A new Notion of Useful Cache Block to Improve the Bounds of

Cache-Related Preemption Delay

*

Sebastian Altmeyer, Claire Burguiere
Compiler Design Lab
Saarland University
66041 Saarbriicken, Germany
{altmeyer,burguiere} @Qcs.uni-saarland.de

Abstract

In preemptive real-time systems, scheduling analyses are
based on the worst-case response time of tasks. This re-
sponse time includes worst-case execution time (WCET)
and context switch costs. In case of preemption, cache
memories may suffer interferences between memory accesses
of the preempted and of the preempting task. These inter-
ferences lead to some additional reloads that are referred
to as cache-related preemption delay (CRPD). This CRPD
constitutes a large part of the context switch costs. In this
article, we focus on the computation of upper bounds on
the CRPD using the concept of useful cache blocks (UCB).
These are memory blocks that may be in cache before a
program point and may be reused after it. When a preemp-
tion occurs at that point the number of additional cache-
misses is bounded by the number of useful cache blocks.
We tighten the CRPD bound by using a modified notion of
UCB: Only cache blocks that are definitely cached are con-
sidered useful by our approach. As we show in this paper,
the computed CRPD based on our notion, when used in
combination with the bound on the WCE'T, delivers a safe
bound on the execution time in case of preemption. Fur-
thermore the modified definition simplifies the UCB com-
putation for set-associative LRU and data caches. Experi-
mental results show that our approach provides up to 90%
tighter CRPD bounds.

1 Introduction

Hard real-time systems impose strict timing constraints. To
prove that these constraints are met, timing analyses aim to
derive safe upper bounds on a task’s execution time. Being
already a difficult problem in case of non-preemptive exe-

*This work was supported by ICT project PREDATOR in the
European Community’s Seventh Framework Programme under grant
agreement no. 216008, by Transregional Collaborative Research Cen-
ter AVACS of the German Research Council (DFG) and by ARTIST
DESIGN NoE.

109

cution, it is even more challenging for preemptively sched-
uled tasks. Most approaches, to solve this, use separate
computations of a task’s execution time and the context
switch costs. In [8], Lee et al. present a method to bound
the context switch costs using the concept of useful cache
blocks (UCB). This concept has been extended by several
research groups (e.g. [13, 17]). A useful cache block at pro-
gram point P is a memory block that may be in cache at
P and may be subsequently reused. When such a memory
block is evicted due to preemption, additional cache-misses
may occur. The additional reloads due to these misses con-
tribute to the context switch costs (CSC) and are referred
to as cache-related preemption delay (CRPD). Finally, to
estimate a task’s response time, the corresponding schedu-
lability analysis adds these costs to the bound of the exe-
cution time as often as preemption may occur.

An over-approximation of the cache-content (memory
block may be in cache) is used by former UCB analyses
to derive a safe upper bound on the context switch costs.
Timing analysis, however, also uses an over-approximation
of the cache-content to predict the number of cache-
misses (and an under-approximation to predict the num-
ber of cache-hits). During schedulability analysis, thus,
some cache-misses may be counted twice. So, treating
timing analysis and CSC analysis separately, the over-
approximation on both sides accumulates and introduces
a high degree of pessimism. Figure 1 illustrates an exam-
ple showing the over-approximation of the execution time
(a), the context switch costs (b) and the combined over-
approximation (c).

In our approach, we stick to the concept of useful cache
blocks, but provide a more precise estimation: A memory
block is only considered useful, if it must be in cache. We
refer to such a UCB as a definitely-cached UCB (DC-UCB)
As seen before, timing analysis and prior UCB definition
count some potential cache reloads twice. So, we com-
pute an approximation of the context switch costs! regard-

1The CSC are given by the CRPD plus a constant overhead. This
overhead is due to pipeline flush/reload costs and depends on the

Worst-Case CSC
Upper Bound

—t---

—
Over-approximation

(b) Preemption Cost

Worst-Case Execution Time
Jpper Bound

—
Over-approximation

(a) Task Execution

Worst-Case Fxecution Time
Worst-Case CSC

P —
Accumulated Over-approximation

(c) Task Execution with one Preemption

Figure 1: Over-approximation of WCET and context switch
cost.

ing the corresponding timing analysis and using an under-
approximation of the cache as shown in Figure 2. The
computed context switch costs may be in fact an under-
approximation of the real costs (b). However, they are
safe if combined with the derived execution-time bound (a):
The over-approximation of the execution time subsumes the
under-approximation of the context switch cost computa-
tion (c).

Lower Bound
Worst-case CSC

—)
Under-approximation

(b) Preemption Cost

Worst-Case Execution Time
Upper Bound

—
Over-approximation

(a) Task Execution

Worst-Case Execution Time
Lower Bound CSC
/ Worstocase CSC
L
=

—
Reduced Over-approximation

(c) Task Execution with one Preemption

Figure 2: Over-approximation of WCET, under-
approximation of the context switch cost, safe over-
approximation of overall task execution time under
preemption

Thus, our approach strongly improves the bound on the
cache-related preemption delay. Furthermore, a DC-UCB
analysis for the LRU replacement policy as well as for data
caches (which caused complications to prior work) comes
for free; cache analysis for these caches already exist and
can be used by our analysis.

The paper is structured as follows. The next section
provides basic concepts of caches and timing analysis. In
Section 3, we introduce an adapted notion of useful cache
block (definitely-cached UCB), prove the soundness of our
approach and present the corresponding program analysis.
Section 4 presents related work and the evaluation of our
approach is given in Section 5. Finally, Section 6 concludes
the paper.

target architecture. Its computation is out of scope of this paper.

