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Abstract

We consider a problem where multiple agents must learn an action profile that maximises the sum
of their utilities in a distributed manner. The agents are assumed to have no knowledge of either the
utility functions or the actions and payoffs of other agents. These assumptions arise when modelling
the interactions in a complex system and communicating between various components of the system are
both difficult. In [1], a distributed algorithm was proposed, which learnt Pareto-efficient solutions in this
problem setting. However, the approach assumes that all agents can choose their actions, which precludes
disturbances. In this paper, we show that a modified version of this distributed learning algorithm can
learn Pareto-efficient solutions, even in the presence of disturbances from a finite set. We apply our
approach to the problem of ramp coordination in traffic control for different demand profiles.

1 Introduction

In complex systems, modelling the interactions between various components and their relationship to the
system performance is not an easy task. This poses a challenge while designing controllers for such systems,
as most design methods require a model of the system. Even when considerable effort has been expended
in identifying suitable models for such systems, utilising these models to design online controllers is not
always easy. This is because collecting measurements of a complex system, computing control signals using
complex algorithms and applying these controls to actuators across the system is communication intensive
and computationally demanding. The resulting delays are not well suited to the control of real-time complex
systems.

An example is the real-time control of freeway traffic, where often traffic models are highly nonlinear and
methods to design controllers using these models do not scale well [2]. Furthermore, to use these models,
the traffic flow from every segment of the freeway must be measured and collected, and the control signals
must be delivered to the ramps on the freeway. To reduce the communication and computation burden,
distributed controllers that act on mostly local information are required.

One approach is to use a distributed randomised algorithm to explore the policy space and learn the
optimal actions. Recently, a distributed learning algorithm has been proposed in [1] where agents learn
action profiles that maximise the system welfare. This algorithm is payoff-based, and the agents require
no prior knowledge of either the utility functions or the actions and payoffs of other agents. An implicit
assumption in this approach is that every agent that influences the utility can choose its actions. In reality,
there might always be disturbances which cannot be chosen in a desired manner. In this paper, we extend
this approach to include the effects of disturbances.

Our main contribution is a modification to the algorithm in [1] to deal with disturbances. We show that
agents learn Pareto-efficient solutions in a distributed manner using our algorithm, even in the presence
of disturbances from a finite set. We verify the theoretical results on a small example. In this case, all
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assumptions can be verified and strong convergence guarantees can be given. To demonstrate versatility
of the approach, we also apply the results to a realistic coordination problem motivated by freeway traffic
control. We use our newly developed algorithm to learn a high-level coordination strategy for a ramp metering
problem with promising results, using simulation parameters and traffic demand data from a real-world use
case.

The learning rule used in this paper is related to the trial and error learning procedure from [3] and its
cognates [1,4]. These papers proposed algorithms that learnt Nash equilibria [3], Pareto efficient equilibria [4]
and Pareto-efficient action profiles [1], respectively. Convergence guarantees for the latter were presented
in [5]. Restrictions on the payoff structure, which are required for the result in [1] to hold, were eliminated
through the use of explicit communication in [6]. We also draw on the analysis of deliberate experimentation
using the theory of regular perturbed Markov processes from [7].

This paper is organised as follows: We describe the algorithm in Section 2, and present known results in
Section 3. Our main result is presented in Section 4 and illustrated on a few examples in Section 5. The
conclusion is in Section 6.

2 Problem Formulation

We consider a set of agents N := {1, . . . , n}, each with a finite action set Ai for i ∈ N . The disturbance is
modelled as an independent and identically distributed (i.i.d.) process wk, which takes values from a finite
set W according to a probability distribution Pw that is fully supported on W. Given an action profile
a ∈ A, where A := A1 × · · · × An, and a disturbance w ∈ W, the payoff for each agent is ui(a,w). The
payoffs are generated by utility functions Ui : A ×W → [0, 1) whose functional forms are unknown to the
agents. The welfare of the network of agents is W(a,w) =

∑
i∈N Ui(a,w).

The agents play a repeated game; in the kth iteration, each agent chooses its action ai,k with probability
pi,k ∈ ∆(Ai), where ∆(Ai) is the simplex of distributions over Ai. The strategy pi,k is completely uncoupled
or pay-off based, i.e., pi,k = ψi({ai,τ , ui,τ (aτ , wτ )}k−1τ=0). In other words, an agent does not know the actions
or payoffs of any other agent in the network.

Each agent maintains an internal state zi,k := [āi,k, ūi,k,mi,k] in the kth iteration, where āi,k ∈ Ai is the
baseline action, ūi,k is the corresponding baseline utility that lies in the range of Ui and mi,k ∈ {C,D} is the
mood variable that connotes whether the agent is content or discontent. The state zk := {z1,k, . . . , zn,k} lies
in the finite state space Z.

