
Mixed Criticality on Controller Area Network
A. Burns

Department of Computer Science,
University of York, UK.

Email: alan.burns@york.ac.uk

R.I. Davis
Department of Computer Science,

University of York, UK.
Email: rob.davis@york.ac.uk

Abstract—An increasingly important trend in the design of
real-time and embedded systems is the integration of components
with different levels of criticality onto a common hardware
platform. Where the platform incorporates a communication
media it is necessary for that media to be able to safely and
efficiently transfer messages of different criticality levels. In this
paper we consider the Controller Area Network (CAN), and
define mixed criticality protocols that could form the basis of a
Trusted Network Component for CAN. Sufficient response-time
analysis is derived for these protocols and an optimal priority
assignment scheme is provided. Evaluations illustrate the benefits
of the schemes.

I. INTRODUCTION

An increasingly important trend in the design of real-
time and embedded systems is the integration of components
with different levels of criticality onto a common hardware
platform. A mixed criticality system (MCS) is one that has
two or more distinct levels (e.g. safety critical, mission critical
and non-critical). Perhaps up to five levels may be identified
(see, as examples, the IEC 61508, DO-178B, DO-254 and ISO
26262 standards).

Most of the complex embedded systems found in the
automotive and avionic industries are evolving into mixed
criticality systems in order to meet stringent non-functional
requirements relating to cost, space, weight, heat generation
and power consumption. Indeed the software standards in
the European automotive industry (AUTOSAR) and in the
avionics domain (ARINC) address mixed criticality issues (in
the sense that they recognise that MCSs must be supported on
their platforms).

If MCSs are to be hosted on platforms such as AUTOSAR
then the communication media must be capable of supporting
mixed criticality messages. Indeed if applications are parti-
tioned so that any one processor only has software of one
criticality level then the main focus of design must be on what
links the different processors (and criticality levels).

Within the context of automotive applications and platforms,
CAN is the predominant network protocol. It is therefore
necessary to develop means by which CAN can be used
safely for transmitting messages of different criticality. This
challenge is itself composed of two conflicting requirements:

1) how to partition the use of the network to enhance safety;
2) how to share the capacity of the network to reduce cost.

In this paper we develop analysis that can be used to facilitate
effective sharing of the available bandwidth of CAN.

CAN is a serial communications bus designed to provide
simple, efficient and reliable communications for in-vehicle
networks [15]. An indication of the scale of adoption of CAN
by the automotive industry can be gained from the sales of
microcontrollers with on-chip CAN peripherals. Over 1 billion
such devices had been deployed in automotive applications by
2006 [11].

A number of papers (e.g. [13], [14]) have already provided
detailed descriptions of the CAN protocol and the analysis
required to determine if message streams will meet their
deadlines. Here, we assume that the reader is familiar with
the CAN protocol, its basic analysis, and error handling as
described in [14].

The paper is organised as follows. In the next section a
system model is defined that allows MCS to be developed
on CAN. Section III reviews material on mixed criticality
and introduces the message stream model. Section IV then
introduces basic CAN analysis. The main protocol derived
in this paper is explained, with its analysis in Section V. A
more basic form is then derived in Section VI. Evaluations are
provided in Section VII followed by conclusions.

II. SYSTEM MODEL

If a single CAN bus is to be used to pass messages of
differing criticality then some level of partitioning is required.
One simple approach would be to assign priorities according
to criticality. But this has a detrimental impact on schedulabil-
ity [3]. Also there would still be the need to provide protection
from a low criticality message inappropriately being assigned
a high priority (due to either an error or a security breach).

A review of the methods by which a CAN controller can
be reliably constructed was given by Broster and Burns in
2003 [7]. They showed how the so called ‘babbling idiot’
problem could be addressed – this is when a node sends out
more messages than was assumed in the static analysis of the
hosted applications. Two basic approaches were considered:

1) the use of a Trusted Network Component (TNC) as an
interface to the network, or

2) the use of a Network Guardian (NG).

The trusted network component (TNC) is designed and built
according to the constraints imposed by the highest level of
criticality of any application running (or liable to run) on the
platform. It can be trusted to only allow onto the network
messages that conform to the constraints of the static analysis.



A network guardian (NG) is used when the network in-
terface hardware cannot be trusted. The NG monitors the
messages on the network and identifies inappropriate levels of
traffic. It will then disconnect the offending node and prevent
any further transmissions from that source. Of course the NG
itself must be trusted, but it is a much simpler component than
a TNC; it does not itself transmit any messages.

Although a NG can prevent excessive misuse of the net-
work, it only identifies a problem after some level of inap-
propriate message flow has occurred and been identified. This
means that the CAN schedulability analysis has to be updated
to take into account some (bounded) level of ‘babbling’ [7].

In this work we build upon the use of TNCs. In the
automotive environment it is unlikely that the extra costs of
NGs would be acceptable. Moreover, the high volumes of
production have lead to highly reliable basic controllers to
which a trusted software layer can be added. Nevertheless, if a
guardian-based approach is advocated the analysis developed
in this paper could be augmented by that for NGs [7] in a
relatively straightforward way.

The approach to criticality developed in the rest of this paper
defines the operation of the complete system to be in one of an
ordered set of criticality modes. The system starts in the lowest
mode, in which all the standard functions of the application
are supported. The system will normally stay in this mode.
However, if required (see below for details) the mode may
change to a higher level, reaching where necessary the highest
level, in which only the highest criticality functions of the
system need to be guaranteed. It will stay at this level until
the system is re-initialised. Movements down the criticality
levels are not part of the proposed protocol.

The TNC is aware of the current mode and will only allow
messages to be transmitted that are compatible with that mode.
The need for a change of mode will be identified by a TNC
when:

• Some functional component on the TNC’s node indicates
that a mode change is required.

• Messages arrive for transmission too frequently for the
current mode.

