
Open-Source Software for Real-time Calcium Imaging and
Synchronized Neuron Firing Detection

Masaki Taniguchi1, Taro Tezuka2,∗, Pablo Vergara3, Sakthivel Srinivasan3, Takuma Hosokawa3,
Yoan Chérasse3, Toshie Naoi3, Takeshi Sakurai3, Masanori Sakaguchi3

Abstract— We developed Carignan, a real-time calcium imag-
ing software that can automatically detect activity patterns
of neurons. Carignan can activate an external device when
synchronized neural activity is detected in calcium imaging
obtained by a one-photon (1p) miniscope. Combined with
optogenetics, our software enables closed-loop experiments for
investigating functions of specific types of neurons in the brain.
In addition to making existing pattern detection algorithms
run in real-time seamlessly, we developed a new classification
module that distinguishes neurons from false-positives using
deep learning. We used a combination of convolutional and
recurrent neural networks to incorporate both spatial and
temporal features in activity patterns. Our method performed
better than existing neuron detection methods for false-positive
neuron detection in terms of the F1 score. Using Carignan,
experimenters can activate or suppress a group of neurons when
specific neural activity is observed. Because the system uses a
1p miniscope, it can be used on the brain of a freely-moving
animal, making it applicable to a wide range of experimental
paradigms.

I. INTRODUCTION

The development of calcium imaging and optogenetics
enabled a new approach to brain science. By sending a
signal to the brain when a specific neural activity pattern
is detected, scientists can now test hypotheses about the
functionality of activity patterns [1]. There have been several
implementations of systems that enable such experiments,
but in most cases, they either detect only simple patterns or
use a two-photon (2p) miniscope. 2p miniscopes are much
larger than one-photon (1p) ones and also require to constrain
animals. This can make it difficult to observe the long-term
behavior of animals. Some studies such as [2] use a 2p
miniscope to observe neural activity during sleep. However,
the large size of the 2p miniscope is possibly hindering
natural sleeping behaviors.

For behavior studies, 1p miniscopes are indispensable be-
cause of their small size. However, they have lower resolution
and have difficulty in identifying neurons. To retrieve neural
activity at high precision, they need to be combined with
a sophisticated machine learning method. One approach to
solving this problem is CaImAn [3], a widely-used open-
source library that processes calcium imaging data. It ex-
tracts neural activity using constrained nonnegative matrix

1Graduate School of Library, Information and Media Studies, University
of Tsukuba, Tsukuba, Japan

2Faculty of Library, Information and Media Science / Center for Artificial
Intelligence Research (C-AIR), University of Tsukuba, Tsukuba, Japan

3International Institute for Integrative Sleep Medicine (WPI-IIIS), Uni-
versity of Tsukuba, Tsukuba, Japan

∗Corresponding author. tezuka@slis.tsukuba.ac.jp

factorization (CNMF-E) [4]. We extend this approach further
by developing an open-source real-time system that triggers
an external device when a specific neural firing pattern
is detected in the calcium imaging video. Such a system,
together with optogenetics, enables closed-loop experiments
where specific types of neurons are excited or inhibited when
a firing pattern is observed.

One example that signifies the power of closed-loop exper-
iments was conducted by Gridchyn et al. [5]. Using tetrodes
and targeting CA1 neurons in the mouse hippocampus,
they disrupted the reactivation of learning-related ensembles
occurring after learning, which led to memory impairments.
They used an online decoding method developed by Ciliberti
et al. [6]. Grosenick et al. provided a good survey on closed-
loop approaches, including ones using tetrodes, 2p, and 1p
imaging [7].

Ghandour et al. showed that engram cells display repet-
itive ensemble activity after learning [8]. The function of
ensemble reactivation can be potentially addressed with a
closed-loop experiments.

To enable such experiments based on calcium imaging, we
developed Carignan, a real-time calcium imaging software
that automatically extracts synchronized activity of neurons
and triggers an external device. Our system retrieves video
streams from a 1p miniscope and detects synchronous neural
activity patterns in real-time. When a pattern is detected,
the system triggers a laser device, enabling a feedback loop.
Using our system, experimenters can activate or suppress a
group of neurons when specific neural activity is observed.
Because the system uses a 1p miniscope, it can be used on
the brain of a freely-moving animal, making it applicable to
a wide range of experimental paradigms, such as in [9].