The algorithm is initialised with all agents setting their moods to discontent, i.e., mi,0 = D for i ∈ N .
An experimentation rate 0 < ε < 1 is fixed and a constant c > n is selected. Then, each agent selects an
action ai,k according to its mood and the corresponding probabilistic rule:

mi,k = C : pi(ai,k) =

{
εc

|Ai|−1 ai,k 6= āi,k

1− εc ai,k = āi,k

mi,k = D : pi(ai,k) =
1

|Ai|
∀ ai,k ∈ Ai

(1)

The agents choose their strategies based on their moods. A content agent selects its baseline action with
high probability and experiments by choosing other actions with low probability. A discontent agent selects
an action with uniform probability.

Each agent plays the action it has selected and receives a payoff ui,k(ak, wk), which it uses to update its
state as

zi,k+1 =


zi,k

mi,k = C, ai,k = āi,k,
|ui,k − ūi,k| ≤ ρ

zC w.p. pC
zD w.p. 1− pC

}
otherwise

(2)



where zC = [ai,k, ui,k, C], zD = [ai,k, ui,k,D], pC = ε1−ui,k and ρ is the maximum deviation in the payoffs
due to the disturbance process w, as defined in (3). The state update also depends on the mood of the
agent. A content agent that chose to play its baseline action and received a payoff within the interval
ui,k ∈ [ūi,k − ρ, ūi,k + ρ] retains its state. In all other cases, the state is updated to the played action and
received payoff, and the mood is set to content or discontent with high probabilities for high or low payoffs,
respectively. Thus, a content agent must receive a payoff outside an interval ±ρ of its baseline payoff to
reevaluate its mood or change its state. This interval rule renders an agent insensitive to small changes in
the payoff.

The variable ρ is defined as the maximum deviation in the payoffs received by any agent i ∈ N for every
action profile a ∈ A and every pair of disturbances w1, w2 ∈W, i.e.,

ρ := arg min
r∈R

{|ui(a,w1)− ui(a,w2)| ≤ r} ∀ i ∈ N, ∀ a ∈ A and ∀ w1, w2 ∈W . (3)

We are interested in identifying the set of states the above algorithm converges to. A necessary condition
for this algorithm to function as desired is the interdependence property, stated below.

Definition 2.1 An n-person game is interdependent if for every action profile a ∈ A, every disturbance
w ∈ W and every proper subset of agents J ⊂ N , there exists an agent i ⊂ N \ J , a choice of actions
a′J ∈

∏
j∈J Aj and a disturbance w′ ∈W, such that

|Ui(a′J , a−J , w′)− Ui(aJ , a−J , w)| > ρ (4)

This property ensures that the set of agents cannot be divided into two mutually non-interacting groups,
and that a discontent agent always has recourse to actions that influence the utilities of other content agents
despite the algorithm’s insensitivity to the interval [ūi − ρ, ūi + ρ] in (2).

Remark 2.1 (A remark on the state space Z: ) The state zk is an aggregation of the states zi,k :=
[āi,k, ūi,k,mi,k] of each of the agents. Thus, one would expect the cardinality of the state space to be
|Z| = 2N |A||W|, because the payoffs obtained are completely determined by the choice of the actions and the
disturbance. However, the interval rule in (2) results in more states becoming reachable and |Z| ≤ 2N |A|2|W|.
The exact number of states depends on the payoffs. For the proofs presented in this paper, we define the state
space in terms of the states reachable from the initial point of our algorithm, i.e., Z := {z : ∃τ > 0 s.t. P(zτ =
z|z0) > 0}, where z0 is any state where all agents are discontent.

3 Preliminaries

We briefly outline Young’s result on regular perturbed Markov processes [7]. Consider the Markov processes
on a state space X with transition matrices P0 and Pε, where a finite-valued ε > 0 measures the noise
level. The Markov chain induced by P0 describes some basic evolutionary process such as best response
dynamics, while the chain induced by Pε represents the perturbed process obtained by introducing mistakes
or experiments. This notion is formalised as follows.

Definition 3.1 A family of Markov processes Pε is called a regular perturbation of a Markov chain with
transition matrix P0 if it satisfies the following conditions:

i. Pε is aperiodic and irreducible for all finite ε > 0.

ii. limε→0 Pε
xy = P0

xy, ∀x, y ∈ X.

iii. If Pε
xy > 0 for some ε, then ∃ r(x, y) ≥ 0, called the resistance of the transition x→ y, such that

0 < lim
ε→0

ε−r(x,y) Pε
xy <∞ (5)



Property i ensures that there is a unique stationary distribution for all finite ε > 0. Property ii ensures that
the perturbed process converges to the unperturbed process in the limit as ε→ 0. Property iii states that a
transition x → y is either impossible under Pε or it occurs with a probability Pε

xy of order εr(x,y) for some

unique, real r(x, y) in the limit as ε→ 0. Note that r(x, y) = 0 if and only if P0
xy > 0. Thus, the transitions

of resistance zero are the same as the transitions that are feasible under P0.

Definition 3.2 A state x ∈ X is said to be stochastically stable if µ0
x > 0, where µ0 is a stationary distribu-

tion of P0.