• Errors occur too frequently for the current mode.

In response to any of these conditions the TNC will transmit
a high priority message to all other nodes informing them of
a criticality change. Each TNC will have a distinct message
id for this purpose; but all these messages will have priorities
higher than any application message. In some circumstances,
a message that is only allowed in a particular mode will itself
be the indicator to the rest of the system of the need to change
mode. Such a message is referred to as a triggering message.

These properties of the TNC are integrated with the explicit
support of a mixed criticality protocol which we call Mixed-
CAN, see Section V. Having introduced MixedCAN a more
basic form of the protocol (BMC) is defined in Section VI.

A. Fault Model

For high criticality applications it is usually required that
they are capable of surviving a predefined levels of faults. For
CAN this means that messages should be delivered by their
deadlines even when some re-transmissions are necessary. Of
course no deadline can be satisfied if there are an unbounded
number of faults on the network. The fault model defines
the level of faults that must be tolerated [17]. A certification
authority may then require evidence that during deployment
the probability of faults arriving outside the fault model is
below a specified level [8], [19].

There are various ways of defining a fault model. A simple
one for CAN is to specify the number of faults that must
be tolerated during the queuing and communication of a
message. Let F represent this value which is then used in
the schedulability analysis to compute the worst-case response
time of each message. If Dmax is the longest message deadline
then the probability of failure is bounded by the probability
of more than F faults occurring in an interval of duration less
than Dmax. If the fault arrival pattern can be modeled as a
Poisson distribution then this probability can be computed [8].
For other patterns it is more problematic. However, in this
paper we are only concerned with the impact the fault model
has on schedulability. For this we only need the F value (or,
more specifically, as will be explained shortly, an F value
per criticality level). More complex fault models, for example
defining F as the number of faults in unit time, are easily
incorporated into schedulability analysis.

III. MIXED CRITICALITY MODEL

The first paper on the verification of a Mixed Criticality
Systems used an extension of standard fixed priority (FP)
real-time scheduling theory, and was published by Vestal in
2007 [21]. It employed a somewhat restrictive work-flow
model, focused on single processor task scheduling and made
use of Response Time Analysis [2]. It showed that neither
rate monotonic nor deadline monotonic priority assignment
was optimal for MCS; however Audsley’s optimal priority
assignment algorithm [1] was found to be applicable.

This paper was followed by two publications in 2008 by
Baruah and Vestal [5], and Huber et al [16]. The first of
these papers generalises Vestal’s model by using a sporadic
task model and by assessing fixed job-priority scheduling and
dynamic priority scheduling. It contains the important result
that EDF (earliest deadline first) does not dominate FP when
criticality levels are introduced, and that there are feasible
systems that cannot be scheduled by EDF. The latter paper
addresses multi-processor issues and virtualisation (though did
not use that term). It focused on AUTOSAR and resource man-
agement (encapsulation and monitoring) with time-triggered
applications and a trusted network layer. Since these early pa-
pers a number of publications have extended the applicability
of these results, but they have tended to concentrate only on
task scheduling. Here we focus on messages being scheduled
for non-preemptive transmission on CAN.



Each message stream, τi, is defined by its period (minimum
inter-arrival interval), blocking, release jitter, relative deadline,
maximum transmission time and criticality level: (Ti, Bi, Ji,
Di, Ci, Li). These parameters are however not independent.
In the standard mixed criticality approach [21] only the tasks’
computation times are a function of criticality. But in general
all these parameter’s could be dependent on criticality [9].
For message streams it is the stream’s period that has this
dependency. The higher the criticality level, the more conser-
vative the assumptions made about the rate of arrival of high
criticality messages. For example, event-handling tasks may
give rise to inter-node messages; the more events that must be
handled, the more messages will be generated. Assumptions
about event arrivals directly impacts on message frequencies.

With applications such as those in the automotive domain
it will also be the case that some message streams will only
occur in the higher criticality modes. For example, in an active
safety system, the identification of a potential collision could
result in messages being sent to apply brakes, tighten seat
belts, close windows etc. Other standard but critical messages
will also need to be delivered, but other none critical ones
could be dropped.

In a mixed criticality system more information is needed in
order to undertake schedulability analysis. Message streams
can depend on other messages with higher or lower levels of
criticality. In general, a message is now defined by: (~T , Bi, ~Ji,
D, ~C, L), where ~X is a vector of values – one per criticality
level, with the constraints:

L1 > L2⇒ C(L1) ≥ C(L2)

L1 > L2⇒ T (L1) ≤ T (L2)

for any two criticality levels L1 and L2.
In general, although message streams may have different

release jitter values, when criticality is considered, there will
be no ordering property over the values in ~Ji. For analysis
purposes the worst-case jitter must be used, and hence a single
Ji parameter is employed; it being the maximum of the values
in ~Ji.

Although we allow each message’s period to be dependent
on criticality, so that the model can cope with different rates
of computation and hence communication in the criticality
modes, we have the same relative deadline for each message
regardless of criticality. There is therefore only a single D
term in the description of a message stream.

The final element of the mixed criticality model is the fault
model. It is reasonable to assume that the number of faults that
must be tolerated will be higher for higher levels of criticality.
Hence

L1 > L2⇒ F (L1) ≥ F (L2)

where F (Lx) is the number of faults that must be tolerated
at criticality level Lx (see Section II-A).

A. Restricted Model

For ease of presentation, in this paper we will restrict our
attention to dual-criticality systems: systems in which there

M Crit T(HI) T(LO) D C
τ1 HI ∞ - 5 2
τ2 HI 12 24 12 2
τ3 LO - 11 11 2
τ4 LO - 6 6 1
τ5 HI 18 36 18 3

TABLE I
EXAMPLE MESSAGE SET

are only two criticality levels: HI (high) and LO (low), with
HI > LO. We also consider constrained deadlines. So for
low criticality messages: D ≤ T (LO) and for high criticality
messages: D ≤ T (HI) ≤ T (LO).