110

2 Timing Analysis

This section introduces basic concepts and notations of
caches and timing analysis. Both are needed as background
information for main Section 3.

2.1 Caches

Caches are fast and small memories storing frequently used
memory blocks to close the increasing performance gap be-
tween processor and main memory. They can be imple-
mented as data, instruction or unified caches. Caches are
divided into cache-lines. A cache-line is the basic unit to
store memory blocks, i.e., blocks of line-size | contiguous
bytes of memory. The set of all memory blocks is denoted
by M. The cache-size s is, thus, given by the number of
cache-lines ¢ times line-size {. A set of n cache-lines forms
one cache-set, where n is the associativity of the cache and
determines the number of cache-lines a specific memory
block may reside in. The number of sets is given by ¢/n
and the cache-set memory block b maps to by: b mod(c/n).
Special cases are direct-mapped caches (n = 1) and fully-
associative caches (n = ¢). In the first case, each cache-line
forms exactly one cache-set and there is exactly one position
for each memory block. In the second case, all cache-lines
together form one cache-set and all memory blocks compete
for all positions. If the associativity is higher than one, a
replacement policy has to decide in which cache-line of the
cache-set a memory block is stored, and, in case all cache-
lines are occupied, which memory block to evict. In this
paper, we concentrate on direct-mapped caches and on the
LRU replacement policy.

2.2 Timing Analysis

Several static timing analyses exist to bound the worst-case
execution time of tasks (see [4] for an overview). These
tasks under examination are represented as control flow
graphs (CFG). Nodes of a CFG are basic blocks; maximal
sequences of instructions with exactly one entry and one
exit point. If one instruction of a basic block is executed,
so are all others. The edges of a control flow graph represent
the possible control flow.

Within a typical timing analysis, a value-analysis first
derives effective addresses of memory accesses as well as
values for registers and memory cells. So, it supports the
loop-analysis deriving bounds on the maximal number of
loop-iterations. In the next step, an upper bound on the ex-
ecution time of each basic block is derived using a low-level
analysis simulating the target processor’s behavior. A part
of this low-level analysis is the cache-analysis, which aims
to classify memory accesses — for which the value analysis
derived the effective addresses — into cache-hits and cache-
misses. Note that we describe a cache-analysis as used in

our approach in the next subsection.

In the last step, the above information is combined to
find the path within the control flow graph with the highest
execution time bound.

An important issue, which we have to mention here, is
the treatment of unclassified memory accesses. Depend-
ing on the target architecture, it may be reasonable to as-
sume that a cache-miss always leads to a higher execution
time than a cache-hit. Therefore, all memory accesses that
could not be classified as cache-hit are treated as cache-
miss. As Lundqvist et al. [10] have shown, this, however, is
not true in general for modern architectures. So-called tim-
ing anomalies, mainly induced by processor features with
long term effects, such as buffers or prefetch queues, may
cause a locally faster execution, i.e., a cache-hit (instead of
a cache-miss) to lead to a globally higher execution time.
A separate computation of the timing bound and the con-
text switch costs, thus, always implies a target processor
without timing anomalies.

Throughout this paper, we will use the following nota-
tion: A control flow graph is given by CFG = (V, E, s, e
where V' = {By,... By} denotes the set of basic blocks B
of a program and £ C V x V the corresponding set of
edges connecting them. The start node is denoted by
and the end node by e. Furthermore, we denote instruc-
tion j of basic block ¢ with B}. We use the partial function
Accessp (BZ) to denote the memory block of a possible data
access during execution of instruction Bf . In case no data
memory is accessed, Accessp(BY7) is not defined. Further-
more, we use Accessr(B]) as the address of the instruction.
Note that we omit the index D, in case no distinctions
need to be made or when it is determined by the context.

2.3 Cache Analysis

As a part of a timing analysis, a cache analysis aims to
statically predict the cache behavior during the execution
of a task. For this reason, the analysis classifies mem-
ory accesses as cache-hits or cache-misses. Due to input-
dependent cache behavior and an unknown initial cache
state, this classification is not complete, i.e., not all memory
accesses can be classified. To circumvent this problem, the
concept of may and must information has been introduced
to bound the cache contents from above and below. The
may-cache contains all memory blocks that may be cached
at a given program point, i.e., where the analysis is unable
to prove that the memory block is not cached. Vice versa,
the must-cache at a program point contains all memory
blocks the analysis can prove to be cached.

Several different cache-analyses have been proposed [3, 6,
9, 12, 23, 18], either for direct-mapped or n-way associative
LRU caches, and for instruction- or data-caches. Our ap-
proach is generic in the chosen cache analysis. All we need

111

is the result of a preceding cache analysis, i.e., a safe clas-
sification of memory accesses. In the following, we assume
that for each instruction Bg , a set

Must_Cache(B}) € M

is given that contains all memory blocks that are cached
before execution of B;. The cache-analysis delivering this
classification must be the same as used by the overall timing
analysis in order to ensure soundness of the approach.