We are interested in characterizing the limiting distribution µ0 of P0 through its support, or the set of
stochastically stable states. To do this, we define two directed graphs. The first graph G := (X,EG) has as
vertex set the set of states X, and as directed edge set EG := {x→ y | Pε

xy > 0, x, y ∈ X}. Thus, a directed
edge exists in G only if a single transition under Pε gets us from state x to y, for all values of ε ≥ 0. Finally,
r(x, y) in (5) defines the weight or resistance of this directed edge in G.

To define the second graph, we first enumerate the recurrence classes of P0 as X1, . . . , XL. Then, we
can define the resistance between two classes as the minimum resistance between any two states belonging
to these classes, i.e.,

r`1`2 := min
x∈X`1

,y∈X`2

r(x, y), for `1, `2 ∈ {1, . . . , L} . (6)

Note that there is at least one path from every class to every other because Pε is irreducible. We now define
the second graph as G := ({1, . . . , L},EG). This graph has as vertex set the set of indices of the recurrence
classes of P0, and as edge set the set of directed edges between members of the recurrence classes. Also,
r`1`2 defines the resistance or weight of this directed edge.

Definition 3.3 Let an `-tree in G be a spanning sub-tree of G, such that for every vertex `′ 6= `, there exists
exactly one directed path from `′ to `. Then, the stochastic potential γ` of the recurrence class X` is defined
as

γ` := min
T∈T`

∑
(a,b)∈T

rab (7)

where T` is the set of all `-trees in G.

We can now state Young’s result for perturbed Markov processes [7].

Theorem 3.1 (Theorem 4 from [7]) Let P0 be a time-homogenous Markov process on the finite state
space X with recurrence classes X1, . . . , XL. Let Pε be a regular perturbation of P0, and let µε be its unique
stationary distribution for every small positive ε. Then,

i. as ε→ 0, µε converges to a stationary distribution µ0 of P0,

ii. the recurrence class X`∗ , with stochastic potential γ`∗ := min`∈{1,...,L} γ`, contains the stochastically
stable states {x ∈ X : µ0

x > 0}.

4 Learning Pareto-efficient solutions

We begin by establishing that Young’s result applies to our system, resulting in a distributed algorithm for
Pareto-efficient learning in the presence of disturbances. To prove this result, we enumerate the recurrence
classes of P0 and the resistances between the classes. We use these values to identify the structure of the
tree with minimum stochastic potential.



4.1 Main Result

For ε = 0, the transition matrix P0 corresponds to an unperturbed Markov process, and we begin by showing
that Pε is a regular perturbation on P0.

Lemma 4.1 The Markov process with transition matrix Pε is a regular perturbation on P0.

The proof is presented in Appendix A. Next, we use Young’s result from Theorem 3.1 to obtain the
distributed learning outcome stated below.

Theorem 4.2 Let G be an interdependent n-person game on a finite joint action space A, subject to i.i.d.
disturbances from a finite set W. Under the dynamics defined in (1)–(2), a state z = [ā, ū,m] ∈ Z is
stochastically stable if and only if the following conditions are satisfied:

i. The action profile ā maximises the network welfare, i.e.,

(ā, w̄) ∈ arg max
a∈A,w∈W

W = arg max
a∈A,w∈W

∑
i∈N
Ui(a,w) (8)

ii. The benchmark actions and payoffs are aligned for the maximising disturbance, i.e., ūi = Ui(ā, w̄).

iii. The mood of each agent is content.

We present the proof for this theorem in the next section.

4.2 Recurrence Classes

The states z ∈ Z can be classified into three categories: states where all agents are content or discontent
and states where some agents are content and others discontent. By inspecting the algorithm in (1)–(2), it
is easy to see that as ε→ 0 the former states can be recurrent, but not the latter. We formalise this notion
below, by defining the recurrence classes D and Cm for 0 ≤ m < n and showing that there are no other
recurrence classes.
Discontent Class D: The states in this recurrence class correspond to those where all agents are discontent.

D :=
{
z ∈ Z

∣∣ mi(z) = D, ∀i ∈ N
}

(9)

Note that the payoffs and action profiles are aligned, i.e., ūi(z) = Ui(ā(z), w), ∀z ∈ D, ∀i ∈ N and for some
w ∈W. Also, corresponding to each action profile and disturbance pair (a,w) ∈ A×W, there is a discontent
state in this recurrence class.

States containing only content agents can be categorised further into n classes, Cm for 0 ≤ m < n, as
follows.
0th-Content Class C0: This recurrence class contains singleton states where all agents are content, and
where the payoffs of all agents are aligned with the action profile for some value of the disturbance w ∈W,
while satisfying the interval rule in (2) for all other values of the disturbance. Let Bi denote the set of states
that satisfy these conditions on the payoffs of the ith agent:

Bi :=
{
z ∈ Z

∣∣ūi(z) = Ui(ā(z), w), for some w ∈W,

|ūi(z)− Ui(ā(z), w̃)| ≤ ρ, ∀ w̃ ∈W
}
.