In this study the message transmission times (the C values)
for each message are not criticality dependent, apart from the
specific case of a high criticality message that does not occur in
the LO criticality mode. In this case C(LO) = 0; otherwise
C(HI) = C(LO) for all messages. In general we will use
the single term C for all criticality levels unless we need to
explicitly identify the C(LO) = 0 property. We assume that in
both criticality levels all messages are subject to the maximum
amount of bit stuffing.

B. Example

We use an abstract example (parameters not representative
of CAN messages) to illustrate our analysis (see Table I).
Message τ1 only exists in the HI mode, indeed it is the
message that causes the mode to move from low criticality
to high criticality. Moreover, τ1 is transmitted only once in
the HI mode; hence its period is given as ∞. Two further
messages are HI criticality; both have their periods reduced
by half in the higher criticality mode of operation. There are in
addition two LO criticality messages that are only transmitted
in the LO criticality mode; hence their periods in the other
mode are undefined. Jitter is assumed to be zero and faults are
not considered in this example.

If the distinctive criticalities are ignored (in the sense that all
messages must meet their more stringent requirements at all
times) then the message set is unschedulable (see the following
analysis).

IV. BASIC SCHEDULING ANALYSIS FOR CAN

In this paper, we make use of the simple sufficient but
not necessary schedulability test given by Davis et al. [13].
We note that this analysis is exact for many commercial
CAN systems that have 8 data byte (soft) real-time messages
present at lower priorities. The interested reader is referred to
[13] for details of other schedulability tests for CAN and the
conditions under which the various tests provide sufficient or
exact analysis.

The worst-case response time of a message can be viewed
as being made up of three elements:

1) The queuing jitter Ji, corresponding to the longest time
between the initiating event and the message being
queued, ready for transmission.

2) The queuing delay Rsi , corresponding to the longest time
that the message can remain in the CAN controller slot
or device driver queue, before commencing successful



transmission, i.e. it is the maximum time before the start
of transmission.

3) The transmission time Ci, corresponding to the longest
time that the message can take to be transmitted.

The queuing delay, Rsi , can be determined by solving the
following response-time equation [13]:

Rsi = max (Bi, Ci) +
∑

j∈hp(i)

⌈
Rsi + Jj + δ

Tj

⌉
Cj . (1)

Here the δ term is used to ensure that the message of interest
has actually started to be transmitted; for a real example it cor-
responds to the time it takes to transmit a single bit; hp(i) is
the set of messages with a higher priority than message τi and
max (Bi, Ci) corresponds to the longest possible time that τi
can be blocked by either a lower priority message or via push
through blocking due to a previous invocation from the same
message stream [13]. For ease of presentation we shall use
the symbol B̂i = max (Bi, Ci) in subsequent equations (and
where appropriate B̂i(LO) and B̂i(HI)). Equation (1), and
all subsequent response time equations, are solved by forming
a recurrence relation. The complete worst-case response-time
for the message is given by:

Ri = Rsi + Ji + Ci. (2)

In the example from Table I it is easy to confirm that no
message is schedulable at the lowest priority level if issues of
criticality are ignored. For example, τ5 at the lowest level has
a blocking value of 3 and an initial interference of 2+2+2+1.
Equation (1) iterates to give a solution of 16. Equation (3)
then gives R5 = 19 which is beyond the message’s deadline.

To incorporate retransmission due to faults requires an extra
component to be added to equation (2) [8]. Let Errmax be
the maximum length error, then to tolerate F faults:

Rsi = B̂i +
∑

j∈hp(i)

⌈
Rsi + Jj + δ

Tj

⌉
Cj

+ F ∗ {Errmax + max
k∈hep(i)

Ck}, (3)

where hep(i) is the set of messages with a higher or equal
priority than message τi.

As F will, in general, be a function of criticality, we define
F̂i(HI) = F (HI)∗{Errmax+maxk∈hep(i) Ck}; i.e F (HI)
faults, each causing extra transmission. Similarly, F̂i(LO) =
F (LO) ∗ {Errmax +maxk∈hep(i) Ck}.

V. A MIXED CRITICALITY PROTOCOL FOR CAN

In this section we develop a protocol for safely and ef-
fectively using CAN to communicate messages of different
criticality. This protocol, call MixedCAN, is implemented
in the Trusted Network Component (TNC). First we define
the necessary properties of the TNC (to monitor and control
access to CAN), then analysis is developed for the protocol.
In Section VI a simpler version of MixedCAN is defined.

Recall that the system has two criticality modes, HI and
LO (abbreviated to HI-crit and LO-crit). Each node has a

local view of the current criticality of the system. The system
(and all local views) are initialised to LO. Run-time behaviour
may cause a node to change its local view to HI; this is then
communicated to all other nodes. Eventually all nodes will
switch their local view to HI . The system will then stay in
that state.

A. Monitoring capabilities of the TNC

One key property of the TNC is that it will monitor
message send requests and determine if they are occurring too
frequently for the mode of operation. Here we formalise this
behaviour of the TNC. We do this by extending the sporadic
invariant defined by Broster and Burns [7].

In the dual-criticality model, to monitor the arrival pattern
of message stream τ , three parameters are required: J , T (HI)
and T (LO) (as we are only considering one message stream
at this time we omit the subscript). Consider the TNC for the
node that generates the messages of τ ; and let E1, E2, . . . Ek
be the times at which the TNC receives requests to transmit
messages from the τ stream. For each of these messages there
is a guide time, G1, G2, . . . Gk that bounds the arrival times;
i.e. for correct behaviour:

∀k : Ek ≥ Gk,

i.e. a message must not arrive too early.
There are two situations that determine the values for

the sporadic invariant (i.e. the constraint on the arrival of
messages):

1) If there has been a reasonable gap since the last message
then the next two consecutive messages can be as close
as ‘period - jitter’, T -J , (but no closer).