In its simplest form, a must-cache analysis for direct-
mapped caches is implemented as a program analysis keep-
ing an abstract cache state at each program point. Such an
abstract cache state contains for each cache-set s either a
memory block or the symbol T indicating that the content
of s could not be predicted. Encountering an access to a
memory block m, the analysis stores m at the correspond-
ing position in the abstract state (while replacing the prior
content; see Figure 3 (a)). Two abstract cache states are
combined by keeping equal contents within both states and
replacing conflicting contents by T (Figure 3 (b)). In our
approach, the must-cache must be given as a set. This set
can be simply derived by collecting all elements contained
in the abstract cache-sets. For data caches, the value analy-

|

won | T wred @b
(a,b.c,T)

0x0f
(a7f‘rc‘r—|—)

0x0b
(a,b,c,T)

J (a, T,c, T)

(a) ()

Figure 3: Must-cache analysis: (a) straight-line code and
(b) control flow merge

sis statically derives effective addresses of memory accesses
(the memory block of an instruction is given by its address).
If the value analysis, however, fails for some accesses, the
precision of the cache-analysis suffers. Even if the analysis
is able to give a range for an access, for instance an access
to an array component, the must-cache analysis can often
not predict which block is cached.

3 Cache-Related Preemption De-
lay

Static computation of upper bounds on cache-related pre-
emption delay (CRPD) in most cases relies on the analysis

of useful cache blocks (UCB). The basic concept behind use-
ful cache blocks is the determination of cache-blocks that
may cause additional cache-reloads due to preemption. Lee
et al. [8] identified two properties a memory block must have
to be considered a useful cache block at program point P; a)
it may be in cache at P and b) it may be reused on at least
one control flow path starting at P. If the task is preempted
at this point, the number of additional cache-misses due to
preemption, thus, is bounded by the number of useful cache
blocks. By selecting the program point with the maximal
number of UCBs, an upper bound on the overall CRPD
for one preemption of the task is given by this maximal
number. Several research groups extended this concept, all
relying on the same definition of useful cache blocks (see
Section 4).

In contrast to these approaches, we introduce the notion
of definitely-cached UCB as follows:

Definition (Definitely-cached UCB)
A definitely-cached UCB (DC-UCB) is a memory block
which:

a) may be reused on at least one control flow path start-
ing at P,

b) must be cached at P and along the path to its reuse.

Prior analyses on cache-related preemption delay define a
cache block to be useful at program point P if it b) may
be cached at P. We replace may by must and reduce the
set substantially. Furthermore, we require it to be cached
along the path to its reuse. If it is not in cache all along
this path, it may have been removed on it and, thus, does
not lead to an additional cache-miss due to preemption. We
can use a cache-analysis — as presented before — to check for
condition b). So, we can also establish a DC-UCB analysis
for data caches.

In the following, we show that this definition leads to
a safe but reduced over-approximation of the additional
CRPD. Afterwards, we present the analysis of DC-UCBs
following our definition and discuss further extensions.

3.1 Soundness

The combination of over-approximation in the timing anal-
ysis and in the conventional notion of useful cache blocks
counts some potential cache reloads twice. The adapted def-
inition excludes these reloads: So, they are only counted as
part of the execution time bound. The context switch costs,
thus, may be an under-approximation of the real costs but
are a sound over-approximation when combined with the re-
sults of the timing analysis. This can be seen by comparing

112

(i) the overall number of cache-misses that might occur dur-
ing task execution with (ii) the number of cache-misses the
analyses (timing analysis and DC-UCB analysis) take into
account. If our approach accounts for at least the number
of actual cache-misses, i.e., the number of cache-misses that
occur during the execution of the task, it can be considered
to derive a safe over-approximation.?

Accesses accounted as cache-misses (M6 U P)

Figure 4: Set of memory accesses A, set of cache-hits H,
set of cache-hits approximated by must-cache H,,, 4, set of
cache-misses due to preemption P and set of cache-misses
P’ derived by our analysis. The dotted part in the sec-
ond graph denotes all accesses taken into account as cache-
misses by our approach.

Consider the set A of memory accesses that occur during
the non-preemptive execution of a task. These accesses are
either cache-hits H or cache-misses M. By construction, the
must-cache analysis classifies a subset of these accesses as
cache-hits H,,,s¢ € H. All other accesses are taken into
account as cache-misses Myse = A\ Hipase:

HUM=A = Hmust UMmust

The set of additional cache-misses due to preemption is de-
noted by P C H. By definition the set P’ obtained by our
analysis is an over-approximation of IP restricted to elements
of the set H,,ys¢:

]P), 2 PN Hmust

By removing this set P’ from the set of cache-hits classified
by the must cache, we get:

H st \]P/ C Hypust \ (P N Hmust) = st \ P

Since Hpyst € H, the set of cache-hits classified by our
method is a subset of the actual set of cache-hits, we get:

Hmust \ P/ g H \]P

2Remember that using UCBs to compute context-switch costs is
restricted to processors not exhibiting timing anomalies.

This shows that our approach under-approximates the set
of cache-hits under preemption: The number (i) of actual
cache-misses, given by (M UP), is a subset of the num-
ber (ii) of cache-misses taken into account by our analysis,
given by (M,.s¢ UP"). By this, we have shown that our
approach safely bounds the cache-related preemption delay
when combined with an upper bound on the WCET. Fig-
ure 4 illustrates the different sets and their relation to each
other.

3.2 Program Analysis

To determine the set of definitely-cached UCBs, we use a
backward program analysis on the control flow graph. A
memory block m is added to the set of DC-UCBs of in-
struction BY, if m is element of the must-cache at B] and
if instruction Bij accesses m. The domain of our analysis is
the powerset domain on the set of memory blocks M:

D =2M

The following two equations determine the flow information
before (DC-UCB;,,) and after (DC-UCB,,;) instruction BY:

DC-UCB;,(BY) = gen(BJ) U (DC-UCBout(BY) \ kill(B])) (1)

U ()

successo’r‘Bi

DC-UCBou(B!) = DC-UCB;p (BL)

where the gen/kill sets are defined as follows:

gen(BY) = {Access(Bf)} if Acce.ss(Bg) € Must_Cache(B])
’ 0 otherwise

3)

Kill(BY) = M \ Must_Cache(B?) (4)

The direction of the analysis is backward. Equation (2)
combines the flow information of all successors of instruc-
tion BJ. Equation (1) represents the update of the flow
information due to the execution of the instruction. First,
all memory blocks not contained in the must-cache at B/
are removed [rom the set of DC-UCBs (4) — only a memory
block that is element of the must-cache all along the way to
its reuse is considered useful by our definition. Then, the
accessed memory block of instruction By is added in case it
is contained in the must-cache at the instruction (3).