(10)

Then, the recurrence class C0 is defined as

C0 :=
{
z ∈ Z

∣∣ mi(z) = C, z ∈ Bi,∀i ∈ N
}
. (11)



From the definition of ρ in (3), we know that corresponding to each action profile and disturbance pair
(a,w) ∈ A×W, there is a state in this recurrence class with payoffs satisfying (10).

There might also be states where the payoffs of all agents are not aligned with the action profile for any
single value of the disturbance w ∈ W. Some of these states can be recurrent, and belong to the classes
defined below.
1st-Content Class C1: Suppose that a proper subset of agents J1 ⊂ N from a state z′ ∈ C0 experiment
with different actions despite being content, and become content with their new utilities. If the rest of
the agents j0 ∈ J0 = N \ J1 do not notice this change, because their new utilities lie within the interval
[ūj0(z′) − ρ, ūj0(z′) + ρ] for all values of the disturbance, then the agents find themselves in a state z in a
recurrence class C1.

C1 :=
{
z ∈ Z

∣∣ mi(z) = C,∀i ∈ N,

∃(J0, J1) s.t. J0 ·∪ J1 = N, z ∈ Bj1 , ∀ j1 ∈ J1,

∃z′ ∈ C0 s.t. zj0 = z′j0 , |ūj0(z′)− Uj0(ā(z), w̃)| ≤ ρ, ∀ w̃ ∈W,∀ j0 ∈ J0
}
,

(12)

where the symbol ·∪ denotes a disjoint union of the subsets.
A subset of agents from a state in C1 could experiment and find themselves in a state in a recurrence

class C2. In general, states in the recurrence class Cm can be reached from a state in Cm−1, following a
similar procedure. The recurrence class Cm is defined below.
mth-Content Class Cm: These recurrence classes contain singleton states where all agents are content,
and where the agents can be divided into m+ 1 mutually disjoint subsets J0, . . . , Jm, such that the utilities
of the agents within each subset are aligned with an action profile for some value of the disturbance.

Cm :=
{
z ∈ Z

∣∣ mi(z) = C,∀i ∈ N,

∃(J0, . . . , Jm) s.t. ·∪ml=0 Jl = N, z ∈ Bjm , ∀ jm ∈ Jm,

∃z′ ∈ Cm−1 s.t. zj` = z′j` , |ūj`(z
′)− Uj`(ā(z), w̃)| ≤ ρ, ∀ w̃ ∈W,∀ j` ∈ N \ Jm

}
.

(13)

There can be at most n disjoint subsets from a set of n agents, and hence m < n. Clearly, there might be
many states in Z, where the baseline payoffs and actions satisfy some, but not all, of the above conditions
for classes Cm, 1 ≤ m < n. These states are not recurrent, as we show below.

Lemma 4.3 The recurrence classes corresponding to the n-person interdependent game described by (1)–(2)
are D, and the singletons in C0 and Cm, for 0 < m < n, as defined in (9)–(13), respectively.

The proof of this result is presented in Appendix A.

4.3 Resistances and Trees

Transitions can occur between all three recurrence class types, namely D → C0 and vice versa, D → Cm

and vice versa, and Cl → Cm for 0 ≤ l,m < n and l 6= m. In addition, the singleton states in C0 and Cm

can transition to other singleton states within the same classes. All these transitions are enumerated along
with the corresponding resistances in Table 1. In this table, we use d ∈ D, z0· ∈ C0 and zm· ∈ Cm to denote
states in the respective recurrence classes. Some of the entries contain the term r̄m, which is given by

r̄m = mc2 +
4 +m−m2

2
c− m(m+ 1)

2
, 0 < m < n . (14)

The calculations for the entries in Table 1 are presented in Appendix B. We can now compute the stochastic
potential of a state in C0 and show that a minimum potential tree is rooted at a singleton in C0.



Table 1: Resistances Between Recurrence Classes
No. Path Resistance Relationship

1 D→ C0 rdz0 =
∑
i∈N 1− ūi(z0)

2 D→ Cm
rdzm =

minz0∈C0 rdz0 + rz0zm

3 C0 → D rz0d = c

4 Cm → D rzmd = c

5 C0 → C0 c ≤ rz01z02 ≤ 2c

6 Cm → Cm c ≤ rzm1 zm2 ≤ r̄m

7 Cl → Cm,
0 ≤ l,m < n, m 6= l

|m− l|c ≤ rzm1 zm2 ≤ r̄m

Lemma 4.4 The stochastic potential of a state z0 ∈ C0 is

γ(z0) = c

(
n−1∑
m=0

|Cm| − 1

)
+
∑
i∈N

(
1− ūi(z0)

)
. (15)

Lemma 4.5 The states in the recurrence class D and the singletons Cm, for 0 < m < n, are not stochasti-
cally stable.

The proofs for both Lemmas are presented in Appendix A.

