
Multi-Criteria Evaluation of Partitioning Schemes for
Real-Time Systems

Irina Lupu
irina.lupu@ulb.ac.be

Pierre Courbin
courbin@ece.fr

Laurent George
lgeorge@ece.fr

Joël Goossens
joel.goossens@ulb.ac.be

October 29, 2018

Abstract

In this paper we study the partitioning approach for multiprocessor real-time scheduling. This
approach seems to be the easiest since, once the partitioning of the task set has been done, the problem
reduces to well understood uniprocessor issues. Meanwhile, there is no optimal and polynomial solution
to partition tasks on processors. In this paper we analyze partitioning algorithms from several points
of view such that for a given task set and specific constraints (processor number, task set type, etc.)
we should be able to identify the best heuristic and the best schedulability test. We also analyze the
influence of the heuristics on the performance of the uniprocessor tests and the impact of a specific task
order on the schedulability. A study on performance difference between Fixed Priority schedulers and
EDF in the case of partitioning scheduling is also considered.

1 Introduction

Uniprocessor scheduling has been widely studied over the last few decades. However, a single processor
can no longer satisfy today’s computational demands, as the miniaturization of integrated circuits reaches
its physical limits [18]. Thus, a valid solution to supply sufficient resources is the use of multiprocessor
platforms.

There are two main techniques for multiprocessor scheduling. Given a task set τ and a m-processors
platform π, one can choose between:

• partitioning scheduling: τ is divided into a number of disjoint subsets less than or equal to the num-
ber of processors of the platform. Each of these subsets is assigned to one processor. Uniprocessor
scheduling policies are then used locally on each processor.

• global scheduling: at each instant t, the m highest priority tasks are executed on the platform
allowing the migration of tasks from one processor to another with the restriction that a task
cannot be executed on different processors at the same time.

The two techniques are incomparable: there are task sets which are schedulable by partitioning
but not by global approach and conversely [7]. However, today’s state of the art declares that the
performance of multiprocessor partitioning scheduling has not yet been overtaken by the global approach
despite its considerable improvements over the last few years [5, 4]. Even if, in certain scenarios, the
worst case achievable utilization is the same for both techniques when using classical schedulers like
EDF or Fixed Priority (FP) [1], in the average case, partitioning schemes seem to behave generally better
than global ones. In this paper, we focus on the partitioning approach.

Partitioning a task set is equivalent to the Bin-Packing problem: how to place n objects of different
sizes in m boxes. This problem is known to be NP-hard. The only known solution for this kind of problem
is to enumerate all possible configurations and verify their correctness one by one. Suboptimal possible
solutions have been proposed in the literature and are known as partitioning heuristics.

1

ar
X

iv
:1

00
4.

37
15

v1
 [

cs
.O

S]
 2

1
A

pr
 2

01
0

Previously proposed partitioning algorithms (with both FP or EDF) [6] are composed of a heuristic,
a uniprocessor schedulability test and, very often, a task sorting criterion. Though, there does not
exist an exhaustive comparative evaluation of all of them. The present state of the art compares some
partitioning algorithms based on the First Fit heuristic (a task is assigned to the first processor that can
feasibly schedule it) and the decreasing utilization sorting criterion [5, 4]. The evaluation is usually done
in terms of success ratio (the ratio of successfully scheduled task sets over all task sets considered).

Even though the success ratio is a very important evaluation criterion, other measures like the number
of processors used and the available unutilized processor capacity are important since the design of real-
time systems is often constrained by: the number of available processors, whether there is a risk to
encounter software or hardware errors during execution, etc. [15]. In this research we establish some
directions for deciding which heuristic, which schedulability test and which task set sorting criterion to
choose according to such design constraints.

This research. Our goal is to identify the best partitioning algorithm for different scenarios; for this
purpose, we combine 4 partitioning heuristics (First Fit, Best Fit, Next Fit, Worst Fit), 8 task sorting
criteria (decreasing or increasing period, utilization, etc.) and 8 schedulability tests associated to FP or
EDF scheduling policies. Our aim is to obtain a nearly exhaustive list of possible partitioning algorithms.
Their performance will be compared with the Optimal Partitioning Algorithm (OPA in the following)
according to each one of the 3 criteria: success ratio, number of processors used and available unutilized
processor capacity.