2) If messages are coming at the maximum rate then two
consecutive messages can be no closer than ‘period’, T .

So if the TNC receives a correctly timed request at time Ek−1
(i.e. Ek−1 ≥ Gk−1) then the next request must arrive no
sooner than time Gk[7], where

Gk = max{Gk−1 + T,Ek−1 + T − J}.

In the LO criticality mode, this implies:

Gk(LO) = max{Gk−1(LO), Ek−1 − J}+ T (LO). (4)

At run-time if Ek ≥ Gk(LO) then this message is valid in
the LO-crit mode and the system can continue to execute in
that mode. If however Ek < Gk(LO) then the message is not
valid in LO-crit mode and the system criticality level must be
changed to HI . It will remain at this level for the rest of the
system’s execution.

In addition to computing Gk(LO) a similar bound for HI
criticality behaviour can be defined:

Gk(HI) = max{Gk−1(HI), Ek−1 − J}+ T (HI) (5)

Note as T (HI) ≤ T (LO) then Gk(HI) ≤ Gk(LO).
If the HI criticality invariant is broken (i.e. Ek < Gk(HI))

then the system designer must choose between two valid (but
mutually exclusive strategies):



1) Allow the message to be sent as it is a high-criticality
message, and although deadlines may be missed this is
probably the most robust behaviour available, or

2) Assume a major problem with the node and not allow any
further messages to be transmitted (of any criticality); in
effect the node is assumed to be babbling and hence must
not be allowed to interfere with other messages on the
network.

If there is adequate redundancy in the system (i.e. all crucial
functionality is replicated) then strategy 2 is probably best. If
not, then the TNC should allow the message to be transmitted.
This is the scheme used below, and hence the Gk(HI) values
are not computed at run-time and the TNC does not need to
know the T (HI) parameters.

A refinement of the protocol, which is incorporated into
the functionality defined below, has to differentiate between
low-criticality messages arriving early (which are just ignored,
with perhaps an exception being raised) and high-criticality
messages arriving early which result in a criticality change.

B. Functional Behaviour of MixedCAN

The trusted software within the TNC consists of two rou-
tines. One (output) is called by the application code within
a node to pass a message (M) to the network. The second
routine (input) is called by the CAN controller hardware, as
an interrupt handler, to move a message from the network into
the buffer space of the application. To prevent concurrent calls
to output, and interleaved calls to output and input, we
require both routines to be executed at the same interrupt level
(and hence all calls are serialised). We note however that there
are other means of achieving this serialisation (e.g. by the use
of a dedicated thread).

To police the passing traffic, the TNC must be initialised
with information about the messages it will handle. We assume
that this is (safely) represented by the following data structures
that are defined over all the valid message streams.
T[M] ≡ period of message M in LO mode.
J[M] ≡ maximum jitter of message M.
S[M] ≡ maximum size of message M.

To define the functional behaviour of the output and
input routines some basic procedures and functions are
required:
Send(M) ≡ Commits M to the controller for output on CAN.
Flush(M) ≡ Removes any message with id M from CAN
output buffers.
Receive(M) ≡ Copies incoming message into memory for
application to read.
Clock ≡ returns the current time.
Valid(M) ≡ returns true if M is valid (described below).
Crit(M) ≡ returns the criticality of message M (HI or LO).
Trigger(M) ≡ returns true if M should cause a criticality
change from LO to HI; if M is a triggering message it must
also be of HI criticality and have a priority higher than any
LO criticality message.
Errors_High ≡ returns true if current error count is above

level for LO mode.
flushALL ≡ repeatedly calls Flush to remove all LO-crit
messages from output buffers.

Note Send and Flush are instructions to the CAN con-
troller, the application software on the node must be structured
or configured so that only the output and input routines
can call these procedures directly.

Some state variables are also required:
G[M] ≡ next arrival time bound for message M in LO mode,
initialised to some appropriate negative value (−∞).
Crit_Level ≡ local notion of current criticality level,
initialised to LO.
Go_HI ≡ predefined message used by TNC to communicate
to the rest of the system that a mode change from LO to
HI is required; there will be a distinct Go_HI message for
each node. The priorities of Go_HI messages will be higher
than any LO criticality message. Note Trigger(Go_HI) is
true for all such messages. A final point for the protocol: all
triggering messages must be delivered to all nodes.

With these definitions it is now possible to provide pseudo
code for the key routines1. We note that error counts are
checked as messages are input. First output:

output(M) is -- called by application code
t := clock
if not Valid(M) then return <invalid> end if
if Crit_Level = LO then
if Trigger(M) then

send(M)
Crit_Level := HI
flushALL

else if t < G[M] then -- too early for LO mode
if Crit(M) = HI then
send(Go_HI)
send(M)
Crit_Level := HI
flushALL

else
return <invalid, too early>

end if
else
G[M] := max(G[M], t - J[M]) + T[M]
send(M)

end if
else -- in HI mode

if Crit(M) = HI then send(M) end if
end if
return <success>

First each message is checked to make sure it is valid for that
node. This means that its size is not greater than S[M] and
that M is in the set of allowable output messages.

When the system is in HI mode, only HI-crit messages are
passed on to the controller. A move from LO mode to HI
will occur if a triggering message is received from the node
(including the Go_HI message), or when a request is made
too early for the LO mode by a high-crit message. Whilst in
the LO mode whenever a (valid) message arrives the earliest

1Presentation takes precedence over efficiency in this pseudo code; an
implementation could clearly improve on this code.



time for the next message is calculated (and held in G[M]).
During the system’s execution at most one change from LO

to HI can occur. If it does occur then flushALL is used to
instruct the controller to remove from its output buffers all
LO-crit messages not yet started transmission.