Using these equations, the set of UCBs can be computed
via fix-point iteration (see [2]). The initial values at in-
struction B are defined by DC-UCB;,(B?!) = gen(B})
and DC-UCBy(B]) = 0. Note that Equation (1) fits the
kill/gen scheme to ensure that the fix-point iteration will de-
rive the smallest solution to the set of equations. In terms of
program-analyses, minimal fiz-point solution (MFP) equals
the merge-over all paths solution (MOP). However, we can
also simplify Equation (1) as follows:

DC-UCB;p(BY)

A) . 5
gen(B]) U (DC-UCB,yt(B]) N Must_Cache(BY)) ®)

113

I | Must-Cache DC-UCBs
B% (-7 == -) (-7 == -)
B21 (a‘a == -) (a7 == -)
B% (a7b7) -) (a7-7 - -)
B% ((l, b7 C, -) (a7 -G -)
Bl'| (a,b,c,d) (a,_c,.)
B51 (av -G -) (av == -)

Figure 5: Example Control flow graph and corresponding
content of the must-cache.

Consider the control flow graph given in Figure 5. The
letters within basic blocks denote the memory blocks ac-
cessed by the instructions. The table shows the content of
the must-cache assuming a direct-mapped data cache of size
4 and the obtained DC-UCBs. Table 1 lists the equations
our analysis uses and Table 2 the steps and the resulting
sets of the fix-point iteration. Note that we use the sim-
plified Equation (5). Memory block a is cached before and
reused at instruction B}. So a is a DC-UCB before B} and
contained in the initial state of DC-UCB;,(BL) (Table 2,
¢ = 0). The same holds for memory block ¢ and instruc-
tion B}. In the next step of the computation (i = 1), a
is furthermore considered a DC-UCB at Bi’s predecessors
B2 and B3, and c at B}’s predecessor Bi. The equations
provided in Table 1 are iteratively applied until a fix-point
on the set of DC-UCBs is reached.

Note that prior UCB analyses employ two program anal-
yses, one to check for condition a) memory block may be
cached at position P, the other for condition b) memory
block may be reused. If we adhere to this structure, we
can see the cache analysis as presented in the Section 2.3 as
one program analysis (a) — the analysis which we presented
above as the other one (b).

3.3 LRU Caches

Although the DC-UCB analysis was introduced using an
example for a direct-mapped cache, the analysis is valid in
the same manner for set-associative or fully-associative LRU

B DC-UCB;, (B/)

B DC-UCB,y (BH N0

Bl DC-UCByy(B3) N {a}

B? DC-UCByut(B2) N {a,b}

B} DC-UCB,t (B3) N {a,b,c}

B} | {c} U(DC-UCB,w:(B}) N {a,b,c,d})
Bi {a} U (DC-UCB,,;(B}) N {a,c})
B} DC-UCB e (B7)

B DC-UCBy, (B)

B} DC-UCB;, (B3)

B2 | DC-UCB;,(B3) UDC-UCB;, (B2)
B} | DC-UCB;,(B}) UDC-UCB,,(B2)
B} DC-UCB;, (B))

B} 0

Table 1: Equations of DC-UCB analysis

DC-UCB;,
i| B} BY B} B B! Bl
o {r { O {} {ct {a}
gy 0 et H{a,ed {c} A{a}
21 {3 Aa} Aa} Ao {c} A{a}
314 e} e} A{acd {a,c} {a}
DC-UCB,

Bl Bl B BY Bl B!
o {y {4 U {} {+ U
g 8 et e 0 {0
21 {3 Aa} fact {ac} {c} {}
31 {at {a} A{a;ct {a,c} {a,c} {}

Table 2: Fix-point iteration to derive the set of DC-UCBs

caches. The DC-UCB analysis only relies on the informa-
tion about the currently accessed memory blocks and on an
under-approximation of the cache-content, i.e., the must-
cache. The structure of the cache, however, is completely
hidden in the set Must_-Cache(B{), which is obtained by
the cache analysis as part of the WCET analysis. There-
fore, if the WCET analysis is able to handle LRU caches,
so is the DC-UCB analysis.

3.4 Data Caches / Handling Array Ac-
cesses

If the addresses of the memory accesses are known statically,
the same DC-UCB analysis as for instruction caches can be
applied. For some data accesses, however, the value analysis
is unable to derive precise addresses statically. Consider an
array access within a loop, for instance. The actual address
of the access changes each iteration. The value analysis,
thus, derives a range bounding the address of the access

114

instead of a single value. In addition to Access(BJ) which
denotes the address of the access, Range(B?) denotes the
length of it. In case no range is needed, Range(Bf) =1.