Since we implemented the OPA, we also use simulation to evaluate the suboptimality of heuristics (the
performance gap according to the optimal task assignment, in terms of success ratio) and the influence
of this suboptimality on the performance of the tests. In this paper we also study the influence of the
task sorting criteria on the schedulability of each heuristic and each test.

Paper Organization. The remainder of this paper is organized as follows: in Section 2, we describe
the system model and other concepts used in this paper. Section 3 presents the parameters of the
study (partitioning heuristics, task sorting criteria and schedulability tests which build the partitioned
scheduling algorithms). Section 4 describes the task generation methodology and Section 5 gives the
results of the simulations. In Section 6, we present the conclusions and the future work in Section 7.

2 System Model

In this paper we refer to the sporadic task model. A sporadic task τi is defined by (Ci, Ti, Di) where Ci is
the worst-case execution time (WCET), Ti is the minimum inter-arrival time (also called the period) and
Di is the relative deadline (a task released at time t must be executed by its absolute deadline t+Di). A
task can be instantiated an infinite number of times. An instance of a task is called a job.

The set τ = {τ1, . . . , τn} is composed of n sporadic tasks.
For FP schedulers we consider tasks in decreasing order of their priority: τ1 is the highest priority

task and τi has higher priority than τi+1.
We can distinguish between three kinds of sporadic task sets: implicit deadlines (Di = Ti,∀i = 1, ..., n),
constrained deadlines (Di ≤ Ti,∀i = 1, ..., n) or arbitrary deadlines (no restriction on deadlines).

Each task is characterized by a utilization factor ui
def
= Ci

Ti
and a density λi

def
= Ci

min{Di,Ti} .
Each task set is characterized by the following measures:

• task set utilization Uτ
def
=

∑n
i=1 ui and task set density Λτ

def
=

∑n
i=1 λi;

• for a given t, the Request Bound Function (RBF) represents the upper bound of the work load
generated by all tasks with activation times included in the interval [0, t): RBF(τ, t)

def
=

∑n
i=1d

t
Ti
e ·

Ci. An approximation for RBF [14] is: RBF∗(τ, t)
def
=

∑n
i=1(Ci + ui · t).

• for a given t, the Demand Bound Function (DBF) represents the upper bound of the work load
generated by all tasks with activation times and absolute deadlines in the same interval [0, t]:
DBF(τ, t)

def
=

∑n
i=1 max{0, 1 + b t−DiTi

c} · Ci. An approximation for DBF [8] is: DBF∗(τ, t)
def
=∑n

i=1Ai(t) with Ai(t)
def
= (Ci + (t−Di) · ui) if t ≥ Di and 0, if not.

2

In the following, we consider π a platform with m identical processors: π = {π1, · · · , πm}. By τ(πj)
we will denote the task subset assigned to the processor πj .

3 Parameters of the Study

Our study includes all possible combinations between a series of 4 partitioning heuristics, 8 task sorting
criteria and 8 schedulability tests associated with FP or EDF scheduling policies. For each combination,
we evaluate the performance according to three criteria. In this section, we introduce each of these
parameters.

3.1 Heuristics

As mentioned previously, the Bin-Packing problem (which lies at the basis of the partitioning technique)
is know to be NP-Hard. Some heuristics have been proposed in the literature in order to solve it and they
are in the focus of this paper. All of them imply a sequential assignment of tasks to processors:

• First Fit (FF): a task is assigned to the first processor, starting from π1, which verifies the schedula-
bility test after the assignment.

• Best Fit (BF): a task is assigned to the processor which verifies the schedulability test after assign-
ment and which minimizes the remaining processor capacity.

• Worst Fit (WF): a task is assigned to the processor which verifies the schedulability test after as-
signment and which maximizes the remaining processor capacity.

• Next Fit (NF): a task is assigned to the first processor in the range {πj , ..., πm} that verifies the
schedulability test after the assignment (πj is the current processor processor). The procedure
starts from π1.

Impact of the Heuristic. Heuristics can have a great impact on the solution. Consequently, it is impor-
tant to know in which of the following cases the problem falls:

1. we want to minimize the number of processors used;

2. we want to provide enough time slack (i.e., leave spare capacity on processors) in order to handle
system overload.

3.2 Task Sorting Criteria

Often, the partitioning algorithms proposed in the literature include task sorting criteria with the pur-
pose of increasing their success ratio. In this paper we analyze the general influence of 8 such criteria
increasing/decreasing: deadline, density, period and utilization.