The main contributions of our work are as follows.
1) We developed Carignan, a fully open-source image

processing software for real-time processing of cal-
cium imaging data obtained from 1p or 2p miniscopes.

2) A new neuron extraction module that classifies neu-
rons from background noise using a combination of
convolutional and recurrent neural networks.

3) Real-time control device that is activated by neuron
firing patterns.

II. RELATED WORK

A. One-photon imaging

There are currently two types of miniscopes used for
observing neural activity; one-photon (1p) and two-photon

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

This work is licensed under a Creative Commons Attribution 3.0 License.
For more information, see http://creativecommons.org/licenses/by/3.0/

2997



(2p). 2p miniscopes are larger in size and more expensive.
1p miniscopes are much smaller and less costly, but images
obtained from 1p miniscopes tend to be unclear and are
largely affected by background noise. Therefore, it is a
common practice to process the images using a statistical
algorithm for data cleansing. One example is CNMF-E
developed by Zhou et al.[4] which extends a method using
CNMF proposed by Pnevmatikakis et al.[10]. CNMF-E de-
composes video into spatial and temporal components using
non-negative matrix factorization. However, the output of
CNMF-E usually contains many false-positives. For example,
blood vessels are often classified as neurons.

There have been many studies that attempt to address
this problem [11]. OnACID uses space correlation to re-
move false-positives [12]. CaImAn is an open-source Python
implementation that uses a convolutional neural network
(CNN) to identify false-positives [3]. CaImAn processes each
frame separately and does not use the temporal dynamics
of retrieved patterns. This approach is sufficient for images
from a 2p miniscope. However, images from 1p miniscopes
contain more noise, so the temporal dynamics need to be
incorporated to achieve high precision. Tran et al. [13] did so
by concatenating spatial footprints and temporal traces into
feature vectors and inputting them into a conventional auto-
ML method such as Auto-Sklearn [14] and TPOT [15]. We
extend their approach by utilizing the temporal information
more effectively using deep learning.

B. Image processing of calcium imaging data

There are many implementations of batch calcium imaging
analysis [16], [17], [18], [19]. Programs that process in real-
time have gradually become commonly used. Lee et al.
implemented a system based on a data-flow framework that
enables the replacement of modules [20]. Since their module
for spatial component extraction was based on SimpleBlob-
Detector in OpenCV, it is not effective enough for unclear
images obtained from a 1p miniscope. The PCA/ICA-based
method [21] proposed by Mukamel et al. is used in analysis
software by Inscopix, Inc. However, since this analysis
software is not open-source software, it was unsuitable for
use in combination with external modules. In addition, this
method did not have any special consideration for 1-photon
images, which was inappropriate for our purposes.

Most batch CNMF algorithms are computationally inten-
sive, but Friedrich et al. developed an efficient algorithm that
can run in real-time [22], [23] using sparse non-negative
deconvolution [24], [10]. CaImAn uses this algorithm, but
its latest version could only process already-recorded video
data. By extending CaImAn, we developed Carignan, an
integrated system that processes calcium imaging data in
real-time and triggers an external device when the system
detected a specific neural activity pattern.

III. PROPOSED SYSTEM

Carignan’s system structure is summarized in Figure 1.
We describe each part of the whole system in detail.

A. Miniscope

We used the UCLA-Miniscope V3 as our default 1p
miniscope because, to the best of our knowledge, it is the
only miniscope that is compatible with the USB Video class.
This compatibility enables a smooth acquisition of a video
stream from our application program implemented in Python.
The user can adjust the gain, field-of-view (FOV), and
frames-per-second (FPS) on a graphical user interface (GUI)
included in our system. The system uses the VideoCapture
class in OpenCV so that it can process already-recorded
video as well.

Figure 2 shows an overview of processing calcium imag-
ing data using our system.

B. Signal processing

This section describes the overall system. After setting
up the aforementioned microscope, the system automatically
acquires video frames at a set FPS and starts online CNMF-E
analysis. During the frame-by-frame analysis, the system de-
tects neural activity in the video captured by the microscope
and can control external devices by triggering specific firing
patterns. To specify the firing pattern, we need to record
twice during the experiment as shown in Figure 1-A. During
the first recording, we capture a video of a particular length
and output the neurons’ spatial component and temporal
trace. If a characteristic firing pattern is found in the spatial
component and temporal trace, the user creates a pattern file,
and the recording is done again. During the second recording,
the user can perform a number of operations on the external
device at times when neural activity corresponding to the
pattern file occurs. In the following sections, we will describe
the individual modules of online CNMF-E in detail as shown
in Figure 1-B.