4.4 Proof of the Main Result

We now present the proof of Theorem 4.2.

Proof The stochastically stable states are contained in the recurrence class of P0 with minimum stochastic
potential (from Theorem 3.1). From Lemma 4.5, we also know that the recurrence class with minimum
stochastic potential is rooted at a singleton in C0.

Lemma 4.4 gives us the minimum stochastic potential as

γ(z0,∗) = min
z0∈C0

c(

n−1∑
m=0

|Cm| − 1) +
∑
i∈N

(1− ūi(z0))

Thus, the action profile corresponding to the state z0,∗ must satisfy ā(z0,∗) ∈ arg maxa∈A,w∈W
∑
i∈N Ui(a,w).

From the definition of the recurrence class C0 in (11), we obtain statements ii and iii of the theorem.

5 Examples

We present a simple example of a two-agent interdependent game to illustrate the results of Theorem 4.2,
and then apply this method to the ramp coordination problem.

Example 1 Consider a simple game G2 with n = 2 agents. The action sets, disturbance set and payoffs are
given in Table 2. The disturbance process is uniformly distributed on {0, 1}. It is easy to verify that ρ = 0.1
(from (3)), and that the interdependence property (from Definition 2.1) is satisfied, for G2.



Table 2: Payoffs in Example 1

{a1, a2, w} u1 u2 {a1, a2, w} u1 u2

{0, 0, 0} 0.30 0.40 {1, 1, 0} 0.80 0.90

{0, 0, 1} 0.40 0.30 {1, 1, 1} 0.90 0.80

{0, 1, 0} 0.20 0.10 {2, 0, 0} 0.65 0.55

{0, 1, 1} 0.10 0.20 {2, 0, 1} 0.55 0.65

{1, 0, 0} 0.60 0.50 {2, 1, 0} 0.75 0.85

{1, 0, 1} 0.50 0.60 {2, 1, 1} 0.85 0.75

Table 3: Fraction of occurrence of states in Example 1

State z
Normalised Num-
ber of Instances

State z
Normalised Num-
ber of Instances

{[0, 0.10, C], [1, 0.20, C]} 0.0009 {[1, 0.60, C], [0, 0.50, C]} 0.0013

{[1, 0.50, C], [0, 0.60, C]} 0.0016 {[1, 0.50, C], [0, 0.50, C]} 0.0004

{[1,0.80, C], [1,0.90, C]} 0.9532 {[1, 0.90, C], [1, 0.90, C]} 0.0123

{[1, 0.90, C], [1, 0.80, C]} 0.0032 {[1, 0.90, C], [1, 0.85, C]} 0.0034

{[1, 0.8, C], [1, 0.85, C]} 0.0002 {[2, 0.65, C], [0, 0.65, C]} 0.0014

{[2, 0.55, C], [0, 0.65, C]} 0.0007 {[2, 0.65, C], [0, 0.55, C]} 0.0004

{[2, 0.55, C], [0, 0.55, C]} 0.0002 {[2, 0.65, C], [0, 0.60, C]} 0.0007

{[2, 0.85, C], [1, 0.85, C]} 0.0022 {[2, 0.75, C], [1, 0.85, C]} 0.0015

{[2, 0.85, C], [1, 0.75, C]} 0.0059 {[2, 0.75, C], [1, 0.80, C]} 0.0088

{[2, 0.85, C], [1, 0.80, C]} 0.0006

We simulated 106 iterations of the algorithm (1)–(2) in Matlab, with a time-varying ε-sequence, and
c = 2. The experimentation rate was modified by setting εk+1 = 0.99995εk, with an initial value of ε1 = 0.1.
The results of a typical sample run of our simulation are presented in Table 3, validating the results of
Theorem 4.2. The average welfare over all the iterations was 1.6937.

In Table 3, we have displayed a list of states and the normalised number of occurrences of these states,
only when this figure was larger than 0.0001. This is because a total of 101 states were explored by this
simulation. Note that some of the states, such as {[2, 0.85, C], [1, 0.80, C]} are examples of states in C1.

The average welfare obtained from playing the optimal action profile(s) will, in general, be different from
W∗, the maximum welfare in (8). This is because the optimal action profile maximises the welfare for the
most favourable value of the disturbance as per Theorem 4.2. When averaged over all possible values of
the disturbance, the welfare will lie in the interval [W∗ − nρ,W∗ + nρ], depending on Pw. For the above
example, the average welfare equals W∗, which may not always be the case as we see in the next example.