3.3 Schedulability Tests

The schedulability tests considered in this paper are necessary and sufficient (i.e., exact) (NST) or suf-
ficient (ST) with polynomial (P), pseudo-polynomial (PP). The tests are designed for implicit deadlines
(ID), constrained deadlines (CD) or arbitrary deadlines (AD). In our study, the arbitrary deadline tests
are applied to the constrained case. In the following, the name of each test represents the associated
priority assignment rule followed by the initials of its authors.

3

3.3.1 EDF-based schedulability tests

For EDF two exact and a third one only sufficient schedulability tests are taken into account:

EDF-LL [17] (NST-P-ID): Uτ ≤ 1;

EDF-BHR [9] (NST-PP-AD): Load(τ) def
= supt≥0

DBF(τ,t)
t ≤ 1. In order to reduce the number of instants

t to consider, we use the following expression [15]: Load(τ) = max{Uτ , supt∈[Dmin,P)
DBF(τ,t)

t }, where

Dmin
def
= min{D1, . . . , Dn} and P def

= lcm{T1, . . . , Tn} [15]. As the DBF changes its value only at instants
corresponding to absolute deadlines, Load(τ) will be computed for each t ∈

⋃n
j=1{Dj + kj · Tj , 0 ≤ kj ≤

dP−DjTj
e − 1}.

EDF-BF [8] (ST-P-AD): ∀τi ∈ τ,Di −DBF∗(τ \ {τi}, Di) ≥ Ci and 1−
∑
τj∈τ,τj 6=τi uj ≥ ui.

As previously mentioned, the EDF-BHR test is exact but it has a pseudo-polynomial complexity [9]. A
solution to this problem has been proposed [15]: reduce the number of analyzed instants (in the interval
[Dmin, P)) by formulating the problem as a Linear Programming one; in order to solve it use the simplex
algorithm. Even though the number of instants is significantly reduced, the EDF-BF test offers a simpler
(polynomial) solution to verify the schedulability of the task sets, but it is only a sufficient test.

3.3.2 FP-Based Schedulability Tests

FP schedulers assign fixed priorities to tasks before the execution of the system and the jobs inherit the
priority of the task that generated them. During our simulations we consider DM (for AD et CD tests)
and RM (for ID tests) schedulers [17, 3].

DM-ABRTW [2] (NST-PP-CD): DM-test based on the response-time analysis: ∀τi ∈ τ , ri ≤ Di, where ri
is τi’s worst case response time. For constrained deadlines, ri is determined for the first activation of the
task in the synchronous scenario as a solution of the equation: ri = Ci +

∑i−1
j=1d

ri
Tj
e · Cj computed as

follows: W0 = Ci and Wk+1 = Ci +
∑i−1
j=1d

Wk

Tj
e · Cj until Wk+1 = Wk or Wk > Di.

DM-FBB [13] (ST-P-AD): ∀τi ∈ τ,Di − RBF∗(τ − τi, Di) ≥ Ci and 1−
∑
τj∈τ,τj 6=τi uj ≥ ui.

RM-LL [17, 12] (ST-P-ID): Uτ ≤ n(n
√

2− 1).

RM-BBB [10] (ST-P-ID):
∏n
i=1 (ui + 1) ≤ 2.

RM-LMM [16] (ST-P-ID): If 1 ≤ rπ
def
= Tmax(τ)

Tmin(τ)
< 2

(where Tmax(τ)
def
= max {T1, . . . , Tn} and Tmin(τ)

def
= min {T1, . . . , Tn}), then τ is RM schedulable on pro-

cessor π if Uτ ≤ B(rπ, n) with B(rπ, n)
def
= n · (n

√
rπ − 1) + 2

rπ
− 1. For the case rπ /∈ [1, 2) a scaling

algorithm is presented in [16] such that, if τ ′ is the task set obtained after scaling: τ is schedulable if
and only if τ ′ is schedulable.

DM-ABRTW is an exact test, but it has a pseudo-polynomial complexity. DM-FBB is a uniprocessor
schedulability test which has been proposed especially for partitioned scheduling [13]. Simulations
show that when DM-ABRTW and DM-FBB are associated with the FF heuristic, their behavior is in-
comparable: for constrained deadline task sets DM-ABRTW behaves better, but for the case of arbitrary
deadlines, DM-FBB has a higher success rate than DM-ABRTW.

