinate the
inference process, implement the DSL specification, manage
resources, and provide context to applications.

In order to obtain context information, a context-aware
application needs a mechanism for interfacing with the mid-
dleware platform. The middleware provides a set of APIs to
support the interaction between the context provider and the
application. The context provider is the interface middleware
component responsible for supplying context information to
applications by on-demand context queries or event sub-
scriptions involving periodic updates. The context inference
manager is the middleware component that controls the in-
ference process through the DSL interpreter and the control
interface sub-components. The DSL interpreter is responsible
for interpreting the context inference process described using
the DSL. The DSL interpreter relies on a workflow engine
and on a rule engine for executing the instructions written in
the DSL specification. The run-time interpretation establishes
the relation between each section of the DSL specification
and specific elements of the middleware. The control interface

supports the interaction of the context inference manager with
the resource manager and the context modules. The context
modules represent the method implementations necessary for
the inference. Adaptations are triggered as the context infer-
ence manager monitors the status of specific resources through
the resource manager, which supplies a proxy to locate and
acquire data from both internal and external sensors of the
mobile device (e.g., accelerometer, battery, memory allocated,
CPU load). The resource manager is also responsible for
cleaning, correcting and preprocessing raw sensor data using a
pool of methods (e.g., average over a stream of values) to allow
conversion, (de)compression, (un)marshaling of data, etc.

IV. SPECIFICATION DSL

When developing context-aware applications, developers
have to deal with context-related issues in addition to the
main application logic. Often, context-related code, mainly
for context inference, is entangled with application code,
complicating further development and maintenance. Moreover,
if the developer is aiming at adaptation of the context inference
process, this requires a significant amount of conditional,
event-based and periodic coding to be included.

With a DSL it is possible to mitigate these problems
and easily express computations in the context-awareness
domain, allowing a concise, more intuitive, specification of
resources, inference behavior and their processes. Our main
goal in designing the DSL was to create an appropriate set
of abstractions that reduced the development effort for the
programmer when performing tasks associated with context
inference. We define a set of high-level abstractions for looping
and periodic tasks, asynchronous event handling, condition
testing, and rule declarations, among others. A dedicated
specification of context inference allows a more powerful
mechanism to define inferences and most importantly their
adaptation rules, as opposed to a external libraries or APIs. The
information specified in the DSL thus allows rapid prototyping
of adaptable context inference processes, flexible adaptable
behavior management and clear evaluation of conflicting rules.

A. Language Features and Requirements

A context inference process transforms raw sensor data
into useful context information. Often, this process is defined
statically and thus exhibits a fixed behavior. However, the
inference of context information should be dynamic, mainly
because of the volatile nature of context and the varying
operating conditions of mobile devices. Fig. 4 depicts an
overview of a generalized context inference process, which
considers three main stages:data acquisition, data processing,
and context identification. Each stage embodies methods to
accomplish a task, which expose parameters that can be used
to configure the process. Changes to this process accomplish
the context identification with a different impact on several
metrics such as execution time, energy, power and CPU load.

The DSL concept focuses on the development of context
inference processes. The domain-specificity allows tailored
high-level abstractions to be composed in a structure that

- sensors used
- (...)

- sampling frequency
- (...)

- processing method
- buffer size
- (...)

- algorithm used
- algorithm parameters
- inference frequency
- (...)

- notification frequency
- (...)

Data
Processing

Context
Identification

Data
Acquisition

(...)

Sensor
1

Sensor
N

Fig. 4. Generalized context inference workflow diagram.

allows the description of the inference process, which in
another general-purpose language would require extensive
programming to accomplish. Our DSL allows the specification
of the most important components of the context inference
process within a single description by primarily specifying:
(1) sensors and algorithms used for inference; (2) parameters
used for adaptation; (3) structuring of the inference process
into execution blocks; and (4) a set of priority-organized rules
for adaptation to certain conditions and events.

B. Language Structure

In the DSL, a context inference process and its adaptable
behavior is specified by three main sections:declarations,
operations, andrules (see DSL component in Fig. 2).

Declarations are the initial DSL structural section that
declares necessary variables, methods, and default parameter
values that are used within the operations section (Fig. 3,
line 1). The role of this section is to associate the DSL to
the middleware by bridging DSL elements to middleware
components. Mainly, the association is established by the
match of methods whose respective implementations exist
in context module components of the middleware. Such im-
plementations of methods for inference are supplied by the
application developer. For example, in line 1 of Fig. 3, the
infAct inference method used within the DSL is implemented
by the middleware’s context modulefftKnnInf. This imple-
mentation is further configured with a default initial valuefor
FftNrSamples parameter. The inference method also specifies
the output activity contextsIDLE, WALK, andJOG.