1) Initialization: We set the length of the video segment
used for matrix decomposition to 500 frames. The number
of frames must be more than 500 to detect false-positives.
After performing motion correction, bare initialization [3]
is used in our system’s initialization stage. This algorithm
is used to estimate the background by performing CNMF
repeatedly in short batches. The neurons detected in this
stage are also selected through the false-positive detection
module described below.

2) Motion correction: This system can use the same
motion correction method and the same parameters as in the
CaImAn implementation. However, since this system mainly
handles 1p images, we set the gSig filt parameter and apply a
high-pass filter to eliminate the background’s effect as much
as possible.

3) Source extraction: We use the OnACID implemen-
tation in CaImAn, which enables us to use the same pa-
rameters. However, since we are dealing with 1p images,
parameters such as gSig, min corr and min pnr need to be
carefully considered. Also, during the second recording, it
will not find a new spatial footprint to maintain consistency
with the pattern file.

2998



1st recording Find neuron pattern 2nd recording + affect mouse by using laser module

Use bare initialization

Output spatial components and temporal trace for next step

Output seed file for 2nd recording

Find neuron pattern manually

Create pattern file for next step

Use seed file from 1st recording for initialization step

Use pattern file to trigger laser

A

B

Video stream from UCLA Miniscope

Use first 500 frames for initialization

Raw frame

Motion correction Estimate temporal trace
in current frame

Detect new neuron
components

Detect false-positive
neuron from new

components
Update spatial

component

Compare with each
pattern in a pattern file

Send firing signal to
laser device when

pattern fired

Pattern 1 
- Neuron 1: 0.8
- Neuron 3: 0.6
- Neuron 7: 0.7

Pattern 2 
- Neuron 2: 0.3
- Neuron 4: 0.4
- Neuron 6: 0.9

...

Pattern file

2nd REC

1st REC

Go to next frame

Fig. 1. Overall workflow of our system. The first 500 frames are used for initialization. For each time frame after that, neuron candidates are extracted
and then filtered using the false-positive detection module.

Fig. 2. Calcium imaging data processed using our proposed method. Each
row indicates an example. The raw image is obtained from a miniscope (a).
Its background is extracted (b). The background may contain artifacts and
neurons that did not fire frequently enough. The firing of neurons is also
extracted (c). Color coding of extracted neurons shows that we can observe
numerous neurons (d).

4) False-positive detection: We proposed to use deep
learning to remove false-positives from the candidate neurons
obtained by CNMF-E. Namely, we combined a CNN with
a recurrent neural network. The TPOT model of cnmfe-
reviewer [13] is also implemented in this application, and
users can choose to use it.

5) Matching with manually defined patterns: In the sec-
ond recording, the pattern file provided by the user contains
the IDs of the neurons and the thresholds for detecting
their firings in the form of a matrix. The pattern file can
contain multiple firing patterns. The system can detect a

1D convolution 1D convolution 1D convolution 1D convolution

LSTM LSTM LSTM LSTM... Dense

Sigmoid

Extraction
block

Temporal trace Spatial footprint

Fig. 3. Architecture of the false-positive detection module.

neuron’s activity in each frame and send an arbitrary signal
to any USB signaling device at any time length when all the
thresholds for all neurons of a pattern in the pattern file are
exceeded. The system can connect to an external device that
uses an Arduino microcontroller.

6) Visualization: We implemented a visualization module
that enables the user to see the analysis results in real-time
during the recording experiment. Figure 4 is a capture of
the actual software. The left side shows the raw video being
recorded. The four images on the right from the upper left
to lower right are the colored motion corrected raw video,
the separated background, all extracted neurons, and each
extracted neuron colored differently, respectively. The seek
bar at the bottom of the screen enables the user to adjust the
dynamic range of the visualized videos.

2999



Fig. 4. Real-time plotting of neural activity using the graphical user
interface (GUI) of Carignan. The left panel shows the raw Calcium imaging,
and the small panels on the right show the processed results.