The code for a simple input routine is:

input(M) is -- called by interrupt handler
if Crit_Level = LO then
if Errors_High then

Crit_Level := HI
flushALL
send(Go_HI)

else if Trigger(M) then
Crit_Level := HI
flushALL
Flush(Go_HI)

end if
end if
if (Crit_Level = LO) or

(Crit_Level = HI and Crit(M) = HI) then
Receive(M)

end if

The first possibility Crit_Level = LO and
Errors_High implies that this node could be the
first to identify the conditions for a mode change. It therefore
sends the Go_HI message and flushes its own buffers. If
however the received message is a triggering message then
the mode change has already been initiated by another node,
and hence all local messages, including the mode change
Go_HI message if it has not yet been sent, are flushed.

When combining this protocol with the typical behaviour
of commercial CAN controllers then it is clear that between
receiving a Go_HI or triggering message and flushing the
output buffers of LO-crit messages a single unflushed high
priority message could be transmitted. This could be a LO-crit
message that has started to be communicated before it could
be flushed, or it could be a second Go_HI message. Either
way the analysis of the protocol must take this possibility into
account.

In addition, whenever the ‘error high’ check recognises that
a criticality change is required, a further low criticality, but
high priority message might be in transmission before the
Go_HI message can be queued. Again the analysis must take
this into account.

A polling input routine. The above protocol assumes that
an incoming message generates an interrupt if it has a client
on the node in question. This is a common behaviour for a
CAN controller, but it is possible to configure the controller to
just place the incoming message in a buffer. Here there is no
interrupt and the client software polls to check for incoming
messages. For the TNC this behaviour would introduce a
latency between a system mode change and the flushing of
low criticality messages. The latency would be bounded, but
its impact would need to be factored into the analysis.

M Crit T(HI) T(LO) D C Pri Rs(LO) R(LO)
τ1 HI ∞ - 5 2 1 - -
τ2 HI 12 24 12 2 4 7 9
τ3 LO - 11 11 2 3 4 6
τ4 LO - 6 6 1 2 3 4
τ5 HI 18 36 18 3 5 9 12

TABLE II
EXAMPLE MESSAGE SET - QUEUING TIMES

C. Analysis of MixedCAN

The analysis derived in this section is an adaptation of
that presented in [4] and has a number of similarities to
that applicable to systems subject to mode changes [18].
Fortunately the model here is simpler than the one needed
for general mode changes.

The form that the analysis takes has two phases:

1) Verifying the schedulability of the LO-crit mode,
2) Verifying the schedulability of the criticality change from

LO to HI .

We shall show that in most circumstances a system that is
schedulable during its criticality change will also be schedu-
lable in the stable HI-crit mode. However, the reverse is not
true, a system that is schedulable in the LO and HI modes
may not be schedulable during the transition [20]. For the LO
criticality mode, equations (3) and (2) can be adapted:

Rsi (LO) = B̂i(LO) + F̂i(LO)

+
∑

j∈hp(i)

⌈
Rsi (LO) + Jj + δ

Tj(LO)

⌉
Cj(LO) (6)

Ri(LO) = Rsi (LO) + Ji + Ci (7)

For illustration, consider the example given earlier (in Table
I). Message τ1 is the triggering message which is used to
communicate the mode change (there is no Go_HI message).
The LO-crit response times can be computed easily using this
analysis. Initially we will assume deadline monotonic priority
assignment – see Table II for the results of applying equations
(6) and (7). In this example release jitter (though not δ) is
assumed to be zero, there is no fault tolerance (i.e. F̂i(LO) =
0) and the B̂i term is equal to 3 for all messages. We note
that the LO criticality level is schedulable.

In [4] we showed that an adaptive model when task com-
putation times can change is not amenable to exact analysis.
This argument equally applies to the model used here where
message periods can change; we therefore restrict ourselves to
only sufficient analysis. Specifically we conservatively assume
that, given a critical instant at time 0:

• All HI-crit messages are assigned their HI-crit param-
eters from time 0.

• All LO-crit messages are assigned their LO-crit param-
eters from time 0, with no messages being transmitted
after the criticality change.

• The maximum sized message (from those defined by the
application) is used to communicate the mode change.



• The maximum sized LO-crit message (from those defined
by the application) is communicated after the F (LO)+1
fault occurs but before the Go_HI is queued (only occurs
if F (HI) > F (LO)).

• The maximum sized LO-crit message (from those defined
by the application) is communicated after the system has
changed mode.

This is represented by the following response-time equation
(which is straightforward extension of equation(6)):

Rsi (HI) = CFi + CMode
i + B̂i(LO)

+
∑

τj∈hpH(i)

⌈
Rsi (HI) + Jj + δ

Tj(HI)

⌉
Cj

+
∑

τk∈hpL(i)

⌈
Rsi (LO) + Ji
Tk(LO)

⌉
Ck + F̂i(HI), (8)

where hpH(i) is the set of HI-crit messages with priority
higher than that of message τi and hpL(i) denotes the LO-
crit messages with priority higher than that of message τi. Note
that the triggering messages are contained within hpH(i).

The δ term is not needed in the last term as Rsi (LO) + Ji
could not be a solution of equation (6) if Rsi (LO) + Ji + δ
would have induced further interference.

The term CFi is used to capture the cost of the extra
message that could be transmitted before Go_HI is queued
(if F (HI) > F (LO)):

CFi = max(Ck), (9)

where Ck is the longest message in hpL(i).
Similarly the term CMode

i is used to capture the extra cost
of the mode change itself. In the previous section it was
noted that this consists of the Go_HI message and one extra
(potentially low criticality) message that may be transmitted
after the triggering message or first Go_HI message. Note that
if there are only triggering messages (i.e no explicit Go_HI
message) then CGo HI = 0 is the following. That is:

CMode
i = CGo HI + max(CGo HI , Ck), (10)

Equation (8) ‘caps’ the interference from LO-crit messages
as the response-time during the change, Rsi (HI), must be
greater than Rsi (LO). Moreover the change must occur before
Rsi (LO) otherwise the message would have started transmis-
sion before the mode change.