The operations section is responsible for specifying the main
workflow for the inference process. It defines the necessary
sequential steps that identify the context information, which
can include several layers of inference and specific inference
application cases. This section is built with a main execution
block, and subsequent sub-block structures that can be defined
to frame specific areas of the inference workflow. Such sub-
block structures are used to concentrate operation steps that
may be activated or deactivated, allowing a more dynamic
structure. Execution blocks can be associated with execution
properties such as the inference periodicy. Lines 3 to 6 of
Fig. 3 define aRUN block corresponding to the operations
section, parameterized to execute with a 1 second period. In
this example, an output context variable is defined as the result
of the inference method being applied.

The rules section specifies the adaptation strategies that
are applied when triggering events or valid condition testing
occurs. Common triggering conditions are memory, CPU,
energy, sensor status, and context, which are available foruse
within the DSL. The adaptations are described by means of
rules that adjust the behavior of the inference process specified
within the operations section. Rules can be assigned an order
that accommodate several sequential adaptation behaviors,
e.g., when battery life starts decreasing one might start by
adjusting some technique parameters, and only if battery life
decreases to an even lower level then one might replace
one technique for another. The existence of multiple rule
blocks assigned to different conditions or events could cause
conflicts, as incompatible actions could be enforced if multiple
rules where activated simultaneously. Conflicts are solvedby
prioritization, where rule blocks are prioritized by theirorder
of specification (in Fig. 3, Rule A has higher priority than
Rule B). At any given moment, only one rule block can
be activated, being the highest priority rule block where the
triggering condition is valid. If a rule is applied and afterwards
its triggering condition is no longer valid, the context inference
manager performs a rollback on the executed rule and thus
on the previous executed adaptation, returning to the default
configuration. Lines 8 to 15 of Fig. 3 define a rules section
composed of two rule blocks, one for a energy and CPU event
and another for a condition test on the inference elapsed time.
Rule management is conducted solely in this section and thus
adding, removing or editing rules can be accomplished without
an added programming overhead.

C. Application Scenarios

In this section we present another motivational DSL spec-
ification example considering a scenario of a location-based
context inference system. A growing number of mobile phone
applications are location-based systems that often require GPS
capabilities for location context information. Unfortunately,
GPS incurs an unacceptable energy cost and it may even not
be available at times. Alternatives sensors (e.g., WiFi, GSM)
for location are required when energy needs to be saved (e.g.,
when the phone is running low on battery) or when GPS is
not available, even if it incurs on the loss of some localization
accuracy (e.g., [5]). Fig. 5 depicts a DSL specification for
this scenario, where a strategy for sensor change according
to battery level or sensor unavailability is enforced. Line1
declares the inference functioninfPos implemented by the
context modulepositionInf with the default sensor set to GPS.
Lines 3–5 define the context as a result from the output of
the infPos method. Lines 7–20 define the adaptability rules,
defined in order of priority: (1) every 5 minutes a test condition
is evaluated to verify if the device’s energy level (battery) is
below 50%, in order to switch the sensor used for inference
to the GSM sensor; (2) if the GPS sensor is unavailable then
a switch to WiFi sensor is performed; (3) if the WiFi sensor
is unavailable, then a switch to GSM sensor is enforced.

1: infPos IS positionInf(sensor=SENSOR.GPS){position};
2:
3: RUN[period=5sec]{
4: context = infPos();
5: }
6:
7: RULES{
8: EVERY 5min: ENERGY.LEVEL < 50%
9: && SENSOR.GSM.AVAILABLE{

10: infPos IS positionInf(sensor=SENSOR.GSM);
11: }
12: EVENT: SENSOR.GPS.UNAVAILABLE
13: && SENSOR.WiFi.AVAILABLE{
14: infPos IS positionInf(sensor=SENSOR.WiFi);
15: }
16: EVENT: SENSOR.WiFi.UNAVAILABLE
17: && SENSOR.GSM.AVAILABLE{
18: infPos IS positionInf(sensor=SENSOR.GSM);
19: }
20: }

Fig. 5. DSL specification for a location context inference process adaptable
to sensor availability and device energy.

