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ABSTRACT

Regularized variants of Principal Components Analysis, especially
Sparse PCA and Functional PCA, are among the most useful tools
for the analysis of complex high-dimensional data. Many examples
of massive data have both sparse and functional (smooth) aspects
and may benefit from a regularization scheme that can capture both
forms of structure. For example, in neuro-imaging data, the brain’s
response to a stimulus may be restricted to a discrete region of acti-
vation (spatial sparsity), while exhibiting a smooth response within
that region. We propose a unified approach to regularized PCA which
can induce both sparsity and smoothness in both the row and column
principal components. Our framework generalizes much of the previ-
ous literature, with sparse, functional, two-way sparse, and two-way
functional PCA all being special cases of our approach. Our method
permits flexible combinations of sparsity and smoothness that lead
to improvements in feature selection and signal recovery, as well as
more interpretable PCA factors. We demonstrate the efficacy of our
method on simulated data and a neuroimaging example on EEG data.
Index Terms—regularized PCA, multivariate analysis

1. INTRODUCTION

Principal Component Analysis (PCA) is a fundamental technique
for dimension reduction, pattern recognition, and visualization of
multivariate data. In the early 2000s, researchers noted that naive
extensions of PCA to the high-dimensional setting produced unsat-
isfactory results, a finding later confirmed by advances in random
matrix theory [1]. To address this limitation, many regularized vari-
ants of PCA were proposed, wherein the principal components were
estimated under smoothness or sparsity assumptions [2]-[7]. Rather
than reviewing this large literature, we instead refer the reader to
the recent reviews of Hall [8], focusing on functional (smooth) PCA
(FPCA) and of Zou and Xue [9], focusing on sparse PCA (SPCA).
Given the importance of both FPCA and SPCA, it is natural to ask
whether it is possible to combine these approaches, yielding a unified
approach to sparse and functional PCA (SFPCA). We show that
this is indeed possible and present a unified optimization framework
for doing so. Our proposed approach unifies much of the existing
literature on regularized PCA; standard PCA, SPCA, FPCA, two-way
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SPCA, and two-way FPCA are all special cases of our approach,
suggesting that it is, in some sense, the “correct” generalization.

Our unified SFPCA method enjoys many advantages over exist-
ing approaches to regularized PCA: i) because it allows for arbitrary
degrees and forms of regularization, it is conducive to data-driven
determination of the appropriate types and amount of regularization
for a given problem; ii) because it unifies many existing methods, it
inherits the desirable properties of both SPCA and FPCA, including
superior signal recovery, automatic feature selection, and improved in-
terpretability; and iii) it admits a tractable, efficient, and theoretically
well-grounded algorithm.

Throughout this paper, we adopt the low-rank perspective on
PCA and assume that our observed data X € R"*? arises from a
low-rank structure X = Zle drurvl + E, where the elements
of E are independently and identically distributed with mean 0. We
refer to the vectors {uy }f—; € R™ and {vx}/—; € RP as the left
and right singular vectors respectively. Given X, its leading singular
vectors can be estimated by solving the singular value problem:

T
argmax u Xv D
u€B"™ ,veB?

where B" = {@ € R™ : ||x||> < 1} is the unit ball in R™. (Some
authors require ||ull2 = ||v]]2 = 1, but, because the objective is
linear in both w and v, solutions to (1) lie on the boundary and this
does not fundamentally change the problem.) Since the following
singular vectors can be recovered by solving Problem (1) on a “de-
flated” X, throughout this paper we principally focus on the leading
singular vectors. Assuming that X has previously been centered, this
approach is known to be equivalent to applying the eigenproblem
formulation of PCA to both X X7 and X7 X.

2. A SPARSE AND FUNCTIONAL SINGULAR VALUE
FORMULATION OF PCA

Taking the singular value problem (1) as a starting point, Huang et al.
[4] proposed two-way FPCA by adding a product smoothness penalty

argmax u’ Xv — Mulg, 0|3,
ueB” ,veﬁp
where ||u|%, = u” Syu for some positive-definite S, (similarly
for v). Typically, we take S, = I + @, where €, is the
second- or fourth-difference matrix, so that the ||u||%,, penalty term
encourages smoothness in the estimated singular vectors. Similarly,

Allen et al. [7] proposed two-way SPCA by adding sparsity inducing
penalties to the singular value problem (1):

arg max uT Xv — AuwPu(u) — Ay Py(v)

u€B”,veB?
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Fig. 1. Three constraints implicit in the ill-posed naive formulation
of SFPCA: sparsity constraint (¢1-ball), unit norm (¢2-ball), and
smoothness (elliptical region). In general, it is difficult for a point
to lie on the boundary of all three regions simultaneously, leading to
degenerate solutions to Problem (2).

where P, and P, are sparsity inducing penalties. (This is the La-
grangian form of the method of Witten et al. [5].) Given the success
of these two methods, it is perhaps natural to perform SFPCA by
adding both smoothness and sparsity penalties to Problem (1):

arg max uT Xv— AuwPu(u) = Ay Py (v) — )\”u”?Su ||'U||2Su 3]
ueB” U cB?