C. Code availability

The entire code of the system is available as an open-
source software1. The repository shows a link to sample data
and procedures for running the software.

IV. EXPERIMENTS

A. False-positive detection

We evaluated our proposed method for false-positive de-
tection using annotated data. All animal experiments for
creating the datasets were approved by the University of
Tsukuba Institutional Animal Care and Use Committee. The
detailed architecture of our method is shown in Figure 3. For
each neuron detected by CNMF-E, the temporal trace is sent
to the long short-term memory (LSTM) after passing through
a one-dimensional convolutional layer. The spatial footprint
is sent to the extraction module, which is transformed into
a one-dimensional vector and concatenated with the output
of the LSTM. Finally, the predictions are obtained after the
fully-connected layers. In our experiment, 500 frames are
used for a temporal trace, and an 80×80 pixel image is used
for a spatial footprint to match the conditions of cnmfe-
reviewer [13].

We tested four methods proposed in cnmf-reviewer [13]
and several deep learning-based methods using the same test
dataset. We evaluated our system in terms of the scores
and prediction speed. We trained the decision tree, k-nearest
neighbors, and all the deep learning models using the training
data in cnmfe-reviewer.

In Table I, the top rows show the results of the cnmfe-
reviewer methods. The middle rows show those using a
simple deep learning model without a pre-trained extractor.
The bottom row shows those using the feature extraction part
of the pre-trained classification models in the torchvision
library. The decision tree, k-nearest neighbors, TPOT, and
AutoSklearn all use temporal trace and spatial footprints. The
models that exceed the performance of the TPOT model,
which is the best performing model in cnmfe-reviewer,

1https://github.com/tzklab/carignan

are written as bold text under “Accuracy” and “F1”. We
measured the processing rate using a MacBook Pro 2017
(Intel Core i5, 16GB RAM). Models that reached 30 Hz or
faster are indicated as bold text under “Processing Rate”.

Table I shows that the k-nearest neighbor and Auto-
Sklearn of cnmfe-reviewer are not practical for real-time
applications in terms of computation time. The small deep
models without pre-training show that temporal trace and
spatial footprint contributed to classification performance.
Temporal trace alone (LSTM or Conv-LSTM) and spatial
footprint alone (2D-CNN) could not outperform TPOT, but
the combined method (Conv-LSTM + 2D-CNN) did. The
same trend is also shown in the results for the cnmfe-reviewer
and deep learning models. Furthermore, many classifiers with
torchvision pre-trained extractors show that the accuracy
does not improve much even when using a huge image
classification model pre-trained by a large-scale dataset.
One possibility that the amount of data used for training
is insufficient for the massive number of parameters in
the model. Another possibility is that the ImageNet dataset
used for pre-training is not suitable for retrieving identified
neurons. Also, such large-scale models are generally not
practical for real-time applications in terms of speed. On the
basis of the experimental results, we implemented two types
of model in the feature extraction module. One is a simple
2D-CNN without transfer learning. The other is a ShuffleNet
V2 [25] with transfer learning. The detailed architecture of
the 2D-CNN model is shown in Table II.

B. Overall processing speed

To measure Carignan’s overall performance, we measured
the computation time using two public datasets and two
private videos taken by our group. The results are sum-
marized in Table III. The two public datasets are both 2p
images included in the neurofinder dataset. The non-public
data are both 1p images taken by our group. Video-1 and
Video-2 were taken using the nVoke miniscope and UCLA-
Miniscope, respectively.

V. DISCUSSION

From the experiments described in the previous section,
we found that our deep learning model performed better for
detecting false-positive neurons in terms of accuracy. TPOT
and other simple machine learning models were faster, but
when we measured the entire system’s computation time, the
processing rate was higher for our deep learning model. This
is due to the difference in the number of detected neurons,
not that in the processing speed of classification. Table IV
shows the number of neurons detected from each video,
the number of neurons accepted or rejected by the detector,
and the acceptance rate. All of the models for false-positive
neuron detection used in this validation have been trained on
the dataset provided by Tran et al. [13]. This dataset consists
of hippocampal CA1 neurons captured by a 1p microscope
from multiple mice. On the other hand, the neurofinder data
used in this study were both taken with a 2p microscope, and
for data 01.00, the images are of V1 neurons. This suggests

3000



TABLE I
PERFORMANCE COMPARISON OF FALSE-POSITIVE NEURON DETECTION.