To handle imprecise information about the addresses of
memory accesses — and to enable a general DC-UCB anal-
ysis for data caches® — we have to adapt the analysis as
follows. The domain is given by a multiset:

D = o(M.0)

where I denotes the length of the range given in the num-
ber of memory blocks. An access whose effective address is
bounded by a memory range is only considered a cache-hit
if the whole range is definitely cached. Therefore, the ac-
cess is also only considered a definitely-cached UCB in this
case (6). Elements are removed from the set of DC-UCBs
only if no memory block is definitely cached (7). Other-
wise, if one memory block is cached and this memory block
is removed due to preemption, it may cause an additional
cache-miss. The corresponding kill/gen sets are specified as
follows:

{(A(:cess(Bi), R{Lnge(B{ N}

” 7 ; J
gen(B}) = if Viié{a 7ge(BL)(Access(Bj) +1) € Must_Cache(B})

0 otherwise
(6)
kill(B]) = {(Access(B}"), Range(B]"))|

Viifmwc(Bk)(Access(B,'c") +1) ¢ Must_Cache(B})}
)

An example of how the extension of the analysis works is
shown in Figure 6. Assume that a,b and ¢ are sequentially
ordered memory blocks. Because the whole range of mem-
ory blocks, the last instruction may access, are cached, the
timing analysis considers the data access of this instruction
as a cache-hit. For the same reason, the definitely-cached
UCB analysis adds (a, 3) to the set of DC-UCBs. Only be-
fore the execution of the first and after execution of the last
instruction, (a,3) is not a definitely-cached UCB; at every
other position, a cache block evicted due to preemption may
cause an additional cache-miss at the last memory access.

3.5 From UCB to CRPD

The final step of the DC-UCB analysis is the computation of
the cost the schedulability analysis has to add to the bound
of the WCET. For this, we first identify the program point
with the highest number of DC-UCBs. Then, we multiply
this number by the time needed to reload a memory block,
to obtain an upper bound on the additional cost of the
whole task. Note that this cost is not an upper bound
on the actual CRPD, but on the CRPD that we have to
take into account when used in combination with an upper
bound on the WCET.

3Tf the value analysis can not even derive a memory range for an

access, timing analysis treats this memory access as a cache-miss. It,
therefore, does not contribute to the bound on the CRPD.

Memory accesses Must-Cache DC-UCBs

l 0 0
0x0a

! {a} {(a,3)}
0x0b

D {a, b} {(a,3)}
0x0c

v {a,b.c} {(a,3)}

0x0a-0x0c
! {a,b, c} 0

Figure 6: Data Cache DC-UCB analysis handling memory
ranges; a sequence of memory accesses, cache content and
sets of DC-UCBs.

4 Related Work

The problem caused by cache-interferences within a pre-
emptive system can be solved using diverse approaches. It
can be circumvented by partitioning cache memory, it can
be taken into account as part of the worst-case execution
time and it can be analyzed separately by estimating the
cache-related preemption delay.

Some works [11, 24] use a simple method to avoid interfer-
ences of tasks on the cache by partitioning it and assigning
each task a small part. Although there is no interference
on the cache, the performance of each task may suffer by
its decreased cache size and substantial code-changes are
needed.

Schneider [15] includes the impact of cache-interferences
in the WCET analysis. He assumes preemption at each pro-
gram point to compute a safe upper bound on the execution
time under preemption. However, just because preemption
is assumed everywhere, the analysis largely overestimates
a task’s worst-case execution time. The method we use
analyzes cache-interferences separately from the worst-case
execution time analysis by estimating the cache-related pre-
emption delay.

The cache-related preemption delay denotes the preemp-
tion cost due to the reload of cache blocks that are evicted
during execution of a preempting task. This number is then
included in the response time computation during schedul-
ing analysis [5]. The CRPD is computed by multiplying the
time needed to reload a memory block with the number of
additional cache-misses due to preemption [1]. Two ways
can be used to bound this number: computing the number
of useful cache blocks [7] or computing the number of evict-
ing cache blocks (ECB) [22]. An ECB is a memory block
which is used by the preempting task and which may evict
a memory block from the cache. An upper bound on the
CRPD can be derived using directly the number of UCBs
(or ECBs): All UCBs are evicted by the execution of the
preempting task (or each ECB evicts a memory block that
is reused later by the preempted task). A refinement of the

115

upper bound on the CRPD is given by the intersection of
UCBs and ECBs, as shown in [13, 19].

In this article, we focus on the analysis of useful cache
blocks. So, in the rest of this section, different methods to
obtain the sets of UCBs are presented.

The basic concept of useful cache block has been intro-
duced by Lee et al. [8]. They use two data flow analy-
ses to derive them: First to compute for each node in the
CFG the set of cache blocks that may be cached (reach-
ing cache blocks), and second, to compute the set of cache
blocks that are potentially reused after this node (live cache
blocks). The intersection of both sets delivers the set of
UCBs. They represent cache contents by sets of memory
blocks for all cache sets. Negi et al. [13] enhanced this com-
putation by integrating a tighter cache representation that
does not merge cache contents. However, as the sets repre-
senting the cache are larger and grow faster, the complex-
ity of the UCB computation is significantly higher than for
the previous representation. Staschulat et al. [18] combined
these two representations to obtain less complexity than the
second one but more precision than the first. Their results
represent a scalable tradeoff between always merging cache
content and never merging it. In addition, Staschulat et
al. proposed to refine the CRPD computation in case of
multiple preemption by taking into account the preempt-
ing task execution [16]. In [20], Tan et al. studied the case
in which preemptions are nested (preempting task is pre-
empted). The difference to our work is given by their no-
tion of useful cache blocks. It includes cache reloads that
are already accounted for by the timing analysis. Since we
only concentrate on the notion of UCB, these extensions
can be seen orthogonal to our approach, i.e., they could be
also applied to our analysis.