RM-LL is the popular Liu & Layland FP test. For a sufficiently large number of tasks in the set, this
test has an utilization bound of ln 2 (∼= 0.69) [17]. However, RM can generally schedule task sets with
a utilization of 88% (this shows the pessimism of the RM-LL test). RM-BBB test is also polynomial,
but it establishes a higher task set utilization bound than RM-LL. Simulations show [10] that RM-BBB
schedules

√
2 more task sets than RM-LL as the number of tasks grows. The last FP schedulability test,

RM-LMM has already been applied in multiprocessor scheduling and compared with RM-LL when as-

4

sociated with the FF heuristic [16]. Simulations show that RM-LMM’s average processor utilization is
comparable to that of an exact test: 96%. In the same scenario, the RM-LL average processor utilization
is 75%.

For BF and WF partitioning heuristics, the schedulability tests determine the expression used to com-
pute the unutilized processor capacity when tasks are assigned to processors: 1−Λτ for EDF-LL, EDF-BF,
DM-ABRTW, DM-FBB, RM-LL, RM-BBB and RM-LMM; and 1 − Load(τ) for EDF-BHR, since this is the
only test based on Load(τ).

3.4 Performance Criteria

Each combination of the previously mentioned parameters is evaluated according to several performance
criteria:

• Success Ratio: with this criterion we determine which combination schedules the largest number of
task sets. It is defined as follows:

number of task sets successfully scheduled
total number of task sets

• Number of processors used defined as number of processors where at least one task is assigned if m
is sufficient.

• Average value of processor spare capacity: the spare capacity on processors is computed with the
expression 1− Load(τ(πj)) for EDF-BHR and 1− Λτ(πj) for the other schedulability tests.

3.5 Optimal Partitioning Algorithm

The OPA is designed as follows: enumerate all possible task assignments on processors and test them
one by one. In terms of schedulability tests, for EDF, we associate this optimal assignment with the exact
test of EDF-BHR (OPA[EDF]). For FP, we use the exact test of DM-ABRTW (OPA[FP]).

4 Task Generation Methodology

The task generation methodology used in this paper is based on the one presented in [5]. However, in
our case, task generation is adapted to each type of deadline considered. In the following, ki ∈ {Di, Ti}
and ρi ∈ {ui, λi}:
• ki is uniformly chosen from [1,100];

• ρi (truncated between 0.001 and 0.999) has the following distributions:

1. Uniform distribution between 1
ki

and 1;
2. Bimodal distribution: heavy tasks have a uniform distribution between 0.5 and 1, light tasks

have a uniform distribution between 1
ki

and 0.5; the probability of a task being heavy is 1
3 ;

3. Exponential distribution of mean 0.25;
4. Exponential distribution of mean 0.50.

For implicit deadline task sets, (ki, ρi) = (Ti, ui) and for constrained deadlines (ki, ρi) = (Di, λi). In this
last case, the period Ti is uniformly chosen from [Di, 100].

We consider 4-processor identical platforms.
Task systems are generated so that those obviously unfeasible (Uτ > m) or trivially schedulable

(m = n and ∀i ∈ [1, n], ui ≤ 1, meaning the capacity of one processor of the identical platform) are not
considered during simulations:

Step 1: Initially, we generate a system which contains m+ 1 tasks and test it.
Step 2: We add tasks to the system and repeat the tests until the density of the system exceeds m (the

capacity of the identical platform).
For our simulations, we generated 106 task sets uniformly chosen from the distributions mentioned

above with implicit and constrained deadlines.

5

5 Results

This section presents a comparative study of several partitioning scheduling algorithms with regard to
the criteria introduced in Section 3.4.

The evaluation is structured as follows:

1. We study the suboptimality of FP over EDF in terms of success ratio in a multiprocessor environ-
ment.

2. In the same way, we evaluate the suboptimality of each heuristic compared with the optimal place-
ment.

3. We determine the success ratio of each test when associated with partitioning heuristics.

4. For each given test, we determine the sorting criterion that maximizes its schedulability when
associated with partitioning heuristics.

5. We compare the success ratio, number of processors used and available spare capacity of all heuris-
tics (all tests and task set sorting criteria included).