Surprisingly, this natural generalization fails, often spectacularly!

To see why this occurs, we note that Problem (2), with v held
fixed, is actually attempting to satisfy three different constraints on
independently: a standard norm constraint, a smoothness constraint,
and a sparsity constraint. As shown in Figure 1, unless all three reg-
ularization parameters (\, &.,, Aoy are carefully chosen, this results
in a form of “regularization masking,” whereby it is impossible for
the solution to Problem (2) to satisfy all constraints simultaneously.
For the general case of two-way SFPCA, where we impose multiple
constraints on both w and v, this phenomenon is compounded.

To address the problem of regularization masking, we instead
propose the following formulation of SFPCA:

u" Xv — Ao Pu(t) — Ay Py (v) A3)

arg max
—n —p
uG]BSu ,'UGJBSU

where @gu is the unit ellipse of the S,,-norm, i.e., E’;u ={ueR":
ul Syu < 1}. As we will see below, this formulation is the “correct”
generalization of many of the regularized PCA formulations previ-
ously proposed in the literature. Comparing our SFPCA formulation
(3) with the naive formulation (2), we note two key differences: firstly,
we only use a sparsity penalty in the objective function, moving the
smoothness terms to the constraints to avoid regularization masking;
secondly, we replace the unit ball constraint with a more general unit
ellipse constraint. Since the unit ball constraint exists only to ensure
identifiability of Problem (1), replacing it with a unit ellipse constraint
simplifies the problem and ameliorates regularization masking. The
benefits of this reformulation in eliminating regularization masking
are formalized in Theorem 1 below.

Before proceeding, we make two regularity assumptions which
we will use throughout our subsequent theoretical analysis:

Assumption 1. In the SFPCA problem (3), with So = I + a4, 2
and Sy = I + Sy for aw, o > 0, the following hold:

(i) The smoothing matrices Q,, . are positive semi-definite.

(ii) The penalty terms Py, Py take values in R>q and are positive
homogeneous of order one, i.e., P(cx) = cP(x) forall ¢ > 0
and all x.

Under these assumptions, our formulation of SFPCA (3) is well-
posed and avoids many of the pathologies associated with other
formulations:

Theorem 1. Suppose Assumption 1 holds and let (u*,v™) be the
optimal points of the SFPCA problem (3). Then the following hold:

(i) There exist values Ay ™ and N3 such that, if Ay, > A or
if Ao > A%, then the solution to Problem (3) is trivial in the
sense (u*,v*) = (0,0).

(i) If A < AR and Ao < A5, the SFPCA solution (u™,v*)
depends on all (non-zero) regularization parameters.

(iii) ||u*||s,, is equal to either 1 or 0, with the latter occurring onl
w q g only
when Ay, > A2 or Ay > Ay™*. An analogous result holds
Jorv™.
(iv) (u*,v") do not suffer from scale non-identifiability. (That is,
(cu*, ¢ v*) is not a solution for any ¢ > 0 except ¢ = 1.)

The requirements of Assumption 1 are in fact quite weak and allow for
nearly all the sparsity and smoothness structures previously proposed
in the literature, including convex sparsity-inducing penalties (e.g.,
the lasso [10]), structured-sparsity penalties such as the group or fused
lasso [11], [12], and penalties based on the generalized lasso [13], as
well as more exotic penalties such as the SLOPE penalty of Bogdan et
al. [14]. As the following theorem shows, for various choices of the
regularization parameters, SFPCA can yield the solution to standard
PCA (SVD), SPCA, FPCA, two-way SPCA, and two-way FPCA:

Theorem 2. Suppose Assumption 1 holds and let (u*,v™) be the
optimal points of the SFPCA problem (3). Then the following hold
(up to a sign factor and unit scaling):

(i) If Au, Mo, Qu, iy = 0, then u™ and v* are the first left and
right singular vectors of X.

(it) If Ay, Qy, 0ty = 0, then u”* and v* are equivalent to the
SPCA solution of Shen and Huang [15].

(iii) If o, @y = 0, then u* and v™* are equivalent to the two-way
SPCA solution in Allen et al. [7], itself a special case of two-
way sparse GPCA with the generalizing operators Q, R both
identity matrices. (This is also the Lagrangian form of Witten
etal. [5].)

(iv) If Au, Av, @ = 0, then u* and v* are equivalent to the
FPCA solution of Silverman [2] and Huang et al. [3].

(v) If Au; Ao = 0, then u* and v* are equivalent to the two-way
FPCA solution of Huang et al. [4].

For parts (ii) and (iii), equivalencies hold for the appropriate Py, (-)
and P, (-) employed in the referenced papers.