Method Accuracy F1 Precision Recall Processing Rate (Hz)
decision tree 0.825 0.861 0.865 0.856 6852.094
k-nearest neighbors 0.844 0.882 0.843 0.926 7.126
TPOT 0.878 0.910 0.854 0.975 10523.117
AutoSklearn 0.877 0.907 0.867 0.951 2.066
small deep models without pretrain
LSTM (Only temporal trace) 0.849 0.888 0.840 0.942 814.352
Conv-LSTM (Only temporal trace) 0.858 0.896 0.837 0.964 74.815
2D-CNN (Only spatial footprint) 0.884 0.909 0.905 0.912 107.711
Conv-LSTM + 2D-CNN 0.894 0.920 0.882 0.961 42.631
with torchvision pretrained extractors
Conv-LSTM + Alexnet 0.882 0.905 0.928 0.883 54.143
Conv-LSTM + VGG11 0.873 0.894 0.945 0.849 15.978
Conv-LSTM + VGG13 0.877 0.899 0.940 0.861 13.201
Conv-LSTM + VGG16 0.895 0.918 0.903 0.934 10.330
Conv-LSTM + VGG19 0.891 0.913 0.925 0.900 8.570
Conv-LSTM + Squeezenet 0.633 0.775 0.633 1.000 45.342
Conv-LSTM + Densenet 121 0.897 0.919 0.913 0.925 12.264
Conv-LSTM + Densenet 161 0.897 0.919 0.918 0.919 6.572
Conv-LSTM + Densenet 169 0.890 0.912 0.929 0.895 9.597
Conv-LSTM + Densenet 201 0.893 0.916 0.915 0.917 7.381
Conv-LSTM + Mobilenet V2 0.898 0.923 0.885 0.965 28.414
Conv-LSTM + ResNet 18 0.894 0.915 0.925 0.906 28.629
Conv-LSTM + ResNet 34 0.895 0.916 0.928 0.904 18.625
Conv-LSTM + ResNet 50 0.893 0.914 0.927 0.902 13.350
Conv-LSTM + ResNet 101 0.897 0.917 0.926 0.909 8.809
Conv-LSTM + ResNet 152 0.898 0.919 0.915 0.924 6.729
Conv-LSTM + ResNext 50 0.897 0.918 0.928 0.907 12.013
Conv-LSTM + ResNext 101 0.887 0.908 0.936 0.882 5.117
Conv-LSTM + WideResNet 50 0.903 0.923 0.930 0.915 6.503
Conv-LSTM + WideResNet 101 0.893 0.915 0.927 0.902 3.745
Conv-LSTM + ShuffleNet V2 0.890 0.914 0.904 0.925 32.052
Conv-LSTM + GoogleNet 0.891 0.912 0.932 0.893 22.400

TABLE II
ARCHITECTURE OF THE 2D-CNN MODEL

Module Parameters
input height: 80, width: 80, channel: 1
2D Conv + BN + ReLU in: 1ch, out: 32ch, kernel size: 1, stride: 1
Maxpool kernel size: 2, stride: 2
2D Conv + BN + ReLU in: 32ch, out: 32ch, kernel size: 1, stride: 1
2D Conv + BN + ReLU in: 32ch, out: 8ch, kernel size: 1, stride: 1
2D Conv + BN + ReLU in: 8ch, out: 8ch, kernel size: 1, stride: 1
2D Conv + BN + ReLU in: 8ch, out: 32ch, kernel size: 1, stride: 1
Maxpool kernel size: 2, stride: 2
2D Conv + BN + ReLU in: 32ch, out: 64ch, kernel size: 1, stride: 1
2D Conv + BN + ReLU in: 64ch, out: 16ch, kernel size: 1, stride: 1
2D Conv + BN + ReLU in: 16ch, out: 16ch, kernel size: 1, stride: 1
2D Conv + BN + ReLU in: 16ch, out: 64ch, kernel size: 1, stride: 1
Maxpool kernel size: 2, stride: 2
2D Conv + BN + ReLU in: 64ch, out: 128ch, kernel size: 1, stride: 1
2D Conv + BN + ReLU in: 128ch, out: 32ch, kernel size: 1, stride: 1
2D Conv + BN + ReLU in: 32ch, out: 32ch, kernel size: 1, stride: 1
2D Conv + BN + ReLU in: 32ch, out: 128ch, kernel size: 1, stride: 1