The final response-time during the transition is given by

Ri(HI) = Rsi (HI) + Ji + Ci. (11)

Note that if equations (8) and (11) determine that message
τi is schedulable during the transition then it will also be
schedulable in the steady-state HI-crit mode unless there is
a much larger blocking term (Bi(HI)) in the HI-crit mode
(because of a long low priority message that is only transmitted
in the HI-crit mode) and this term is larger than the impact
of the LO-crit component of equation (8). This is a highly
unlikely circumstance, but would need to be checked.

If this analysis is applied to τ5 in the message set of Table
II then Rs5(LO) = 9 and∑

τk∈hpL(5)

⌈
9

Tk(LO)

⌉
Ck = 1 + 1 + 2 = 4.

Also
CMode

5 = 0 + max(0, 2) = 2,

Note all CF terms are zero in this example and there is no
explicit triggering message so CGo HI = 0. So Rs5(HI) is
initially 2 + 3 + 4 + 4 = 13, but τ2 interferes a second time,
so Rs5(HI) = 15 and R5(HI) = 15+3 = 18. Which is (just)
schedulable. However, if this analysis is applied to τ2 then
Rs2(LO) = 7 and ∑

τk∈hpL(2)

⌈
7

Tk(LO)

⌉
Ck = 4.

Also
CMode

2 = 0 + max(0, 2) = 2.

So Rs2(HI) = 2+3+2+4 = 11 and R2(HI) = 11+2 = 13
which is greater than the message’s deadline. However, this
does not mean the message set is unschedulable for all priority
orderings. We next consider optimal priority assignment.

D. Optimal Priority Assignment

An important observation contained in Vestal’s paper [21]
is that Deadline Monotonic Priority ordering is not optimal for
mixed criticality systems, but that Audsley’s optimal priority
assignment algorithm is. To apply Audsley’s algorithm to
the MixedCAN model requires it to satisfy a set of pre-
requisites [10], [12].
• The schedulability of a message may be a function of

the set of higher priority messages, but not their specific
priorities.

• The schedulability of a message may depend on the
set of lower priority messages, but not on their specific
priorities.

• A schedulable message that has its priority raised cannot
become unschedulable, and conversely an unschedulable
message that has its priority lowered cannot become
schedulable.

An examination of the scheduling equations (6) and (8)
shows that these properties are indeed fulfilled. We shall use
the algorithm to assign priorities to our running example,
that we have already shown is not schedulable by Deadline
Monotonic priority assignment.

As indicated above, τ5 is schedulable at the lowest level. For
the next priority level (4) τ3 is actually schedulable (see Tables
III and IV for details) and τ4 is schedulable at priority 3. With
τ2 at level 2 it is now schedulable. It now has no messages of
higher priority but LO criticality, so Rs2(HI) = 2+3+2 = 7
and R2(HI) = 7 + 2 = 9 which is within the message’s
deadline. We also note that the triggering message, that is
only transmitted once and is given the highest priority of all
is schedulable.



M Crit T(HI) T(LO) D C Pri Rs(LO) R(LO)
τ2 HI 12 24 12 2 2 3 5
τ3 LO - 11 11 2 4 7 9
τ4 LO - 6 6 1 3 5 6
τ5 HI 18 36 18 3 5 9 12

TABLE III
EXAMPLE MESSAGE SET – NEW PRIORITIES, LO-MODE

M Crit T(HI) T(LO) D C Pri Rs(HI) R(HI)
τ1 HI ∞ - 5 2 1 3 5
τ2 HI 12 24 12 2 2 7 9
τ5 HI 18 36 18 3 5 15 18

TABLE IV
EXAMPLE MESSAGE SET – NEW PRIORITIES, HI-MODE

VI. A BASIC MIXED CRITICALITY PROTOCOL FOR CAN

With the full MixedCAN protocol, as defined in the previous
section, there is a performance trade-off between sending
(extra) specific messages to induce a criticality mode change
and preventing LO-crit messages being sent after the change.
If for a particular application the analysis does not allow many
LO-crit messages to be discounted then it may not be useful
to broadcast the mode change to other nodes. Rather a basic
form of the protocol can be defined in which the TNC’s only
role is to prevent LO-crit messages from been sent too early;
and the analysis is used to determine that:

1) All LO-crit messages meet their deadlines if all messages
have their LO-crit values (i.e. the system is in LO-crit
mode). This is determined by the use of equations (6)
and (7).

2) All HI-crit messages meet their deadlines when their
HI-crit parameters are used (i.e. the system is in HI-crit
mode) and LO-crit messages continue to be transmitted
with their LO-crit parameters. This is determined by the
use of equation (12) derived below and equation (11).

The response-time equation for Rsi (HI) with this more basic
protocol is derived from equation (8) by dropping the mode
change messages but prolonging the the time that LO-crit
messages can interfere.

Rsi (HI) = B̂i(LO) +
∑

τj∈hpH(i)

⌈
Rsi (HI) + Jj + δ

Tj(HI)

⌉
Cj

+
∑

τk∈hpL(i)

⌈
Rsi (HI) + Jj + δ

Tk(LO)

⌉
Ck + F̂i(HI), (12)

We term this new protocol Basic MixedCAN (BMC). It is
straightforward to show that Audsley’s algorithm for optimal
priority assignment is needed and is applicable.