3. COMPUTATION OF SPARSE AND FUNCTIONAL
PRINCIPAL COMPONENTS

We next present an efficient algorithm for computing sparse and func-
tional components by solving Problem (3). The key to our algorithm
is the observation that, if P,,, P, are convex functions, then Problem
(3) is a bi-concave problem in u and in v, where each subproblem
is equivalent to a penalized regression problem. This suggests an
alternating proximal gradient ascent strategy, which yields the fol-
lowing rank-one SFPCA Algorithm, where Amax(A) is the leading
eigenvalue of A and prox;,(z) = argmin,, ;|| — z||3+ f(=) is
the proximal operator of f:
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Fig. 2. Simulated factors used for the simulation study in Section 4 and estimates thereof: v; (red, dotted-dashed); v2 (blue, dashed); and vs
(black, dotted). Only SFPCA is able to simultaneously identify the spatial sparsity and smooth structure of the sinusoidal pulses.

Algorithm 1 Rank-1 SFPCA Algorithm (Proximal Gradient Variant)

1. Initialize @, © to the leading singular vectors of X and set
L'u. = )\max(su) and L'u = )\max(sv)

2. Repeat until convergence:

(a) u-subproblem: repeat until convergence:

Pul) (u+ Lyt (X — Suu))

. u
U=
u/||uls,

(b) v-subproblem: repeat until convergence:

U = PrOX

[ulls, <1
otherwise

V= ProXa, o (v + L5t (XTﬁ - Sw))
Ty v

. v
v =
v/||v]ls,

3. Return @ and ¥, optionally scaled to have (Euclidean) norm 1

[v]ls, <1
otherwise

In the final step, & and © may be rescaled to have unit norm, as with
standard PCA and other regularized variants, but if so, they may no
longer be feasible for Problem (3). Despite the non-convexity of the
SFPCA problem (3), Algorithm 1 comes with the following strong
convergence guarantees:

Theorem 3. Under Assumption 1, Algorithm 1 has the following
properties:

(i) Step 2(a) converges to a stationary point of

arg min éHXv — w3 4+ A Pu(u) + C%uuTﬂuu. 4)

ueBg,,

Furthermore, if Py, is convex, the convergence is monotone, at
an O(1/K) rate, and to a global solution. Step 2(b) converges
analogously for v and P,.

(it) If Py is convex, Step 2(a) yields a global solution to (3), consid-
ering v fixed; if P, is non-convex, Step 2(a) yields a stationary
point for Py, considering v fixed. An analogous result holds
for ¥ returned by Step 2(b), with u considered fixed.

(iii) If Pu, Py are both convex, then (@, ) returned by the SFPCA
Algorithm (1) is both a coordinate-wise global maximum (Nash
point) and a stationary point of Problem (3).

‘We note that the convergence rates associated with steps 2(a) and
2(b) can be further improved to O(1/K?) if an accelerated proximal
gradient scheme is instead used to solve the u- or v-subproblems
[16], though monotonicity may be lost. Additionally, in the case

where a,, = 0, then subproblem (4) is solved by normalizing
Prox,  p, (.)(Xwv) and hence converges in a single step.

Since the SFPCA problem (3) is non-convex, the estimates re-
turned by Algorithm 1 depend on the initial values chosen for w and
v. In practice, we have found the unregularized singular vectors to
provide a robust and easily computed initialization. More complex
constraints can be added to SFPCA by incorporating them in the
proximal operators applied in steps 2(a) and 2(b) of Algorithm 1.
In particular, we can impose non-negativity constraints of the form
considered by Allen and Maleti¢-Savati¢ [6] by incorporating the
indicator function of the positive orthant into the penalty functions
P.,, P,; for many popular penalties, this yields a positive proximal
operator with a closed form, e.g., the positive-part operator when the
underlying penalty is the lasso.

Algorithm 1 returns estimates of the leading left and right regu-
larized singular vectors of X only. Additional regularized singular
vectors can be obtained by iteratively applying Algorithm 1 to a
suitably deflated data matrix. In our simulation and case studies
in the next two sections, we use Hotelling’s subtraction deflation
(X = X — dud” where d = 47 X0), though the alternative
deflation schemes proposed by Mackey [17] could be also be used.

Because Algorithm 1 essentially only requires solving penal-
ized regression problems, it avoids the expensive matrix inversion
or eigendecomposition steps common to other regularized PCA vari-
ants. For problems with closed-form proximal operators that can be
evaluated in linear time, the computational cost of Algorithm 1 is
O(n? + p*), dominated by the cost of multiplication by S, and S..
As smoothing matrices typically have a banded structure, additional
problem-specific improvements are often possible. We also note that
randomized methods [18] can be used to efficiently obtain estimates
of the leading singular vectors of X used to initialize w, © in Algo-
rithm 1, thereby avoiding an expensive computation in very large
problems.

3.1. Selection of Regularization Parameters

While Algorithm 1 provides an efficient and scalable approach to
fitting SFPCA on large data sets, we have not yet addressed the ques-
tion of tuning various regularization parameters. The presence of four
independently chosen tuning parameters — Ay, Ay, Qa, Gy — Would
appear to be a major drawback of our formulation. Indeed, cross-
validation over a four dimensional grid of regularization parameters
would pose a significant computational burden. Instead we adapt the
strategy of Huang et al. [4], who exploit the connection between two-
way FPCA and penalized regression methods to develop an efficient
tuning scheme.