that the difference in the number of neurons detected by each
model shown in Table IV is due to each model’s performance
in terms of how robust it is against the difference in the
type of neurons and the camera environment. Considering
that the training dataset’s false neuron ratio is 15%, the two
deep learning models are deemed to have lower robustness
against environmental changes than the TPOT model. It is
recommended that the user trains the deep learning models
using images of neurons in the same domain as those used

for pattern detection. Also, the acceptance rate dropped for
all models in the 01.00 data, which recorded different types
of neurons. It suggests that neurons’ essential features can be
learned even when using pseudo-false data created by adding
mechanical deformations to the true data, as for this dataset.

VI. CONCLUSION
We developed Carignan, a real-time image processing

application that (1) retrieves calcium imaging video from
a one-photon (1p) miniscope, (2) finds synchronized neural
activity patterns by machine learning, and (3) sends signals
to an external device when a specific pattern is observed.
In addition to making existing algorithms run in real-time,
we developed a new classification module that distinguishes
neurons from false-positives using deep learning. We show
through experiments that the module achieves a higher
precision than existing methods.

In future work, we plan to conduct in-vivo experiments us-
ing our system. We expect our system will uncover functions
of neural ensembles in the brain at a scale that has not been
achieved before. In our current system, synchronized firing
patterns are constructed manually. We will consider using
unsupervised machine learning methods to add a mechanism
that automatically finds firing patterns. We expect such an
extension will contribute to the scientific investigation of
neural ensemble activities and their functions. Since the
learning of firing patterns is not a part of our system, it needs
to be carried out in advance. Because a single experiment is

3001



TABLE III
COMPARISON OF COMPUTATION TIME

Video data TPOT CNN ShufflenetV2
neurofinder 01.00
Neuron number: 345
Camera: 2p
Recording rate: 7.5 Hz
Resolution: 512×512
bits per pixel: 16 bit

16.156 Hz 17.709 Hz 18.329 Hz

neurofinder 03.00
Neuron number: 621
Camera: 2p
Recording rate: 7.5 Hz
Resolution: 498×490
bits per pixel: 16 bit

15.235 Hz 16.580 Hz 17.432 Hz

Video 1
Camera: 1p
(nVoke)
Recording rate:10 Hz
Resolution: 321×213
bits per pixel: 16 bit

44.647 Hz 46.645 Hz 44.603 Hz

Video 2
Camera: 1p
(UCLA-Miniscope)
Recording rate: 10 Hz
Resolution: 480×480
bits per pixel: 8 bit

7.511 Hz 16.501 Hz 13.561 Hz

TABLE IV
ACCEPTANCE RATES OF FALSE-POSITIVE NEURON DETECTION

MODULES IN THE OVERALL SYSTEM

Method accept reject acceptance rate
neurofinder 01.00 (345 neurons)
TPOT 323 49 0.868
Conv-LSTM + 2D-CNN 13 508 0.025
Conv-LSTM + ShuffleNet V2 121 335 0.265
neurofinder 03.00 (621 neurons)
TPOT 548 13 0.977
Conv-LSTM + 2D-CNN 21 612 0.033
Conv-LSTM + ShuffleNet V2 198 397 0.333

divided into two separate steps, it is prone to errors such
as an unintended changes in camera position. We would
like to reduce such a risk by connecting the learning phase
seamlessly to the current system such that experiments can
be carried out in a single shot.

ACKNOWLEDGMENTS

This work was partially supported by grants from the
World Premier International Research Center Initiative from
MEXT; JST CREST Grant JPMJCR1655; JSPS KAK-
ENHI Grants 16K18359, 15F15408, 26115502, 25116530,
16H06280, 19F19310, and 20H03552; Uehara Memorial
Foundation to M.S., JSPS KAKENHI Grants 16K00228,
18KK0308 and 20H03552; Shimadzu Science Foundation;
G-7 Scholarship Foundation; Uehara Memorial Foundation
to T.T. We also thank M. Sakurai for secretarial support.