Example 2 In freeway traffic control, one seeks to estimate the occupancy of a freeway, usually via loop
detectors [9], and subsequently adjust speed limits [10] or traffic lights on the onramps [11], a technique
known as ramp metering, to improve traffic flow. However, popular freeway traffic models such as the cell
transmission model [12, 13] or the Metanet model [14], see also [15] for an overview of traffic models, are
highly nonlinear and methods to design controllers for traffic networks often do not scale well. To reduce
the communication and computation burden, distributed controllers that act on mostly local information are
required. Model-based approaches for decomposition exist [16, 17], but in fact, local feedback [18] and the
combination of local feedback and heuristic, high-level coordination [19] are among the most popular and
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Figure 5. Sensor disposition in the south ring. (a) Location of the collection points, blue flags

(Image courtesy of Google Maps); (b) Graphical representation of road interconnections: the
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off-ramp, etc.) equipped with magnetometers, see Table I.

single-vehicle speed, inter-vehicle time gap and vehicle length. The latter piece of information

can be used, for example, for safety or vehicle-class distribution analyses: however, for the

sake of simplicity, in the rest of this article we will exclusively deal with macroscopic data.

9

Figure 1: Map of the Grenoble South Link as depicted in [8] and the corresponding freeway topology.
Also shown is a particular coordination pattern between onramps, corresponding to the action profile
[COR, LOC,COR,COR, LOC, LOC,COR,COR,COR, LOC]>.

practically successful strategies. To demonstrate its versatility, we will evaluate the efficacy of our method in
learning a ramp coordination pattern, for given local controllers.

Consider a freeway with a number of onramps. The idea of ramp metering is to control the traffic
inflow from the ramps via traffic lights so as to avoid congestion on the mainline. Both theoretical [20]
and practical [21] studies have demonstrated that this approach can potentially avoid traffic breakdown in
congestion and reduce the sum of travel times of all drivers (TTS, Total Time Spent). An effective metering
strategy is to control the inflow such that the local traffic density does not exceed the threshold to congestion,
the so-called critical density [18]. However, there are limits to this strategy. Multiple ramps, each controlling
the local traffic densities, are coupled by the mainline flow as traffic travels downstream and congestion queues
can spill back upstream. If no control action of a single ramp is sufficient to prevent congestion of an adjacent
bottleneck, then coordination between ramps may hold the answer [19].

In this example, we aim to learn a coordination pattern, while the low-level metering policy remains
fixed. We consider ten ramps on a freeway located in Grenoble, as presented in [8] and depicted in Figure 1.
We allow for ramps either to control only the local traffic density (LOC) or to coordinate with downstream
ramps (COR) and control the ramp occupancy, i.e. the queue length divided by the ramp length, according
to the occupancy of the next downstream ramp. Therefore, the action set for every agent, i.e., every ramp
i is Ai = {LOC,COR}. The utility is computed by simulations of the freeway using the modified cell-
transmission model as described in [22], which uses a non-monotonic demand function to model the capacity
drop empirically observed in a congested freeway. The local utility for agent i is computed as the sum of the
total travel time of all cars in the adjacent section of the freeway and the total waiting time in the onramp
queue, which is then mapped to the interval [0, 1] via a linear transformation. The utilities do not only depend
on the action profile but also on the traffic demand, which acts as an external disturbance. We consider real
traffic demands during peak hours of the weekdays May 11th - May 15th, and hence, the disturbance set is
W = {Mon,Tue,Wed,Thu,Fri}.

We do not try to identify ρ as per (3) or verify the interdependence property in this example. Instead,
we simply choose ρ to be sufficiently large to ensure convergence of the algorithm within a reasonable number
of iterations. We ensure that interdependence holds by complimenting the interaction graph with a commu-
nication graph, as suggested in [6]. Each agent broadcasts the mood it computes in (2). It then receives all
the other agents’ moods and performs the following update step to finalize its own mood, as per

mi,k+1 =


D m̃i,k+1 = D
C m̃j,k+1 = C, ∀j ∈ N
C w.p. εβ

D w.p. 1− εβ
}

otherwise

(16)



where m̃i,k+1 is the mood of the ith agent updated locally as per (2). The above update compliments the
interaction between the agents by coupling the moods, and is controlled by the parameter β. If each agent
broadcasts its mood to all other agents, this update alone will suffice to ensure the interdependence property,
irrespective of the utility functions. Thus, all the results in this paper, including Theorem 4.2, can be shown
to hold for this modified algorithm, for ρ chosen as per (3). However, in a real-world setting it might be
difficult to compute a suitable bound on ρ beforehand. Instead, we chose ρ empirically to facilitate quick
convergence, sacrificing the guarantees that come with Theorem 4.2. The performance is then checked a
posteriori.

We simulated 1000 iterations of the algorithm (1)–(2), (16), in Matlab, with ε = 0.0001, c = 10,
β = 0.00005 and ρ = 0.6. The algorithm explored 36 different action profiles before settling on the ramp coor-
dination schedule [COR,LOC,LOC,COR,COR,COR,LOC,LOC,COR,LOC]

>
. The corresponding baseline utility

was 9.6 and the algorithm spent 890 out of 1000 iterations in the above state. The average utility obtained
over the entire simulation run was 8.72, in comparison to an average utility of 6.30 for the uncontrolled
case. In terms of travel times, this corresponds to savings of 31% over the uncoordinated case. Note that we
compute the savings just for the rush-hour period and therefore this value might exceed the savings typically
reported for ramp metering field trials, which are usually computed for the entire day [11].