In case multiple preemptions of the same task are possi-
ble, the highest CRPD bounds are considered. To compute
a bound for the 4. preemption, an order on the number of
UCBs is used that considers each set of UCBs as often as
the corresponding program point may be executed [7]. For
example, the highest CRPD is typically obtained in a loop
body. In that case, the bound corresponding to this point
is considered as many times as it may be executed. This
extensions can be used in same manner using our notion of
DC-UCBs.

Furthermore, former work mainly present the UCBs com-
putation for direct-mapped instruction caches. Two of
them [8, 18] propose extensions to include set associative
cache with LRU replacement. Data caches restricted to
static addressing have also been taken into account by Lee et
al.[7]. As far as we know, no work focuses on UCB compu-
tation for dynamic addressing of data caches. This dynamic
addressing has been handled by Ramprasad et al. in [14].
However, they do not compute UCBs; they use cache ac-
cess pattern (cache lines access chains) to derive the n most
expensive preemption points. While our approach handles

instruction and/or data-caches, their approach is restricted
to data caches.

In this paper, we use results of the cache analysis to refine
the computation of the number of misses due to preemp-
tion. We propose a safe modification of the UCB definition
(definitely-cached UCB). Our approach can be combined
to the ECB computation to refine the resulting CRPD (as
presented by [13, 19]).

5 Evaluation

In this section, we evaluate the precision and runtime of our
approach. Since we concentrate on the improvement solely
caused by our new notion of useful cache blocks, we compare
it with Lee’s approach [8] based on the original notion. Note
that Negi et al. as well as Staschulat and Ernst proposed
extensions to improve the precision of Lee’s UCB analysis
by using a more precise representation of the cache-states.
Since our paper focuses on the basic notion of UCB and not
on the cache-state representation, we compare our approach
with the original UCB approach. A comparison of our work
with Negi et al. as well as Staschulat and Ernst extensions
is future work.

As target architecture, we selected an Arm?7 processor
with direct-mapped instruction cache of size a) 1kB, line
size 8 Byte, b) 4kB, line size 16 Byte and c¢) 8kB, line size
8 Byte. The Arm?7 features an instruction size of 4 Byte.

We employed a selection of the Mélardalen WCET bench-
mark suite®. Table 3 shows this selection, the number of in-
structions of each task and ratios of task-size to cache-size.
We compiled these tests using a gcc cross-compiler.

To tighten the bound on the worst-case execution time,
a technique called virtual inlining and loop unrolling [21]
is usually applied. This technique artificially increases the
control flow graph to distinguish between different loop it-
erations and function calls. It especially improves the must-
cache analysis, i.e., more memory accesses will be classified
as cache-hits. For the following test-cases, we also employed
virtual unrolling and virtual inlining in order to derive re-
alistic results. Note that by improving the precision of the
must-cache, we increase the sets of DC-UCBs and so, we
can only decrease the improvement we obtain.

Tables 4, 5 and 6 show the results for the different cache-
sizes. The average number of (DC-)UCBs per instruction
(Column 2 and 3) can be seen as an indicator of the CRPD
in case preemption is restricted to a given set of preemp-
tion points. Column 4 shows the average improvement,
i.e., the sum over the improvements of each instruction di-
vided by the number of instructions. Column 5 and 6 show
the maximal number of (DC-)UCBs for the given task and

4

4http://www.arm.com/products/CPUs/families
/ARMT7Family.html
Shttp://www.mrtc.mdh.se/projects/wcet /benchmarks.html

116

average upper bound

#UCB | #DC-UCB | dif | #UCB | #DC-UCB | diff
bs 13.6 1.4 52% 24 5 79%
bsort100 18.9 1.9 54% 35 8 7%
cre 98.7 2.5 84% 124 14 839%
fac 10.8 1.2 51% 19 4 79%
fibcall 5.1 1.6 41% 12 5 58%
fir 47.2 1.9 58% 79 9 39%
inscrtsort 7.8 2.1 31% 19 10 A7%
loop3 3.7 1.5 39% 6 4 33%
matmult 27.3 5.6 56% 40 23 42%
minmax 1.8 1.1 9% 11 9 18%
ns 12.1 2.1 34% 30 13 57%
qsort-exam || 101.7 1.9 8% 128 15 38%
qurt 97.2 1.4 5% 128 14 89%
select 94.6 1.8 2% 128 15 38%
sqrt 72.7 1.2 59% 128 14 39%

Table 4: Results (Cache-size: 1kB, Line-size: 8 Byte)

average upper bound

#UCB | #DC-UCB | diff || #UCB | #DC-UCB | diff
bs 7.6 1.2 55% 13 3 %
bsort100 11.3 1.6 61% 20 5 5%
cre 58.4 1.9 83% 68 9 87%
fac 6.5 1.0 54% 11 2 82%
fibcall 3.9 1.3 48% 8 3 62%
fir 24.9 1.4 57% 41 5 88%
insertsort 4.3 1.6 29% 10 6 40%
loop3 2.2 1.1 32% 4 3 25%
matmult 15.4 3.1 61% 22 12 45%
minmax 1.3 0.9 8% 7 5 29%
ns 7.5 2.1 36% 17 7 59%
qsort-cxam 65.2 1.5 79% 82 8 90%
qurt 171.5 1.1 5% 227 7 97%
select 52.6 1.3 5% 71 8 89%
sqrt 106.2 1.0 63% 190 7 96%

Table 5: Results (Cache-size: 4kB, Line-size: 16 Byte)

the last column the improvement. The maximal number of
(DC-)UCBs multiplied by the cache reload cost constitutes
an overall upper bound on the CRPD of the whole task
(when combined with an upper bound of the WCET).