REFERENCES

[1] Joshua H. Jennings, Christina K. Kim, James H. Marshel, Misha
Raffiee, Li Ye, Sean Quirin, Sally Pak, Charu Ramakrishnan, and Karl
Deisseroth, “Interacting neural ensembles in orbitofrontal cortex for
social and feeding behaviour,” Nature, vol. 565, no. 7741, pp. 645–
649, 2019.

[2] Wei Li, Lei Ma, Guang Yang, and Wenbiao Gan, “REM sleep
selectively prunes and maintains new synapses in development and
learning,” Nature Neuroscience, vol. 20, no. 3, pp. 427––437, 2017.

[3] Andrea Giovannucci, Johannes Friedrich, Pat Gunn, Jérémie Kalfon,
Brandon L Brown, Sue Ann Koay, Jiannis Taxidis, Farzaneh Najafi,
Jeffrey L Gauthier, Pengcheng Zhou, Baljit S Khakh, David W Tank,
Dmitri B Chklovskii, and Eftychios A Pnevmatikakis, “CaImAn an
open source tool for scalable calcium imaging data analysis,” eLife,
vol. 8, pp. e38173, 2019.

[4] Pengcheng Zhou, Shanna L Resendez, Jose Rodriguez-Romaguera,
Jessica C Jimenez, Shay Q Neufeld, Andrea Giovannucci, Johannes
Friedrich, Eftychios A Pnevmatikakis, Garret D Stuber, Rene Hen,
Mazen A Kheirbek, Bernardo L Sabatini, Robert E Kass, and Liam
Paninski, “Efficient and accurate extraction of in vivo calcium signals
from microendoscopic video data,” eLife, vol. 7, pp. e28728, 2018.

[5] Igor Gridchyn, Philipp Schoenenberger, Joseph O’Neill, and Jozsef
Csicsvari, “Assembly-specific disruption of hippocampal replay leads
to selective memory deficit,” Neuron, vol. 106, pp. 291–300, 2020.

[6] Davide Ciliberti, Frédéric Michon, and Fabian Kloosterman, “Real-
time classification of experience-related ensemble spiking patterns for
closed-loop applications,” eLife, vol. 7, 2018.

[7] Logan Grosenick, James H. Marshel, and Karl Deisseroth, “Closed-
loop and activity-guided optogenetic control,” Neuron, vol. 86, pp.
106–139, 2015.

[8] Khaled Ghandour, Noriaki Ohkawa, Chi Chung Alan Fung, Hirotaka
Asai, Yoshito Saitoh, Takashi Takekawa, Reiko Okubo-Suzuki, Shingo
Soya, Hirofumi Nishizono, Mina Matsuo, Makoto Osanai, Masaaki
Sato, Masamichi Ohkura, Junichi Nakai, Yasunori Hayashi, Takeshi
Sakurai, Takashi Kitamura, Tomoki Fukai, and Kaoru Inokuchi,
“Orchestrated ensemble activities constitute a hippocampal memory
engram,” Nature Communications, vol. 10, 2019.

[9] Deependra Kumar, Iyo Koyanagi, Alvaro Carrier-Ruiz, Pablo Vergara,
Sakthivel Srinivasan, Yuki Sugaya, Masatoshi Kasuya, Tzong-Shiue
Yu, Kaspar E. Vogt, Masafumi Muratani, Takaaki Ohnishi, Sima
Singh, Catia M. Teixeira, Yoan Chérasse, Toshie Naoi, Szu-Han Wang,
Pimpimon Nondhalee, Boran A.H. Osman, Naoko Kaneko, Kazunobu
Sawamoto, Steven G. Kernie, Takeshi Sakurai, Thomas J. McHugh,
Masanobu Kano, Masashi Yanagisawa, and Masanori Sakaguchi,
“Sparse activity of hippocampal adult-born neurons during rem sleep
is necessary for memory consolidation,” Neuron, vol. 107, pp. 552–
565, 2020.

[10] Eftychios A. Pnevmatikakis, Daniel Soudry, Yuanjun Gao, Timothy A
Machado, Josh Merel, David Pfau, Thomas Reardon, Yu Mu, Clay
Lacefield, Weijian Yang, Misha Ahrens, Randy Bruno, Thomas M
Jessell, Darcy S Peterka, Rafael Yuste, and Liam Paninski, “Simul-
taneous denoising, deconvolution, and demixing of calcium imaging
data,” Neuron, vol. 89, pp. 285––299, 2016.