In particular, we propose a greedy “coordinate-wise” Bayesian In-
formation Criterion (BIC) optimization scheme. We begin by holding
the tuning parameters associated with v fixed (aw, Av) and choosing
Qy, and A, to optimize the BIC of the u-subproblem (4). We then



| TWFPCA SSVD PMD SGPCA (¢ =1) SGPCA(c=5)  SFPCA
TP - | 0.897 (.004) | 0.568 (.005) 0.768 (.008) 0.820 (.004) | 0.935 (.004)
v, FP - | 0323 (.080) | 0.001 (.000) 0.006 (.002) 0.012 (.002) | 0.052 (.032)
tZ | 0.153(.055) | 0.625(112) | 2.220(.035) 0.726 (.024) 0.369 (.007) | 0.189 (.062)
TP ~ [ 0.783(.007) | 0.657 (.006) 0.445 (.010) 0.005 (.002) | 0.713 (.008)
n—100 | V2 FP - | 0320 (.080) | 0.106 (.004) 0.002 (.001) 0.257 (.003) | 0.047 (.031)
' r/ | 5.980(.346) | 0.549 (.105) | 0.597 (.012) 0.829 (.024) 6.150 (.104) | 0.438 (.094)
TP — [ 0.771(007) | 0514 (.007) 0.499 (.015) 0.064 (014) | 0.883 (.00%)
vs FP - 1 0316 (.079) | 0.066 (.004) 0.004 (.002) 0.128 (.014) | 0.054 (.033)
r/ | 3.660(270) | 0.855(.131) | 1.270(.023) 1.010 (.038) 4.000 (.093) | 0.468 (.097)
1SE | 0.668 (.003) | 0.760 (.002) | 1.000 (.008) 0.737 (.009) 0.936 (017) | 0.450 (.003)
TP -1 0.973(.002) | 0.509 (.003) 0.921 (.003) 0.904 (.002) | 0.987 (.001)
v, FP - 0.322(.080) | 0.000 (.000) 0.005 (.002) 0.015 (.002) | 0.068 (.037)
r/ | 0.768 (.124) | 0.487 (.099) | 15.700 (.292) 0.553 (.017) 0.443 (.011) | 0.152 (.055)
TP ~ [ 0919 (:004) | 0.773 (.003) 0.839 (.004) 0.011 (.003) | 0.967 (.003)
n—s00 | vz FP - 0319(.080) | 0.000 (.000) 0.038 (.003) 0.323 (.002) | 0.048 (.031)
r/ | 52300 (1.02) | 0.428 (.093) | 1.310(.023) 0.488 (.024) 52.800 (.935) | 0.320 (.080)
TP -~ [ 0.043(.003) | 0.530 (.004) 0.849 (.006) 0.005 (.002) | 0.972 (.002)
vs FP - 0314(.079) | 0.000 (.000) 0.015 (.003) 0.212 (.002) | 0.060 (.035)
r/ | 33.100 (.813) | 0.545(.104) | 5.940 (.089) 0.631 (.026) 34.200 (.543) | 0.131 (.051)
rSE | 1.170 (.002) | 0.790 (001) | 3.380 (.016) 0.809 (.003) 1,360 (.007) | 0.655 (.001)

Table 1. Performance of various regularized PCA methods for the simulation study described in Section 4. Results are averaged over 50
replicates, with standard errors given in parentheses. For each method, the true positive rate (TP), false positive rate (FP), relative angle
compared to that of the SVD (r£), and relative squared error compared to that of the SVD (rSE) are reported. (TP and FP are not reported for
the non-sparse TWFPCA.) The best performing method on each metric is bold-faced. SFPCA consistently outperforms other methods.

hold «,, and \., and optimize the BIC of the v-subproblem. If these
searches are embedded within a warm-starting scheme for steps 2(a)
and 2(b) of Algorithm 1, this can be achieved with minimal additional
computational cost. The degrees of freedom and associated BIC of
the u- and v-subproblems can be established using the techniques
proposed by Kato [19] and Tibshirani and Taylor [20], though we
provide an explicit expression for the common case of an ¢; sparsity
penalty:

Theorem 4. Suppose P, (u) = ||u||1. Then an unbiased estimate
degrees of freedom of the w-subproblem (4) is given by

dE(a) = Tr [(Iw 4 aung)*j ~ T[4 — 0]

where A denotes the indices of the estimated non-zero elements of
@ and 2 denotes the corresponding submatrix of Q. Hence, the
approximate BIC to be optimized for subproblem (4) is given by

BIC(4) = log Han - a||§} + %log(n) dt(a).