V. CASE STUDY APPLICATION

This section presents a case study for experimental eval-
uation of the proposed approach. The case study consists in
a context-aware application that is present in a smartphone
and infers the user’s physical activity through acceleration
data (standing, normal walking, race walkingand running).
The inference process is adaptable being composed of a two-
level hierarchy and adjustable in the inference period and
algorithms, due to energy and CPU concerns. The use of a
hierarchical inference scheme allows for a refinement of the
computational complexity associated with context inference.
Algorithms that are specific to certain contexts relieve the
application from having to use a single more sophisticated
algorithm in order to distinguish all necessary contexts. This
adaptation ultimately allows for lower CPU load, thus lowering
the inference execution time and energy consumption. In
addition, an increased inference period means a lower number
of inferences computed and thus a reduction of the overall
CPU load compounding the overall energy reduction of the
inference process and thus of the aggregate application. Onthe
down side, however, increasing the inference period may cause
contexts to be detected with some delay or even be missed
altogether. Nonetheless, it may also allow skipping over some
momentaneous, erroneous context inferences.

A. Implementation

In this experimental implementation, the goal is to provide
the context inference with a behavior that identifies physi-
cal activities as accurately as possible while minimizing the
energy and CPU load by adjusting the inference period and
method. This adaptable behavior is summarized as follows:
(1) initially the context inference is computed with a small
inference period of 1 second; (2) for context identification
a first level inference method is used (inference1 – signal
differences and threshold classifier) to distinguish between
standing, walking and running contexts; (3) in the presence
of the walking context, a more complex method is used

(inference2 – frequency signal analysis and nearest neigh-
bor classifier) to further distinguish betweenwalking pace
contexts; (4) whenever the inferred context remains constant
for at least the last three inferences, the inference period
is increased to 2 seconds; (5) as the battery level of the
device diminishes, the period is further increased and the more
complex method is reconfigured with a smaller processing
window size parameter; (6) if the CPU reaches high load,
then the inference level for identifying thewalking paces is
deactivated; (7) if no rule is applied, the inference is conducted
at its default implementation state.

The DSL code for this case study is depicted in Fig. 6.
Lines 1 and 2 declare the two inference methods as well as
a default parameter value. The declared inference methods
must be recognized by the middleware. Lines 4–12 define the
operations section where the main inference loop is executed.
In this structural section, two operational blocks are defined:
level1 and level2. The two blocks will allow the activation
and deactivation of the two-level inference hierarchy defined.
Lines 14–33 specify the adaptation rules. There are four rules
defined by priority, one rule is history-related (Rule A), two
rules are energy-related (Rule B and C) and one rule is
CPU-related (Rule D). The first rule captures the condition
regarding three consecutive identically inferred contexts and
specifies a corresponding increase of the inference period.The
subsequent energy rules define that below a specific battery
level, adaptations need to be performed. For a battery level
below 60% only the period is increased, but in contrast, for
a battery level below 30% the period is increased even more
and theinference2 method is reconfigured with a different
fftWindow parameter value. The CPU rule defines that above
an 80% CPU load the operations blocklevel2 is deactivated,
i.e., no longer being computed.

B. Results and Discussion

The case study highlights some key characteristics of the
DSL and middleware approach described in this paper. The
DSL includes simple, yet powerful elements, that allow com-
plex behavior to be defined in a flexible and agile format
without troublesome programming. As a comparison, we
implemented the same inference behavior usingJ2ME since
it is a very common development language for smartphone
applications. The J2ME implementation required 250 lines of
Java code. In contrast, our DSL implementation uses only 33
lines of code, a reduction of more than 85%. More importantly,
our DSL specification translates in a substantial reduction
of code complexity. For example, adding a new rule would
amount to additional boilerplate code inJ2ME, whereas in
contrast in our DSL specification such addition would consist
only in an additional rule block description.