VII. EVALUATION

In this section, we present the results of an empirical
evaluation, which examines the effectiveness of the BMC
analysis and the MixedCAN protocol and its analysis. In our
experiments, we compare the following schemes:
• PartitionCAN – Assigns HI-crit messages higher prior-

ities than LO-crit messages. (Uses Deadline Monotonic
Priority Ordering (DMPO) within the subsets containing
LO- and HI-crit messages).

• StandardCAN – Assumes the worst-case parameters for
all messages, ignoring criticality. Uses DMPO.

• BMC - Determines the schedulability of LO-crit mes-
sages in LO-crit mode, and that of HI-crit messages in
both HI- and LO-crit modes. Uses Audsley’s algorithm
for priority assignment.

• MixedCAN – Uses the protocol and analysis developed
in this paper. Uses Audsley’s algorithm for priority as-
signment.

• UB-H&L-CAN - A necessary test providing an upper
bound on schedulability. Only checks that LO-crit mes-
sages are schedulable in LO-crit mode, and that HI-
crit messages are schedulable in HI-crit mode. Assumes
DMPO.

We note DMPO is optimal for PartitionCAN, StandardCAN
and UB-H&L-CAN for the parameters used in the evaluations
(i.e. all transmission time are identical as are the blocking
times, jitter is zero and the sufficient test (1) is used).

The effectiveness of the schemes is measured in two ways,
(i) via the success ratio; the percentage of message sets that
are deemed schedulable at each utilisation level, and (ii) via a
weighted schedulability measure [6]. Our use of this weighted
measure follows the approach we used elsewhere [4].

We note that all four approaches to using CAN for messages
of different criticality need a TNC. Here we are simply
comparing their ability to schedule message sets, and hence
examining under what conditions it is worth deploying Mixed-
CAN with its more complex protocol.

We noted earlier that with MixedCAN a switch to the HI-
crit mode can be due to a number of reasons (explicit request
from the host node, error counts too high and messages being
queued too quickly etc.). Also there could be messages that
are only transmitted in the HI-crit mode. To simplify the
comparison we focus on differing fault tolerance and message
periods in the two modes. We set F (LO) to be zero, and
consider values of F (HI) from 3 to 30. We also allow the
periods of messages in the HI-crit mode to be as little as one
fifth of their values in the LO-crit mode.

A. Message set parameter generation

The message set parameters used in our experiments were
generated as follows:
• Message sets were created containing 20 to 120 messages

(default n=80).
• LO criticality message periods were generated according

to a log-uniform distribution with a factor of 100 dif-
ference between the minimum and maximum possible
message period. This represents a spread of message
periods from 10ms to 1 second, as found in many
automotive applications.

• HI criticality message periods were derived from their
LO-crit values using a fixed divisor of the LO-crit period,
Ti(HI) = Ti(LO)/CF (e.g. CF = 2.0).

• Message deadlines were set equal to T (LO) for LO-crit
messages and T (HI) for HI-crit messages.

• The transmission time of each message corresponded to
an 8 data byte message with maximum bit stuffing (i.e.



 

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Sc
he

du
la

bl
e 

M
es

sa
ge

 S
et

s

Utilisation

UB-H&L-CAN

MixedCAN

BMC

StandardCAN

PartitionedCAN

Fig. 1. Success Ratios for Varying Message Periods

135 bits).
• The blocking factor for all messages was set to the largest

possible value, i.e. assuming the presence of maximum
length soft real-time messages at a lower priority.

• The probability that each generated message was a HI-
crit message was given by the parameter CP (e.g. CP =
0.5).

• The CAN bus speed was adjusted to give the required
total utilisation for each message set, with utilisation
measured only in the LO-crit mode.

• The number of faults that must be tolerated by each
message was set to zero in LO-crit mode and to a value
F (HI) for HI-crit mode (e.g. F (HI) = 15).

• Additional GoHI messages were included in the analysis
for MixedCAN.

B. Varying message periods and deadlines

In our first set of experiments, we assumed a fault-free CAN
bus, with HI-crit messages having reduced periods in the HI-
crit mode.

Figure 1 plots the success ratio for each scheme against
message set utilisation, for message sets of cardinality n = 80,
with each message having a 50% probability of being a HI
criticality message (CP = 0.5), and a period in HI-crit mode
that was half that in LO-crit mode (CF = 2.0).

The results show that message set schedulability is signifi-
cantly improved using the MixedCAN scheme over BMC and
the StandardCAN approach. All of these approaches signif-
icantly out-performed Partitioned-CAN, which has relatively
poor performance due to priority inversion.

Figure 2 shows the weighted schedulability measure for
message sets (with CP = 0.5, CF = 2.0) plotted against
message set cardinality (size). The interesting aspect of these
results is the behaviour of MixedCAN. For small sets of
messages (e.g. n = 10), the performance of MixedCAN is

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10 20 30 40 50 60 70 80 90 100 110 120

W
ei

gh
te

d 
sc

he
du

la
bi

lit
y

Cardinality

UB-H&L-CAN MixedCAN

BMC StandardCAN

PartitionedCAN

Fig. 2. Weighted Schedulability for Varying Message Periods

relatively poor. This is because with only 10 messages, the
bus speed has to be reduced to a low value to obtain high bus
utilisation, and at these low bus speeds the extra overheads of
the MixedCAN protocol impinge heavily on message schedu-
lability. This is not the case for larger, more realistic examples
with 50+ messages where MixedCAN performs well.

C. Varying numbers of faults

In our second set of experiments, we considered sets of
messages where the periods of HI-crit messages were the
same in both modes; however, we now considered different
levels of fault tolerance in the two modes. HI-crit messages
had to be schedulable in HI-crit mode, tolerating F (HI)
faults, and all messages had to be schedulable in LO-crit mode
with no faults. Each fault on the bus was assumed to affect
the longest possible message (135 bits) and cause an error
overhead of an additional 31 bits.