5.1 Discussion

The results show that our analysis (DC-UCBs) strongly out-
performs the former approach (UCBs). Depending on the
structure and the size of the task, the improvement of the
maximal number of UCBs ranges from at least 18% (min-
max) up to 97% (qurt, cache-size = 4KB, 8KB). In case
the cache is small compared to the task-size (see Table 3),
the number of UCBs is often bounded by the number of
cache-sets (Cache-size 1kB, qurt,select, sqrt). So, the dif-
ference to the number of definitely-cached UCBs is smaller
and improvements are less obvious.

Task minmax contains no loop and the useful cache
blocks occur in a function invoked twice. Therefore, the
number of (DC-)UCBs in both analyses is rather small and

Task bs | bsort100 | crc | fac | fibcall | fir | insertsort | loop3 | matmul | minmax | ns | gsort-exam | qurt | select | sqrt
Fnstructions || 69 123 288 | 48 47 | 209 31 1633 200 138 127 340 967 | 302 | 953
ratio 1KB 027 | 048 112019 | 018 | 081 0.31 6.38 0.78 0.54 | 0.50 1.33 378 | 1.18 | 3.73
ratio 4KB 007 | 012 |028[005]| 005 | 0.2 0.08 1.59 0.2 0.13 | 0.12 0.33 0.94 | 029 [0.93
ratio SKB 0.03 [006 |014[002] 002 [0.10 0.04 0.80 0.10 0.07 | 0.06 0.17 0.47 | 0.15 | 0.47
Table 3: Number of instructions and ratios of task-sizes to cache-sizes
average upper bound general safe upper bound on the cache-related preemption
#UCB | #DC-UCB | diff | #UCB | #DC-UCB | diff delay the set of possibly-cached memory blocks must b
s 56 1 77 51 = =00 y p y-cached memory blocks must be
bsort100 8.9 19 % 35 S 7% considered. However, since the CRPD is always used in
cre 115.0 2.5 84Y% 134 14 90% combination with the bound on the worst-case execution
fac 108 12 51% 19 4 79% time, it is sufficient to consider the set of definitely-cached
fibcall 5.1 16 417 12 5 53%)
i 78 9 E U 75 9 0% memory blocks. So,the DC-UCB analysis only accounts for
insertsort 78 2.1 31% 19 10 4% cache-misses that are not taken into account by the timing
loop3 3.7 1.5 39% 6 4 33% analysis.
matmult 27.6 5.6 56U 40 23 42%
minmax 1.8 1.1 9% 11 9 18%
ns 12.9 2.4 35% 31 13 58%
qsort-exam || 127.1 1.9 78% 160 15 91% .
qurt 3408 14 6% || 449 14 97% 6 Conclusions
select 102.0 1.8 3% || 138 15 89%
B C 0,
il 204.1 12 oot [561 1 6% Prior useful cache block analyses use an over-approximation
of the cache content to derive a safe over-approximation of
Table 6: Results (Cache-size: 8kB, Line-size: 8 Byte) the sets of UCBs. In combination with over-approximation

both approaches differ only slightly. Best improvements are
observed for programs that contain loops, recursive struc-
tures, or repeated invocation of routines. In these cases, the
cache can work quite effectively which means that several
cache blocks will be reused and memory accesses result in
cache-hits. Lee over-approximates — in his notion of UCBs
— the sets of these memory accesses. However, since the
must-cache can only classify a subset of them as cache-hits,
only a strongly reduced set is considered as definitely-cached
UCBs. Of course, the improvement could even be more im-
pressive, if we would have used a worse must-cache analy-
sis. But due to virtual loop unrolling and virtual inlining
(as mentioned before), we used a very precise must-cache
analysis to derive realistic results.

A cache block typically contains more than one instruc-
tion. So, even for straight-line code sequences without
loops, the sets of UCBs and DC-UCBs are not completely
empty. Since nearly all programs contain such fragments
with instructions executed at most once, the average num-
ber of (DC-)UCBs per instruction is reduced and so, also the
average improvement per instruction (column 4) is always
lower than the improvement on the maximal number. Nev-
ertheless, values up to 80% are still possible. This indicates
a large refinement of the CRPD also in case preemption is
referred to a fixed set of preemption points.

To sum up, the difference between both notions can be
explained due to difference between the sets of possibly-
cached and definitely-cached memory blocks. To derive a

117

of the timing analysis, several cache reloads may be counted
twice.

In this paper, we have proposed an improved defini-
tion of useful cache block (UCB) namely the notion of
definitely-cached UCB (DC-UCB). Instead of using an over-
approximation, our approach uses an under-approximation
of the cache content. Our definition requires a useful cache
block to be definitely cached. In addition, we have shown
the soundness of this notion when combined with the worst-
case execution time bound. By using the same cache-
analysis to derive the set of UCBs and the WCET bound,
no cache-miss is accounted for in both analyses — but all
cache-misses that might occur during preemptive execution
are still taken into account. Furthermore, due to the tight
coupling of DC-UCB and timing analysis the same DC-UCB
analysis can be applied to set-associative caches and easily
extended to an analysis for data caches even in case of array
accesses.

The evaluation of our method, i.e., the comparison to the
former approach, shows a strong improvement in the preci-
sion of the computed bound on the cache-related preemp-
tion delay. For all but two test-cases, the bound is reduced
by at least 40% but also improvements up to more than
90% can be often observed.

As future work, we plan to investigate the improvement of
our definition to the combined analysis of the preempting
task and preempted task and to the worst-case response
time analysis. A second point is the computation of lower
bounds on the context switch costs at specific points. Such
information may be useful for schedulability analyses.