Overall, using the DSL approach described here relieves the
programmer from a wide range of conceptual and practical
tasks namely: (1) creating appropriate mechanisms for the
scheduling of inferences; (2) guaranteeing mechanisms to ac-
cess information on system resources, i.e., battery level,power
consumption and CPU load; (3) creating listener interfaces

1: inference1 IS inference1{STANDING, WALKING, RUNNING};
2: inference2 IS inference2(fftWindow=512){NORMAL_WALKING,
| RACE_WALKING};

3:
4: RUN[period=1sec]{
5: level1{
6: context=inference1();
7: }
8: level2{
9: IF(context == WALKING)

10: THEN context=inference2();
11: }
12: }
13:
14: RULES{
15: // Rule A
16: EVERY RUN: CONTEXT.HISTORY.EQUALS(3){
17: RUN.period=2sec;
18: }
20: // Rule B
21: EVERY 5min: ENERGY.LEVEL < 60% &&

| ENERGY.LEVEL > 30%{
22: RUN.period=3sec;
23: }
24: // Rule C
25: EVERY 5min: ENERGY.LEVEL ≤ 30%{
26: RUN.period=5sec;
27: inference2 IS inference2(fftWindow=256);
28: }
29: // Rule D
30: EVERY RUN: CPU.LOAD > 80%{
31: level2.off();
32: }
33: }

Fig. 6. DSL code for the adaptable activity context inference.

TABLE I
INFERENCE COMPUTATIONAL IMPACT AND OVERALL ACCURACY.

Inference Accuracy (%) CPU Load (%) Power Cons. (mW)

Default 92.2 24.3 244

Rule A 92.4 12.9 167

Rule B 93.4 8.9 148

Rule C 79.5 5.5 129

Rule D 100.0 3.1 123

for the resources to process and dispatch events such as low
energy or high CPU load; (4) dealing with synchronization
issues between the looping inference calls and the resource
events; (5) use of extra conditional statements that would adapt
the inference method calls according to resource events.

Considering the computational impact and also the accuracy
obtained using such context inference process, summarizedin
Table I are results of the system execution, during 10 minutes,
over sets of random acceleration data samples of all activities
of interest. The accuracy provided is stable in most rules,
except onRule C where the frequency analysis algorithm
is performed over a smaller window of number of samples.
Accuracy is higher inRule D as it disables the inference
of the detailedwalking contexts and thus only requires the
implementation to distinguish between three contexts. Re-
garding power consumption and CPU load, as the rulesA
throughD reduce complexity of the inference by incrementing
the period, changing algorithm parameters and deactivating
inference levels leads to a decrease in the operational metrics.

VI. RELATED WORK

Several approaches for context-aware application develop-
ment have been proposed, due to the increasing importance of
context-awareness, and also by the demand for solutions to fa-
cilitate this complex type of development. Approaches spawn
mainly in the form of frameworks (e.g., JCAF [6]), middleware
(e.g., MobiPADS [7], MidCASE [8], CARISMA [9]), and lan-
guages (e.g., ContextL [10], Subjective-C [11], EventCJ [12]).

Although these approaches have improved the overall de-
velopment of context-aware applications, to best of our knowl-
edge they have not specifically addressed the specification of
adaptable context inference processes. The main concern of
these approaches has been to assist the use of context by the
applications. As example, MobiPADS [7] and CARISMA [9]
do not address how a context is obtained, yet contexts are
used to adapt services provided to applications. MobiPADS
additionally relies on an XML-based language for service
interaction specification, supporting the definition of context
events, but without addressing how they are computed. Our
solution mainly distinguishes itself from previous approaches
by focusing on the specification of context inference pro-
cesses and their management, considering system properties
and application requirements. We thus allow context-aware
application development based on a flexible programming
approach for control of dynamic run-time adaptable context
inference. Additionally, our context-oriented DSL does not
extend some other host general-purpose language. It is inde-
pendent from any underlying language and device platform,
therefore depending solely on the middleware infrastructure
for execution. In fact, context-oriented programming (COP)
concepts have commonly been put into practice as extensions
to several languages, each one with its own approach to
the COP paradigm and with implementations suffering in
general from a large execution overhead [13]. ContextL [10],
Subjective-C [11], and EventCJ [12] are interesting examples
of COP languages that modify the behavior of a program by
associating code definitions with context-related layers that
are activated according to the current context. Still, no focus
is given to context inference.

There have been, however, some approaches to context
inference adaptability due to the problematic energy limitation
of mobile devices, whose battery is always finite. Energy-
based adaptation has been used to switch sensors in location-
based systems, where different sensors provide different po-
sition accuracies but also with different power consumptions
(e.g., [5]). Unfortunately, the adaptable behavior specified is
application-specific and has not been addressed aiming at a
general and reusable approach.