[11] Eftychios A. Pnevmatikakis, “Analysis pipelines for calcium imaging
data,” Current Opinion in Neurobiology, vol. 55, pp. 15–21, 2018.

[12] Andrea Giovannucci, Johannes Friedrich, Matt Kaufman, Anne
Churchland, Dmitri Chklovskii, Liam Paninski, and Eftychios A
Pnevmatikakis, “OnACID: Online analysis of calcium imaging data
in real time,” BioRxiv, p. 193383, 2017.

[13] Lina M. Tran, Andrew J. Mocle, Adam I. Ramsaran, Alexander D.
Jacob, Paul W. Frankland, and Sheena A. Josselyn, “Automated
curation of CNMF-E-extracted ROI spatial footprints and calcium
traces using open-source autoML tools,” Frontiers in Neural Circuits,
vol. 14, pp. 42, 2020.

[14] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius
Lindauer, and Frank Hutter, “Efficient and robust automated machine
learning,” Advances in Neural Information Processing Systems 28,
2015.

[15] Trang T. Le, Weixuan Fu, and Jason H. Moore, “Scaling tree-based
automated machine learning to biomedical big data with a feature set
selector,” Bioinformatics, vol. 36, no. 1, pp. 250–256, 2020.

[16] Daniel A Cantu, Bo Wang, Michael W Gongwer, Cynthia X He,
Anubhuti Goel, Anand Suresh, Nazim Kourdougli, Erica D Arroyo,
William Zeiger, and Carlos Portera-Cailliau, “EZcalcium: Open-source
toolbox for analysis of calcium imaging data,” Frontiers in Neural
Circuits, vol. 14, pp. 25, 2020.

[17] Jinghao Lu, Chunyuan Li, Jonnathan Singh-Alvarado, Zhe Charles
Zhou, Flavio Fröhlich, Richard Mooney, and Fan Wang, “MIN1PIPE:
A miniscope 1-photon-based calcium imaging signal extraction
pipeline,” Cell Reports, vol. 23, no. 12, pp. 3673–3684, 2018.

[18] F.D.W. Radstake, E.A.L. Raaijmakers, R. Luttge, Svitlana Zinger, and

3002



Jean-Philippe Frimat, “CALIMA: The semi-automated open-source
calcium imaging analyzer,” Computer Methods and Programs in
Biomedicine, vol. 179, pp. 104991, 2019.

[19] Takashi Takekawa, Hirotaka Asai, Noriaki Ohkawa, Masanori
Nomoto, Reiko Okubo-Suzuki, Khaled Ghandour, Masaaki Sato, Ya-
sunori Hayashi, Kaoru Inokuchi, and Tomoki Fukai, “Automatic
sorting system for large calcium imaging data,” BioRxiv, 2017.

[20] Yaesop Lee, Jing Xie, Eungjoo Lee, Srijesh Sudarsanan, Da-Ting Lin,
Rong Chen, and Shuvra S. Bhattacharyya, “Real-time neuron detection
and neural signal extraction platform for miniature calcium imaging,”
Frontiers in Computational Neuroscience, vol. 14, pp. 43, 2020.

[21] Eran A. Mukamel, Axel Nimmerjahn, and Mark J. Schnitzer, “Au-
tomated analysis of cellular signals from large-scale calcium imaging
data,” Neuron, vol. 63, pp. 747–760, 2009.

[22] Johannes Friedrich, Pengcheng Zhou, and Liam Paninski, “Fast online
deconvolution of calcium imaging data,” PLoS Computational Biology,
vol. 13, no. 3, pp. e1005423, 2017.

[23] Johannes Friedrich, Andrea Giovannucci, and Eftychios A Pnev-
matikakis, “Online analysis of microendoscopic 1-photon calcium
imaging data streams,” PLoS Computational Biology, vol. 17, no.
1, pp. e1008565, 2021.

[24] Joshua T. Vogelstein, Adam M. Packer, Timothy A. Machado, Tanya
Sippy, Baktash Babadi, Rafael Yuste, and Liam Paninski, “Fast
nonnegative deconvolution for spike train inference from population
calcium imaging,” Journal of Neurophysiology, vol. 104, pp. 3691—
-3704, 2010.

[25] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun, “Shuf-
fleNet V2: Practical guidelines for efficient CNN architecture design,”
in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 116–131.

3003