Acknowledgement

We thank for Gernot Gebhard for his close collaboration
during the implementation of the first prototype of the anal-
ysis. Furthermore, we thank Professor Reinhard Wilhelm
for his comments and support, writing this paper.

References

(1

2]

(3]

7

(8]

(10]

J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and
A. Wellings. Adding instruction cache effect to schedulabil-
ity analysis of preemptive real-time systems. In Proceedings
of the 2nd IEEE Real-Time Technology and Applications
Symposium (RTAS’96), page 204, Washington, DC, USA,
1996. IEEE Computer Society.

P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium,
on Principles of Programming Languages, pages 238-252.
ACM Press, New York, NY, 1977.

C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache
behavior prediction by abstract interpretation. Sci. Com-
pul. Program., 35(2-3):163-189, 1999.

J. Gustafsson. WCET challenge 2006. Technical report,
Malardalen University, January 2007.

L. Ju, S. Chakraborty, and A. Roychoudhury. Account-
ing for cache-related preemption delay in dynamic priority
schedulability analysis. In Proceedings of the conference on
Design, automation and test in Europe (DATE’07), pages
1623-1628, San Jose, CA, USA, 2007. EDA Consortium.

S. kwan Kim, S. L. Min, and R. Ha. Efficient worst case
timing analysis of data caching. In IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’96), pages 230—
240. IEEE, 1996.

C.-G. Lee, J. Hahn, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim. Analysis of cache-related preemp-
tion delay in fixed-priority preemptive scheduling. In Pro-
ceedings of the 17th IEEE Real-Time Systems Symposium
(RTSS’96), page 264, Washington, DC, USA, 1996. IEEE
Computer Society.

C.-G. Lee, J. Hahn, Y.-M. Seo, S. L.. Min, R. Ha, S. Hong,
C.Y. Park, M. Lee, and C. S. Kim. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling.
IEEE Trans. Comput., 47(6):700-713, 1998.

S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min,
C.Y. Park, H. Shin, K. Park, S.-M. Moon, and C. S. Kim.
An accurate worst case timing analysis for risc processors.
IEEE Trans. Softw. Eng., 21(7):593-604, 1995.

T. Lundqvist and P. Stenstrom. Timing anomalies in dy-
namically scheduled microprocessors. In Proceedings of
the 20th IEEE Real-Time Systems Symposium (RTSS’99),
page 12, Washington, DC, USA, 1999. IEEE Computer So-
ciety.

118

1]
[12]

(13]

(14]

[16]

(17]

(18]

[19]

20]

21]

(22]

23]

(24]

F. Mueller. Compiler support for software-based cache par-
titioning. SIGPLAN Not., 30(11):125-133, 1995.

F. Mueller. Timing analysis for instruction caches. Real-
Time Systems, 18:209—-239, 2000.

H. S. Negi, T. Mitra, and A. Roychoudhury. Ac-
curate estimation of cache-related preemption delay.
In Proceedings of the 1st ACM international confer-
ence on Hardware/software codesign and system synthesis
(CODES+1555°03), pages 201-206, New York, NY, USA,
2003. ACM.

H. Ramaprasad and F. Mueller. Bounding preemption de-
lay within data cache reference patterns for real-time tasks.
In Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’06), pages
71-80, Washington DC, 2006. IEEE Computer Society.

J. Schneider. Cache and pipeline sensitive fixed priority
scheduling for preemptive real-time systems. In In Pro-
ceedings of the 21st IEEE Real-Time Systems Symposium
(RTSS’2000), pages 195—204, 2000.

J. Staschulat and R. Ernst. Multiple process execution in
cache related preemption delay analysis. In Proceedings of
the 4th ACM international conference on Embedded soft-
ware (EMSOFT’04), pages 278-286, New York, NY, USA,
2004. ACM.

J. Staschulat and R. Ernst. Scalable precision cache analysis
for preemptive scheduling. In Proceedings of the 2005 ACM
conference on Languages, compilers, and tools for embedded
systems (LCTES’05), pages 157-165, New York, NY, USA,
2005. ACM.

J. Staschulat and R. Ernst. Scalable precision cache analysis
for real-time software. Trans. on Embedded Computing Sys.,
6(4):25, 2007.

Y. Tan and V. Mooney. Integrated intra- and inter-task
cache analysis for preemptive multi-tasking real-time sys-
tems. In Proceedings of the 8th International Workshop
SCOPES 2004, in: Lecture Notes on Computer Science,
LNCS3199, pages 182-199. Press, 2004.

Y. Tan and V. Mooney. Timing analysis for preemptive
multi-tasking real-time systems with caches. Trans. on Em-
bedded Computing Sys., 6(1):7, 2007.

H. Theiling. Ilp-based interprocedural path analysis. In In
Proceedings of EMSOFT 2002, Second Workshop on Em-
bedded Software, 2002.

H. Tomiyama and N. D. Dutt. Program path analysis to
bound cache-related preemption delay in preemptive real-
time systems. In Proceedings of the 8th ACM international
workshop on Hardware/software codesign (CODES’00),
pages 67-71, New York, NY, USA, 2000. ACM.

R. T. White, C. A. Healy, D. B. Whalley, F. Mueller, and
M. G. Harmon. Timing analysis for data caches and set-
associative caches. In Proceedings of the 3rd IEEE Real-
Time Technology and Applications Symposium (RTAS’97),
page 192, Washington, DC, USA, 1997. IEEE Computer
Society.

A. Wolfe. Software-based cache partitioning for real-time
applications. J. Comput. Softw. Eng., 2(3):315-327, 1994.