6. Based on the best heuristic determined previously, we find the best couple heuristic-task sorting
criterion.

Firstly, we have to define the concept of suboptimality degree. The suboptimality degree will be
computed as a function of two parameters, p1 and p2. It is defined as follows:

Definition 1 (Suboptimality Degree) The degree by which the success ratio of p1 is overpassed by the one
of p2 (p2 ≥ p1 and p2 > 0):

sd(p1,p2) = SuccessRatio p2 - SuccessRatio p1

SuccessRatio p2
· 100.

Smaller the value of sd(p1, p2), better the performance of p1 according to the one of p2.

5.1 Suboptimality of FP over EDF

The degree of suboptimality of FP schedulers according to EDF has been previously analyzed in the
uniprocessor case [11]. Our study determines this degree for the multiprocessor scenario (through
simulations) in relation with the total density of the task set. Figure 1 shows the simulation results as
follows:

(1) sd(OPA[FP],OPA[EDF]): the suboptimality degree for the case of an optimal task assignment;
(2) sd(DM-ABRTW,EDF-BHR): the suboptimality degree for the case where the same exact tests

are combined with all 4 heuristics.
The maximum gain of EDF over FP in the case of the optimal task assignment is 93% for high total

density task sets.
When the exact tests are associated with the 4 heuristics the suboptimality degree of FP over EDF

slightly increases. Though, the two curves have generally the same shape which means that the heuristics
do not influence importantly the suboptimality degree of the schedulability tests.

5.2 Suboptimality of Heuristics

By definition, a heuristic is a suboptimal solution. In this section, we present the suboptimality degree of
each heuristic according to the optimal task assignment. The associated schedulability test is EDF-BHR
and the simulations results include all sorting criteria. Figure 2 shows the results computed as follows:

sd(Heuristic,OPA).
First of all, we should mention that, in terms of complexity, the four heuristics can be listed in

decreasing order as follows: BF and WF (equal complexities), FF and finally, NF.

6

Figure 1: Heuristic - FP/EDF Suboptimality

Figure 2: Suboptimality of heuristics

Figure 2 shows that for task sets with the total density bounded by half the capacity of the platform,
BF, FF and NF perform the same. As NF is the least complex, it is more convenient to choose it in
this case. For the scenario where the total density exceeds half of the platform capacity, BF is the best
choice. Taking into account the very slight difference between FF and BF and the fact that FF has a lower
complexity, FF should be also considered.

5.3 Choosing a schedulability test

In this section, we analyze the success ratio of schedulability tests for all possible combinations with the
4 heuristics and the 8 sorting criteria. The analysis is divided in three subsections: firstly, EDF tests,
secondly, FP tests and finally, a comparison between the best performers of EDF and FP.

5.3.1 EDF

For implicit deadlines, all EDF tests reduce to EDF-LL.
For the case of constrained deadlines and total task set density inferior to half of the platform capacity,
the two tests have the same performance as seen in Figure 3.
So, EDF-BF is the best option in this case because of its polynomial complexity. For the case with the total
density exceeding half of the platform capacity, EDF-BHR is a better choice despite its pseudo-polynomial
complexity.

7

Figure 3: EDF - Constrained Deadlines

Figure 4: FP - Implicit Deadlines

5.3.2 Fixed Priority

For implicit deadlines, all the FP tests were taken into account during simulations. As DM-ABRTW is an
exact test, it has the best performance even when associated with heuristics. For the sufficient tests,
we can identify a decreasing order of their performance: RM-LMM is the best sufficient test followed
by RM-BBB (which outperforms RM-LL as in the uniprocessor case); and, RM-LL performs better than
DM-FBB, as is shown in Figure 4.

For the constrained deadlines case, DM-ABRTW is an exact schedulability test which, naturally, per-
forms better than the only sufficient DM-FBB (Figure 5).

5.4 Choosing a Task Sorting Criterion

This section deals with the impact of a task sorting criterion on the success ratio of schedulability tests.
In the corresponding graphs, D means decreasing and I means increasing. Figure 6 shows for EDF-BHR
test the sorting criteria that maximize its success ratio: Decreasing Utilization and Decreasing Density.

The simulation results showed that all tests (based either on EDF or FP and excluding DM-FBB) have
the same sorting criteria which maximizes their success ratio as EDF-BHR. For this reason and due to
space constraints, we did not add the corresponding graphs in this paper.