Figure 3 plots the success ratio for each scheme against
message set utilisation, for message sets of cardinality n = 80,
with each message having a 50% probability of being a HI
criticality message (CP = 0.5), and a fault tolerance of
F (HI) = 15. Here, we observe that the BMC scheme outper-
forms MixedCAN. This is because with a large fault tolerance,
the priority of HI-crit messages need to be significantly higher
than that of LO-crit messages with similar deadlines. Thus
there are few high priority but LO-crit messages and so the
overheads of the MixedCAN scheme out-weight the gains
made in stopping higher priority LO-crit messages from being
sent when the system enters HI-crit mode.

Figure 4 shows the weighted schedulability measure for
message sets (with n=80, CP = 0.5, CF = 1.0) plotted
against the fault tolerance in HI-crit mode. Here, we observe
that MixedCAN shows a very small performance gain over
BMC for fault tolerance levels of 6-9 errors, which then
reverses for larger numbers of errors for the reasons described
above. As the required fault tolerance level increases, all
schemes tend towards the performance of Partitioned-CAN.
This is because, in these circumstances, HI-crit messages have



 

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Sc
he

du
la

bl
e 

M
es

sa
ge

 S
et

s

Utilisation

UB-H&L-CAN

MixedCAN

BMC

StandardCAN

PartitionedCAN

Fig. 3. Success Ratios for Varying Faults

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3 6 9 12 15 18 21 24 27 30

W
ei

gh
te

d 
Sc

he
du

la
bi

lit
y

Number of faults permitted in HI criticality mode

UB-H&L-CAN
MixedCAN
BMC
StandardCAN
PartitionedCAN

Fig. 4. Weighted Schedulability for Varying Faults

to be given the highest priorities in order to be schedulable
at all. We note that the performance of Partitioned-CAN is
essentially flat as it is constrained by the schedulability of the
LO-crit messages.

VIII. CONCLUSIONS

Industrial pressure from the automotive sector will require
CAN to be used to support mixed criticality systems. In this
paper we have investigated what form this support should
take. A trusted network controller (TNC) is an imperative.
It will prevent lower criticality messages from misusing the
network. The use of a TNC is then augmented by a protocol
(MixedCAN) that exploits the different characteristics of the
different criticality levels to deliver high utilisation of the
network. MixedCAN and a more basic form of the protocol
(BMC) are evaluated and shown to perform much better
than partitioning message priorities or ignoring criticality.

The evaluations show when the full protocol is particularly
effective, and when the simpler form outperforms it. As part
of future work tighter, though inevitably not exact, analysis
will be sort for the MixedCAN model.

Acknowledgements The research described in this paper is
funded, in part, by the ESPRC grant, MCC (EP/K011626/1).

REFERENCES

[1] N. Audsley. On priority assignment in fixed priority scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings.
Applying new scheduling theory to static priority preemptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie. Scheduling real-time mixed-criticality jobs.
IEEE Transactions on Computers, 61(8):1140–1152, 2012.

[4] S. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed
criticality systems. In IEEE Real-Time Systems Symposium (RTSS),
pages 34–43, 2011.

[5] S. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with
multiple criticality specifications. In ECRTS, pages 147–155, 2008.

[6] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemption
and migration delays: Empirical approximation and impact on schedu-
lability. In Proc. of Sixth International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications, pages 33–44, 2010.

[7] I. Broster and A. Burns. An analysable bus-guardian for event-triggered
communication. In Proc. of the 24th Real-time Systems Symposium,
pages 410–419, Cancun, Mexico, Dec 2003. Computer Society, IEEE.

[8] I. Broster, A. Burns, and G. Rodrı́guez-Navas. Probabilistic analysis of
CAN with faults. In Proc. of the 23rd Real-time Systems Symposium,
Austin, Texas, Dec 2002. IEEE.

[9] A. Burns and S. Baruah. Timing faults and mixed criticality systems. In
Jones and Lloyd, editors, Dependable and Historic Computing, volume
LNCS 6875, pages 147–166. Springer, 2011.

[10] R. Davis and A. Burns. Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. In Proc. of
IEEE Real-Time Systems Symposium (RTSS), pages 398–409, 2009.

[11] R. Davis and A. Burns. Robust priority assignment for messages on
controller area network (CAN). Real-Time Systems, 41(2):152–180,
2009.

[12] R. Davis and A. Burns. Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems.
Real-Time Systems Journal, 48:1–40, 2010.

[13] R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised. Journal
of Real-Time Systems, 35(3):239–272, 2007.

[14] R. Davis, S. Kollmann, V. Pollex, and F. Slomka. Schedulability analysis
for controller area network (CAN) with FIFO queues priority queues and
gateways. Real-Time Systems, 49:73–116, 2013.

[15] R. B. GmbH. CAN specification version 2.0. Technical report, Postfach
30 02 40, D-70442 Stuttgart, 1991.

[16] B. Huber, C. El Salloum, and R. Obermaisser. A resource management
framework for mixed-criticality embedded systems. In 34th IEEE
IECON, pages 2425–2431, 2008.

[17] J. Laprie. Dependable computing and fault tolerance: Concepts and
terminology. In Digest of Papers, The Fifteenth Annual International
Symposium on Fault-Tolerant Computing, pages 2–11, Michigan, USA,
1985.

[18] P. Pedro and A. Burns. Schedulability analysis for mode changes in
flexible real-time systems. In 10th Euromicro Workshop on Real-Time
Systems, pages 172–179. IEEE Computer Society, 1998.

[19] J. Ruffino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues. Fault-
tolerant broadcast in CAN. In Proc. of the 28th FTCS, Munich. IEEE
Computer Society Press, 1998.

[20] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority
preemptive scheduled systems. In Proc. Real Time Systems Symposium,
pages 100–109, Phoenix, Arizona, 1992.

[21] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the IEEE
Real-Time Systems Symposium (RTSS), pages 239–243, 2007.