One potential shortcoming of our proposed approach is that the greedy
search is not guaranteed to converge and may enter an infinite loop
as it attempts to optimize the regularization parameters. To address
this, non-convergence guards (e.g., a maximum number of steps) may
be added, but in our experience, however, the greedy search tends to
stabilize quickly and guards against non-convergence are not needed
for most problems. As shown in the next two section, this scheme
performs well in practice, selecting flexible combinations of sparsity
and smoothness in a tractable data-driven manner.

4. SIMULATION STUDY

In this section, we compare the performance of our SFPCA method
(3) with several competitors including the two-way FPCA (TWFPCA)
method of Huang et al. [4], the sparse SVD method (SSVD) of Lee
et al. [21], the penalized matrix decomposition (PMD) of Witten

et al. [5], and the sparse generalized PCA (SGPCA) of Allen et
al. [7]. We simulate data according to the low-rank model X =
S dyugvl + E where Ei; ~ N(0,1). We fix K = 3 and
p = 200 and sample the left singular vectors uniformly v from the
space of orthogonal matrices. The signal in the right singular vectors
v, each of which have a combination of sparsity and smoothness,
takes the form of a sinusoidal pulse. The scale-factors d;, which
control the signal-to-noise ratio, vary with the sample size as d1 =
n/4,ds =n/5,ds =n/6.

The SGPCA generalizing operators were constructed using the
method suggested by Allen and Maleti¢-Savati¢ [6] with kernel

e~/ for Chebychev distances between time points ¢,j. The
smoothing matrices €., 2, were fixed as squared second difference
matrices. The sparse methods were implemented using an unweighted
{1 -penalty. Tuning parameters for each method were selected using
the authors’ recommended approach. For SFPCA, the greedy BIC
method described above was used.

Our qualitiative results are shown in Figure 2, where we see that
SFPCA clearly outperforms the competing methods. The non-sparse
standard SVD and TWFPCA are not able to successfully localize the
sinusoidal pulses in time, while the non-smooth PMD and SGPCA
are not able to recover the smooth sinusoidal structure.

Quantitative results are presented in Table 1, where we report
the true positive rate (TP) and false positive rate (FP) for recover-
ing the support of v, as well as two measures of smoothness, the
relative angle and the relative squared error. The relative angle is
given by r/ = (1 — |97 v*|) /(1 — |Ddypv*|) where v* is the true
signal and ¥svp is the SVD-estimated singular vector; smaller values
of rZ indicate better performance, with values less than one signi-
fying more accurate estimation than the standard SVD. The relative
squared error measures the reconstruction accuracy and is given by
SE = | X* — X||%/||X* — X>S"P||2; smaller values of rSE indi-
cate better performance, with values less than one signifying more
accurate estimation than the standard SVD. (Note that that for both
measures, we consider reconstruction of the true mean matrix and
true right singular vectors, else it would be impossible to outperform
the SVD.) SFPCA consistently outperforms the other regularized



Fig. 3. EEG Case Study: first five spatial and temporal SFPCA components (left) and ICA components (right). While SFPCA and ICA
identify similar structures in the first two components, the temporal sparsity of the SFPCA components makes them more readily interpretable.
Additionally, the SFPCA finds structure in the subsequent components that ICA does not identify.

PCA methods and, as measured by rZ and rSE, the standard SVD.
Clearly, SFPCA is able to accurately and adaptively recover principal
components with complex structure, yielding improved statistical per-
formance. As we will see in the next section, the structured principal
components yielded by SFPCA are also more interpretable, mak-
ing SFPCA a useful tool for exploratory data analysis and scientific
model construction.

5. CASE STUDY: EEG DATA

We close with an application of SFPCA to a sample of electoen-
cephalography (EEG) data taken from the UCI Machine Learning
Repository [22]." These data consist of n = 57 EEG channels
with corresponding scalp locations and p = 5376 time points, corre-
sponding to 21 epochs of 256 time points each. Back-block pattern
recognition techniques, especially independent components analy-
sis (ICA), are commonly applied to EEG data to separate sources
from the limited channel recordings, find major spatial patterns and
corresponding temporal activity patterns, find artifacts in the data,
and develop visualizations [23]. SFPCA was applied to the EEG
recording from the first alcoholic subject over epochs relating to non-
matching stimuli. The spatial smoothing matrix, £2.,, was specified
as the weighted squared second differences matrix using spherical
distances between the recording channel locations and the temporal
smoothing matrix, €2,, was taken as the matrix of squared second
differences. Tuning parameters for SFPCA were selected using the
greedy scheme described above.

In Figure 3, we compare the SFPCA results with those obtained
from the FastICA method [24]. At a high level, the patterns identified
by SFPCA and ICA are similar, identifying the same major temporal
patterns and spatial source localization, but the SFPCA results are
much more directly interpretable. The improvements afforded by
SFPCA are clearly seen by comparing the first two components,
where the spatial patterns are similar but SFPCA identifies a much
more structured temporal pattern. Furthermore, SFPCA is able to
identify more signals: the third SFPCA vectors identify a singular
“pulse” which is spatially and temporally localized, while the third
ICA component has no discernable structure.