DM-FBB test performs the best when associated with Period or Deadline Increasing order as seen in
Figure 7 with a better performance when associated with Period Increasing order.

8

Figure 5: FP - Constrained deadlines

Figure 6: EDF-based Sorting Criteria

Figure 7: FBB Sorting Criteria

9

Figure 8: Minimum number of processors

Figure 9: Unutilized capacity - 1− Λτ

5.5 Choosing an Heuristic

In this section we evaluate the performance of the heuristics according to certain evaluation criteria. In
this analysis each heuristic is combined with all the schedulability tests and the task sorting criteria.

Minimum Number of Used Processors. As seen in Figure 8, the heuristic that uses the smallest num-
ber of processors is FF and the one that uses the largest is WF.

Available Spare Capacity on Processors. As WF utilizes the maximum number of processors, the
available spare capacity is also maximized. Figure 9 shows that WF behaves as an optimal placement
according to the 1− Λτ criterion.
Also for the 1− Load(τ) criterion, WF has the closest behavior to the optimal task assignment, as shown
in Figure 10.

In Section 3.1, we presented two cases for multiprocessor scheduling problem. According to the
simulation results presented above, we can conclude:

• if we want to minimize the number of used processors, the best heuristic is BF which slightly
outperforms FF.

• if we want to ensure an execution time slack (for the case where there is a risk to encounter
software or hardware errors), the most suitable heuristic is WF with a behavior close to the one of
an optimal assignment.

10

Figure 10: Unutilized capacity - 1−Load(τ)

Figure 11: Heuristic - Success Ratio

Success Ratio. In Figure 11 we can observe that the success ratio of partitioning heuristics (when
combined with all the schedulability tests and all the sorting criteria) follows the same performance
order as in Figure 2: BF, FF, NF, WF. Taking into account the complexity of the heuristics and the density
of the task set, we can choose: NF, if task set requires no more than 50% of the platform capacity for
execution (due to its low complexity) or, if the task set requires more than this 50% bound, BF should
be used for task assignment on processors.

5.6 Choosing a task sorting criteria for the best heuristic

According to Section 5.5, the best heuristic are BF and FF with the same success ratio. Due to its low
complexity, FF is usually considered when designing partitioning algorithms. It is generally agreed that
the best association partitioning heuristic — sorting criterion is FFDU (First Fit Decreasing Utilization).

Figure 12 shows that for task sets with the total density inferior to 75% of the platform capacity,
all sorting criteria give the same performance. However, for task sets with total density higher than
75% of the platform capacity, Decreasing Utilization (for implicit deadlines) and Decreasing Density (for
constrained deadlines) exhibit the best behavior.

11

Figure 12: Task sorting criteria for FF

6 Conclusion

The main conclusion of our study is that given a task set and a processor platform, the schedulability
test, the heuristic and the sorting criteria that compose the partitioning algorithm, have to be chosen
according to:

• the total task density;

• the concern to:

– minimize the number of processors;

– ensure an execution time slack.

For the choice of schedulability tests, we tend to select exact ones due to their better performance.
Furthermore, given that EDF dominates any FP scheduler, we are likely to consider EDF. However, when
choosing a schedulability test, it is important to observe the task set total density, as, for values bounded
by half of the platform capacity, exact tests perform the same as sufficient ones which is an advantage
given the lower implementation complexity.

The task set total density is also important when choosing an heuristic: in the case of minimizing
the number of processors, for task sets with density bounded by half of the platform capacity, NF is the
best choice, but for task sets with total density higher than 50% of the platform capacity, BF has to be
considered. Furthermore, we want to ensure an execution slack, WF has a behavior close to the one of
optimal task assignment.

From the simulations, we have deducted that the best task sorting criteria is Decreasing Density for
all schedulability tests, even if the priority assignment is based on the deadline (EDF, DM) or the period
(RM). There is one exception, DM-FBB which has the best performance when associated to Increasing
Period sorting criteria.

According to the assertions above, one can guide its choices regarding the test, the heuristic and the
task sorting criteria for scheduling a real-time task set on a multiprocessor platform.

7 Future Work

In the future, we firstly want to extend this study to heterogeneous platforms. Secondly, using the same
approach as for this analysis, we want to evaluate the performance of a new class of multiprocessor
algorithms called semi-partitioning. As this technique combines the 2 previously existing ones (global
and partitioning), it would be interesting to widen the analysis with new evaluation criteria such as the
number of context switches (migrations and preemptions).