VII. C ONCLUSIONS

The increasing demand of context-aware applications and
services and the computational constraints of mobile de-
vices require highly flexible and adaptable context inference
approaches. In this paper we presented a domain-specific
language (DSL) and middleware approach for the specification

and execution of dynamically adaptable context inference

processes. Our approach aims at reducing the context-oriented
programming effort by providing a high-level DSL that ab-
stracts common concepts necessary for context inference, as
well as information on the device operating conditions, sup-
ported by a modular middleware infrastructure. Thus, develop-
ers will be able to define a wide range of adaptable inference
systems for mobile devices, with an approach that reduces
the development complexity, takes into account the operating
challenges in mobile platforms, and leverages adaptability in
order to optimize the context inference process.

ACKNOWLEDGMENTS

The research work presented was partially supported by
Fundaç̃ao para a Cîencia e a Tecnologia(FCT) under grant
number SFRH/BD/47409/2008.

REFERENCES

[1] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and
M. Pinkerton, “Cyberguide: A Mobile Context-Aware Tour Guide,”
Wireless Networks, vol. 3, no. 5, pp. 421–433, 1997.

[2] N. Bricon-Souf and C. R. Newman, “Context Awareness in Health Care:
A Review,” International Journal of Medical Informatics, vol. 76, no. 1,
pp. 2–12, 2007.

[3] A. C. Santos, J. M. P. Cardoso, D. R. Ferreira, P. C. Diniz,and
P. Chaı́nho, “Providing User Context for Mobile and Social Networking
Applications,” Pervasive and Mobile Computing, vol. 6, no. 3, pp. 324–
341, 2010.

[4] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas,
A. Ranganathan, and D. Riboni, “A Survey of Context Modelling and
Reasoning Techniques,”Pervasive and Mobile Computing, vol. 6, no. 2,
pp. 161–180, 2010.

[5] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving Energy Efficiency
of Location Sensing on Smartphones,” inProceedings of the 8th In-
ternational Conference on Mobile Systems, Applications, and Services
(MobiSys ’10). ACM, 2010, pp. 315–330.

[6] J. Bardram, “The Java Context Awareness Framework (JCAF) - A
Service Infrastructure and Programming Framework for Context-Aware
Applications,” inPervasive Computing, ser. LNCS, vol. 3468. Springer,
2005, pp. 98–115.

[7] A. T. S. Chan and S.-N. Chuang, “MobiPADS: A Reflective Middleware
for Context-Aware Mobile Computing,”IEEE Transactions on Software
Engineering, vol. 29, no. 12, pp. 1072–1085, 2003.

[8] Y. Bai, H. Ji, Q. Han, J. Huang, and D. Qian, “MidCASE: A Service
Oriented Middleware Enabling Context Awareness for Smart Environ-
ment,” in Proceedings of the International Conference on Multimedia
and Ubiquitous Engineering (MUE ’07). IEEE, 2007, pp. 946–951.

[9] L. Capra, W. Emmerich, and C. Mascolo, “CARISMA: Context-Aware
Reflective mIddleware System for Mobile Applications,”IEEE Trans-
actions on Software Engineering, vol. 29, no. 10, pp. 929–945, 2003.

[10] P. Costanza and R. Hirschfeld, “Language Constructs for Context-
Oriented Programming: An Overview of ContextL,” inProceedings of
the 2005 Symposium on Dynamic Languages (DLS ’05). ACM, 2005,
pp. 1–10.

[11] S. González, N. Cardozo, K. Mens, A. Cádiz, J.-C. Libbrecht, and
J. Goffaux, “Subjective–C: Bringing Context to Mobile Platform Pro-
gramming,” in Proceedings of the 3rd International Conference on
Software Language Engineering (SLE ’10), ser. LNCS, vol. 6563.
Springer, 2010, pp. 246–265.

[12] T. Kamina, T. Aotani, and H. Masuhara, “EventCJ: A Context-Oriented
Programming Language with Declarative Event-based Context Transi-
tion,” in Proceedings of the 10th International Conference on Aspect-
Oriented Software Development (AOSD ’11). ACM, 2011, pp. 253–264.

[13] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid, “A
Comparison of Context-Oriented Programming Languages,” in Proceed-
ings of the International Workshop on Context-Oriented Programming
(COP ’09), co-located with ECOOP 2009. ACM, 2009, pp. 6:1–6:6.

	Introduction
	Approach Overview
	Middleware Infrastructure
	Specification DSL
	Language Features and Requirements
	Language Structure
	Application Scenarios

	Case Study Application
	Implementation
	Results and Discussion

	Related Work
	Conclusions
	References