'https://archive.ics.uci.edu/ml/datasets/eeg+
database

Interestingly, the greedy BIC scheme consistently selects A,, = 0,
suggesting that no sparsity in the EEG channels is needed. Conversely,
the greedy scheme consistently selected non-zero smoothing and tem-
poral sparsity parameters for each of the first five SFPCA components
(o € [10,12], iy € [0.5,10], Ay € [1,2.5]), indicating that our
method is able to flexibly choose the optimal degree of smoothness
and sparsity for recovering major patterns in the data.

6. DISCUSSION

We have proposed SFPCA, a flexible yet coherent approach to
sparsity- and smoothness-regularized PCA. This flexibility gives
SFPCA the ability to adapt to the types and amounts of regular-
ization appropriate for a given problem in a data-driven manner.
SFPCA unifies much of the existing literature on regularized PCA
and allows for as-of-yet-unexplored generalizations by varying the
penalty functions and smoothing matrices. In our simulation and
case studies, SFPCA exhibits superior statistical performance and
improved interpretability. As special cases of SFPCA have been
shown to lead to consistent estimation of principal components,
even in the high-dimensional context [2], [25], we conjecture that
the general SFPCA framework also yields consistent estimates, an
interesting topic for future research.

The advantages of SFPCA are not purely theoretical, however:
Algorithm 1 provides a framework for solving the SFPCA Problem,
which is fast and scalable for general problems, while also easily
modified to take advantage of additional computational efficiencies
afforded by specific problems. As shown in Theorem 3, Algorithm
1 enjoys attractive convergence properties despite its inherent non-
convexity. Additionally, the greedy BIC scheme we have proposed
allows for computationally efficient determination of regularization
parameters. MATLAB scripts implementing SFPCA are available
from the first author’s website. Supplemental materials for this paper
including proofs and additional experiments are available at https:
//arxiv.org/abs/1309.2895.

The advantages of SFPCA demonstrated here suggest additional
lines of research, including extensions to the multi-way (tensor) con-
text using the framework established by Allen [26] or to other widely-
used multivariate analysis techniques, such as partial least squares
(PLS), canonical correlation analysis (CCA), and linear discriminant
analysis (LDA).
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Supplementary Materials
A. PROOFS
Before proving the major results stated in the main body of the paper, we give three lemmas:

Lemma 1. Suppose f(x) : RP — Rxq is a non-negative function and is positive homogeneous of order one, i.e., f(cx) = cf(x) for all
x € RP and all ¢ > 0. Then, if V f () is a sub-gradient of f at x, then V f(cx) is also a sub-gradient for all ¢ > 0.

Proof. This follows immediately from the definition of a sub-gradient and the assumption of positive homogeneity. If \2i (z) is a sub-gradient
of f and @, then we have

fy) = f(@) + V@) (y—x) VyeR’

Substitute  — ca and y — cy for arbitrary ¢ > 0 to obtain
fley) > flex) + Vf(cx)" (cy —cx) Wy € R
Direct simplification yields

fley) > f(ex) + Vf(cx)" (cy — cx) Wy €R”
cf(y) = cf(®) + cVf(cx) (y—x) VyeRP
fy) > f(@)+ Vf(cx) (y —x) VyeR?

which implies that V f (ca) is also a sub-gradient of f and . O

Lemma 2. Suppose (u,v) are a global maximum of the SEPCA Problem (3). Then (u, v) satisfy the following Karush-Kuhn-Tucker (KKT)
conditions:

X0 — AV Po(t) — 274, Suu = 0
Yu([ulls, =1) =0
w' X — Ay Vo Py (v) — 275 8pv =0
Yo(|lv|ls, —1) =0 (v-complementary slackness)

(u-stationarity)
(
(
(
Yu >0 (u-dual feasibility)
(
(
(

u-complementary slackness)

v-stationarity)

Yo >0 (v-dual feasibility)
lulls, <1 (u-primal feasibility)
lvl|s, <1 (v-primal feasibility)

where 7o, and v, are the dual variables associated with the inequality constraints of the SFPCA Problem (3) and vy () denotes an arbitrary
sub-gradient of f and x: that is, any value satisfying f(y) > f(x) + Vf(x)" (y — ) forally € R.

Proof. Despite the non-convexity of the SFPCA Problem (3), many of the classical results of convex analysis, including the KKT conditions,
can be established for local minima under additional assumptions. Chapter 5 of Bertsekas et al. [1] gives an elegant presentation of these results.
In particular, we note that the SFPCA Problem (3) satisfies their CQ5c, a variant of Slater’s condition [2], for any local maximum as the point
(0, 0) is clearly strictly feasible. Additionally, we note that the feasible set E’;u X E@v is clearly regular in their sense of having well-behaved
normal and (polar) tangent cones (see, e.g., their Definition 4.6.3). Since any global optimum must be a local optimum, the desired result
follows. (The top right portion of their Figure 5.5.2 of Bertsekas ez al. [1] is useful in following their presentation.) O

Lemma 3. Suppose P, : RP — R is a positive-homogeneous function of order one. Let

. . . 1
. where U is a stationary point of — argmin = || Xv — w||3 + Ay Pu(u) + LuTQuu (5)
0 otherwise weRn 2 2

e {a/|fa|su where |[ul|s,, > 0
Then u™ is a stationary point of
argmaxu’ Xv — Ay, Py () (6)
ueBy,
(Note that Problem (5) is Problem (4) from the main text restated here for convenience.) Additionally, if Py, is convex, then t and u* are global
optima of their respective subproblems.