6 Conclusions

We presented a distributed learning algorithm, based on the algorithm in [1], that can be used to learn Pareto-
efficient solutions in the presence of disturbances. Our algorithm learns efficient action profiles corresponding
to the most favourable disturbance, and specifies a range for the average welfare. In general, the approach
outlined in this paper is particularly well suited to problems where the disturbances can be modelled as a
finite set of small perturbations from a nominal model. Our examples validated the main result in our paper,
and also illustrated the potential of this randomised approach. In many applications, the average welfare is
an important performance metric. In future work, we wish to explore randomized approaches that optimize
the average welfare obtained.
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A Proof of Lemmas

Proof of Lemma 4.1 We first show that Property i holds under Pε for ε > 0. Note that all states are
accessible from any state d ∈ D, from the definition of the state space Z. In other words, there exists an
integer τ > 0 such that P(zk+τ = z′|zk = d) > 0 for all z′ ∈ Z. Next, note that both content and discontent
agents chooses an action with a probability distribution that is fully supported on Ai, as per (1). Due to



this, one or more agents can become discontent. Along with the interdependence property, this ensures that
all agents can consequently become discontent, and thus, a state such as d is accessible from any other state.
In other words, there exists an integer τ ′ > 0 such that P(zk+τ ′ = d|zk = z′) > 0 for all z′ ∈ Z. This proves
that the Markov chain is irreducible. Furthermore, many of these states permit a return to the same state
with some positive probability, i.e., there exist states z ∈ Z such that P(zk+1 = z|zk = z) > 0. These states
are aperiodic, which in combination with the irreducibility property effectively renders the Markov chain
aperiodic.

By inspection of (1)–(2), it is clear that Property ii is satisfied. We now show that Property iii holds.
Note that the transition probabilities contain terms with exponents of ε or its complement. The resistance
r = 0 for transition probabilities containing complements of ε, because these transitions occur under P0. All
other transition probabilities contain negative exponents of ε resulting in positive resistances, as required by
Property iii.

Proof of Lemma 4.3 Consider a state z ∈ D. Under P0, each agent picks an action with uniform proba-
bility and no utility ever makes an agent content. Thus, any accessible state remains in D.

Consider a singleton state in any of the classes C0 or Cm, for 0 < m < n. Under P0, each agent plays the
same action again, and the utilities received by the agents satisfy the interval rule. Thus, the agents remain
in the same state.

In the Cm states, for 0 ≤ m < n − 1, when a subset of agents J ⊂ N choose a new action and become
content, there are two circumstances under which the new state is not recurrent. If a value of the disturbance
results in a payoff that does not satisfy the interval rule, the corresponding agent(s) become discontent and
a new state is reached, which has a mix of content and discontent agents. Under P0, a discontent agent
remains discontent. Furthermore, due to the interdependence property, a subset of discontent agents will
cause at least one content agent to violate the interval rule and become discontent. This repeats until all
agents are discontent, thus reaching D. A similar situation occurs if the new action causes the payoff received
by any agent in N \J to fall outside the prescribed interval. Thus, in general, no state with a mix of content
and discontent agents, is recurrent.

Proof of Lemma 4.4 First we show that γ(z0) is less than or equal to the right hand side in (15), and
then we show the reverse, thus proving the equality relationship in the lemma.

To show the first path, construct the following tree T rooted at z0: Add a directed link z0
′ → d with

resistance c between every z0
′ ∈ C0 \z0 and some d ∈ D. Then, add a directed link zm → d with resistance c

between every zm ∈ Cm, for 0 < m < n, and some d ∈ D. Finally add a directed link d→ z0 from some d ∈ D,
with resistance

∑
i∈N (1− ūi(z0)). The resistance of this tree γ(T ) = c(

∑n−1
m=0 |Cm| − 1) +

∑
i∈N (1− ūi(z0)),

thus establishing that γ(z0) ≤ γ(T ).
To show the reverse, consider a general tree T ′ rooted at z0. It may differ from T in one or more of the

following aspects:

(a) It may contain a path of length q between the discontent class and the singleton z0, such as d→ zm1
1 →

. . . z
mq
q → z0, where d ∈ D, zm1

1 ∈ Cm1 , . . . , z
mq
q ∈ Cmq .

(b) It may contain paths of length s between a singleton from any of the mth-content classes and the
discontent class, such as zm → zm1

1 → . . . zms
s → d, where zm ∈ Cm, zm1

1 ∈ Cm1 , . . . , zms
s ∈ Cms and

d ∈ D.

From Table 1, we note that the path of length q in case (a) has a resistance r(d→ zm1
1 → . . . z

mq
q → z0) ≥

qc +
∑
i∈N (1 − ūi(z0)). Construct a tree T(a) by replacing this path in T ′ with a set of links zmi

i → d, for
1 ≤ i ≤ q, and d → z0. By making these changes, we obtain a total resistance of qc +

∑
i∈N (1 − ūi(z0)).