12

References

[1] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multiprocessors. In 22nd IEEE Real-Time
Systems Symposium, pages 193–202, 2001.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and J. Wellings. Applying new scheduling theory to static
priority pre-emptive scheduling. Software Engineering Journal, 8:284–292, 1993.

[3] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Real-time scheduling: the deadline-monotonic
approach. In IEEE Workshop on Real-Time Operating Systems and Software, pages 133–137, 1991.

[4] T. P. Baker. Comparison of empirical success rates of global vs. partitioned fixed-priority and EDF scheduling
for hard real time. Technical Report TR-050601, The Florida State University, 2005.

[5] T. P. Baker. A comparison of global and partitioned EDF schedulability tests for multiprocessors. In Interna-
tional Conf. on Real-Time and Network Systems, pages 119–127, 2006.

[6] T. P. Baker and S. Baruah. Handbook of Real-Time and Embedded Systems, chapter Schedulability Analysis of
Multiprocessor Sporadic Task Systems, pages 3.1–3.15. Chapman, 2008.

[7] S. Baruah. Techniques for multiprocessor global schedulability analysis. In 28th IEEE International Real-Time
Systems Symposium, pages 119–128, 2007.

[8] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of deadline-constrained sporadic task
systems. IEEE Trans. on Computers, 55(7):918–923, 2006.

[9] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concerning the preemptive scheduling of
periodic real-time tasks on one processor. Real-Time Systems, 2:301–324, 1990.

[10] E. Bini, G. C. Buttazzo, and G. M. Buttazzo. Rate monotonic analysis: The hyperbolic bound. IEEE Transactions
on Computers, 52(7):933–942, 2003.

[11] R. Davis and A. Burns. Exact quantification of the sub-optimality of uniprocessor fixed-priority pre-emptive
scheduling. Real-Time Systems, (3):211–258, 2009.

[12] R. Devillers and J. Goossens. Liu and Layland’s schedulability test revisited. Information Processing Letters,
73(5–6):157–161, 2000.

[13] N. Fisher, S. Baruah, and T. Baker. The partitioned scheduling of sporadic tasks according to static-priorities.
In Proceedings of the 18th Euromicro Conference on Real-Time Systems, pages 118–127, Dresden, Germany,
2006.

[14] N. Fisher and S. K. Baruah. A fully polynomial-time approximation scheme for feasibility analysis in static-
priority systems with arbitrary relative deadlines. In Proceedings of the 17th Euromicro Conference on Real-Time
Systems, pages 117–126, 2005.

[15] L. George and J. Hermmant. A norm approach for Partitioned EDF Scheduling of Sporadic Task Systems.
Proceedings of the 21st Euromicro Conference on Real-Time Systems, Dublin, Ireland, July 2009.

[16] S. Lauzac, R. G. Melhem, and D. Mossé. An efficient RMS admission control and its application to multipro-
cessor scheduling. In 12th International Parallel Processing Symposium, pages 511–518, 1998.

[17] L. C. Liu and W. Layland. Scheduling algorithms for multi-programming in a hard real time environment.
Journal of ACM, 20(1):46–61, January 1973.

[18] V. Zhirnov, R. Cavin, J. Hutchby, and G. Bourianoff. Limits to binary logic switch scaling–a Gedanken model.
In IEEE, volume 9, pages 1934–1939, 2003.

13

	1 Introduction
	2 System Model
	3 Parameters of the Study
	3.1 Heuristics
	3.2 Task Sorting Criteria
	3.3 Schedulability Tests
	3.3.1 EDF-based schedulability tests
	3.3.2 FP-Based Schedulability Tests

	3.4 Performance Criteria
	3.5 Optimal Partitioning Algorithm

	4 Task Generation Methodology
	5 Results
	5.1 Suboptimality of FP over EDF
	5.2 Suboptimality of Heuristics
	5.3 Choosing a schedulability test
	5.3.1 EDF
	5.3.2 Fixed Priority

	5.4 Choosing a Task Sorting Criterion
	5.5 Choosing an Heuristic
	5.6 Choosing a task sorting criteria for the best heuristic

	6 Conclusion
	7 Future Work