Proof. We note that this proof follows the proof of Theorem 2 of Allen et al. [3]. Following the proof of Lemma 2 holding v fixed (and
feasible), we have the following KKT conditions for Problem (6):
27uSutt” — Xv + A VP (u*) =0 (stationarity)
Yu(|lu*||s, —1) =0 (complementary slackness).

Similarly, the KKT conditions for @ in Problem (5) yield:
0=—(Xv—1) + AVPyu (&) + eyt = Syt — Xv + A\ VPyu(@) =0

where 4 + a4 = S, 4. Comparing the stationarity conditions for u* and 4, we see that they are equivalent up to the 2, term.
Let @@ = 4/27,,. Then the KKT conditions of Problem (5) imply:

0= Sutt — Xv + A\ VPy(02)
= 2948y — XU + Ay V Py (27 11)
= 294, Suit — X0 + A\ VP (1)

where the constant of 2+,, appearing in the sub-gradient could be removed using Lemma 1. From this we see that w satisfies the stationarity
conditions for Problem (6). Hence, if we take (u*, v) = (@/||4| s, , ||%||s. /2), we have a solution to the KKT conditions for Problem (6),
implying that we have a local solution. Additionally, if P, (-) is convex, then Problem (6) is concave, so the KKT conditions imply global
optimality.

More intuitively, if we compare the stationarity conditions for «™ and @ directly, we see that they differ only by the leading constant
factor of 2., suggesting that u™ oc . Since we know ™ is a unit-vector under the S,,-norm, we can guess u* = 4/||4|| s, , which, when
substituted into the KKT conditions, yields 7., = ||@||s,, -

With these results in hand, we are now ready to prove the main results of our paper, which we restate here for convenience.

Theorem 1. Suppose Assumption 1 holds and let (u™,v*) be the optimal points of the SFPCA problem (3). Then the following hold:
(i) There exist values Ay and \y'™* such that, if Ay, > Mgk or if Ay > Ay, then the solution to Problem (3) is trivial in the sense
(u*,v*) = (0,0).
(i) If A < AG2  and My < AP, the SFPCA solution (u*,v™) depends on all (non-zero) regularization parameters.
(iii) ||u"|| s, is equal to either 1 or O, with the latter occurring only when Ay > N5™* or Ay > N, An analogous result holds for v™.

(iv) (u*,v*) do not suffer from scale non-identifiability. (That is, (cu*, ¢~ v*) is not a solution for any ¢ > 0 except ¢ = 1.)

Proof of Theorem 1. Throughout the following, we continue the notation used in the proof of Lemma 3 and let (u*, v™) denote solutions to
the SFPCA problem (3), while © and © denote solutions to Problem (5) and its analogue in v:

. 't
o = argmin = ||[u” X — v|)3 4+ A Po(v) + Lo
verp 2 2

Part (i) From Lemma 3, we have that u* = 0 if and only if & = 0. The KKT conditions for Problem (5) show this occurs only when
AV P, (0) = Xv.

Hence, for any fixed v, we can find a value \;;™**, such that \,, > A\3;™** yields an all-zero solution. Taking the maximum over
allv € E’;v, we obtain Ay, ** as desired. An analogous result holds for \3**.

Additionally, we note that if uw = 0, then v = 0 satisfies the KKT conditions given in Lemma 2 and hence is a solution. Putting
these together, we note that if Ay, > A5 ™ or if A, > A3, then (u”, v™) = (0, 0), as desired.

Part (ii)) Now, we assume A\, < A5 and A, < AP, sou™ # 0 and v* # 0, and aw,, oy > 0. By the u-stationary term of the KKT
conditions given in Lemma 2, it is clear that ™ depends on both A\, and v, by way of S.,, as well as v™. A similar argument shows
that v™* depends on both A, and cv,, as well as u™, so transitively both w* and v* depend on all (non-zero) regularization parameters.

Part (iii) Consider the u-complimentary slackness condition given in Lemma 2, which implies that ,, > 0 if and only if ||u*||s, = 1. In the
proof of Lemma 3, we showed that solutions to the SFPCA KKT conditions are of the form (u*,v.) = (@/||4|| s, , || ¢/l s. /2)-
Hence, 7., = 0 if and only if & = 0, which, by Part (i), occurs when A, > Ai™* or A\, > Ag™*. Putting this together, if the
(u*, v™) are non-zero, then the boundary conditions must hold with ||u*||s,, = ||v*||s, = 1.