Thus, we have constructed a tree with γ(T(a)) ≤ γ(T ′).
Next, note that the path in case (b), zm → zm1

1 → . . . zms
s → d has a resistance r ≥ (s+ 1)c. Construct

a tree T(b) by replacing the links in the path with the links zm → d and zmi
i → d, for 1 ≤ i < s, each of

resistance c. Then, γ(T(b)) ≤ γ(T ′). Thus, we have shown that γ(T ∗) = γ(T ) ≤ γ(z0).



Proof of Lemma 4.5 Consider a tree rooted at D. Then, it must contain a link z0 → d, for some d ∈ D,
of resistance c. Replace it with the link d → z0 that incurs a lesser resistance

∑
i∈N (1 − ūi(z0)) ≤ n < c.

Thus, we have constructed a tree rooted at z0 with lower potential.
Similarly, consider a tree rooted at zm ∈ Cm, for 0 < m < n. This tree must contain a path d → z0 →

z1 → · · · → zm, with resistance r ≥ mc +
∑
i∈N (1 − ūi(z0)). Replace the links in the path z0 → zm with

the links zl → d′, for 0 < l ≤ m and d′ ∈ D, which results in a resistance of exactly mc+
∑
i∈N (1− ūi(z0)).

Thus, we have constructed a tree rooted at z0 with lower stochastic potential, and proved our result.

B Calculation of Resistances

In this section, we use d, z0 and zm to denote a state d ∈ D and singleton states z0 ∈ C0 and zm ∈ Cm,
respectively.

Let us begin with row 1 of Table 1. The transition d→ z0 occurs only when all agents are content with
the received payoffs, which happens with probability

∏
i∈N ε

1−ui . This gives us the resistance rdz0 in row 1.
The resistance rdzm in row 2 follows from the definition of a resistance between recurrence classes in (6) and
the fact that the transition d→ zm only occurs through a state z0.

For the transition z0 → d to occur, at least one content agent must experiment and become discontent,
which happens with probability of order O(εc). Then, all agents become discontent eventually. Thus, rz0d = c
in row 3. The same holds for the transition zm → d in row 4.

In row 5, the transition z01 → z02 between the singleton states z01 , z
0
2 ∈ C0 can occur in multiple ways.

The transition with the least resistance occurs when an agent experiments with a new action and becomes
content with the payoff it receives, while not affecting the payoffs of any other agent. Thus, rz01z02 ≥
c + 1 − ūi(z02) ≥ c. In general, however, this transition occurs through intermediate states in D, resulting
in rz01z02 ≤ c +

∑
i∈N 1 − ūi(z02) ≤ c + n ≤ 2c. Transitions through states in Cm are not considered because

these incur resistances of greater than 2c.
A similar argument can be applied to calculate the resistance rzm1 zm2 of a transition between two singleton

states zm1 , z
m
2 ∈ Cm in row 6. When the transition only requires one agent to experiment and be content

with a new action, rzm1 zm2 ≥ c + 1 − ūi(zm2 ) ≥ c. Other transitions occur through intermediate states in D,
resulting in

rzm1 zm2 ≤ min
z0∈C0,z1∈C1,...,zm−1∈Cm−1

c+
∑
i∈N

1− ūi(z0) + rz0z1 + · · ·+ rzm−1zm2

The worst case least resistance path z0 → zm2 occurs when n− 1 agents experiment and become content to
ensure z0 → z1, n−2 agents experiment and become content to ensure z1 → z2 and so on until n−m agents
experiment and become content to ensure zm−1 → zm2 . This can happen when intermediate states, which
are required to ensure that z0 → zm2 occurs with fewer experimenting agents, are not recurrent. Thus, we
get

rzm1 zm2 ≤ min
z0∈C0,z1∈C1,...,zm−1∈Cm−1

c+ n−
∑
i∈N

ūi(z
0)

+ (n− 1)c+

n−1∑
j1=1

1− ūj1(z1)︸ ︷︷ ︸
rz0z1

+ · · ·+ (n−m)c+

n−m∑
jm=1

1− ūjm(zm2 )︸ ︷︷ ︸
rzm−1zm2

≤ c+ n+ (n− 1)c+ n− 1 + · · ·+ (n−m)c+ n−m

Using the fact that c > n and summing over the series, we obtain the upperbound in (14). Again, transitions
through states in Cl, for l 6= m, are not considered because these may incur resistances of greater than r̄m.

Similar arguments can be used to calculate the resistance in row 7 of a transition between two singleton
states zl ∈ Cl and zm ∈ Cm, for 0 ≤ l,m < n and m 6= l. The least resistant paths require |m− l| agents to



experiment and become content, and other transitions occur through an intermediate state in D. Transitions
through other states in Cs, for 1 ≤ s < n, are not considered as the resistances of such paths can be higher
than r̄m.
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