Part (iv) As shown in Part (iii), for non-trivial solutions we have ||u*||s, = ||v*||s, = 1, so the SFPCA problem does not suffer from
scale non-identifiability: that is, if (u,v) is a solution, we do not have additional solutions of the form (cu, ¢~ 'v) for ¢ > 0. If
P., P, are even functions (that is Py (—u) = Py(u) and P,(—v) = P,(v) for all u, v), the SFPCA problem still has a sign
non-identifiability.

O



Theorem 2. Suppose Assumption 1 holds and let (u*,v™) be the optimal points of the SFPCA problem (3). Then the following hold (up to a
sign factor and unit scaling):

(i) If Ay Avy Quy iy = 0, then u™ and v™ are the first left and right singular vectors of X.
(ii) If A, Qu, @y = 0, then u™ and v* are equivalent to the SPCA solution of Shen and Huang [4].

(iii) If Oy, ty = 0, then u™ and v* are equivalent to the two-way SPCA solution in Allen et al. [3], itself a special case of two-way sparse
GPCA with the generalizing operators Q, R both identity matrices. (This is also the Lagrangian form of Witten et al. [5].)

(iv) If Auy Av, @ = 0, then u* and v* are equivalent to the FPCA solution of Silverman [6] and Huang et al. [7].
(v) If Auy Ao = 0, then u* and v* are equivalent to the two-way FPCA solution of Huang et al. [8].
For parts (ii) and (iii), equivalencies hold for the appropriate P (-) and Py (-) employed in the referenced papers.
Proof of Theorem 2. We establish the equivalence of several cases of SFPCA with approaches previously proposed in the literature.

Part (i) Ay = Ay = aw = @, = 0. In this case, the SFPCA Problem (3) simplifies to

T
argmax u Xv
weR™:uTu<1
veRP:w T o<1

which we recognize as the Singular Value Problem (1), which defines standard PCA.

Part (i) Aw = @w = @ = 0. The SPCA estimator of Shen and Huang [4] is given by

v* = 0/||0|| where @, 9 = argmin | X — uv” |7 + Ao Po(v)
=n
Ry

Taking the KKT conditions with respect to v, we obtain:
XT4 -0 = A VPy(9) =0
Comparing this to the KKT conditions for SFPCA derived in Lemma 2 with A\, = qtee = @y =0,
X4 — 27,5 — AoV Py (0) =0
(8]~ 1) =0,

we see that the only difference is the factor of 2+,, in the stationarity conditions. As before, we define © = 2+,,© and re-write the
SPCA stationarity conditions as

0=X"0—0—-AVPy(9) = X"t — 2750 — AoV Py (2700) = X"t — 275D — Ao V Py (),
where the final equality follows from Lemma 1. This clearly matches the v-stationarity condition for SFPCA and the scaling step

implies the complementary slackness condition holds, showing the two solutions are equivalent.

Part (iii)) & = @ = 0. In this case, the SFPCA Problem (3) simplifies to

T

argmax u Xv — Ay Pu(u) — Ay Py (v)
weR™:uTu<1
’UGRPZ’UT’USI

which is clearly equivalent to the sparse GPCA method of Allen et al. [3, Equation 6] with the generalizing operators @, R both set
equal to identity matrices. For non-convex problems such as SFPCA (3), it is not always the case that constraints can be re-written as
Lagrange multipliers and penalty functions; conditions under which this is possible are discussed in Chapter 5 of Bertsekas et al. [1]
and do indeed apply here. (See also the discussion in the proof of Lemma 2.)

Part (iv) Ay = Ay = an, = 0. Huang et al. [7] consider a penalized regression formulation of FPCA:
1
§||X —uv’ |7 4 au" uv’ Qyv.
They show that v of this formulation is equivalent to (a discretization of) the earlier FPCA formulation of Silverman [6]:

arg max v XT Xv subject to vTva =1
vERP

‘We compare this to our SFPCA formulation with only «,, non-zero:

arg max uT Xv subject to uTu < 1and vTva <1
u,v



Examination of the KKT conditions reveals that, for given v, the above criterion is maximized by taking u = Xv/vVvT XT Xv.
Substituting this into the above, we see that SFPCA simplifies to

argmax Vo7 XTXv  subject to vl S, <1

v

As shown in Theorem 1, the constraint must hold tightly (since there are no sparsity penalties), and the /- transform is monotonic, so
this is clearly equivalent to the FPCA formulation of Silverman [6], which establishes the desired equivalence for the right singular
vectors. For the left singular vectors, Huang et al. [7] show that the solution to their FPCA formulation is obtained by an iterative
method containing the update u := Xwv/||v|| s, ; this is exactly the same as our expression for u modulo a normalizing factor.

Part (v) Aw = Ay = 0. Huang et al. [8] consider two-way FPCA as:

T T
I+Q . I+9Q
arg max uWTXv- Y I+ Qu)u-v (I+ D)o
UuER™ vERP 2
This gives stationarity conditions of the form u oc (I + Q,,) ' Xv and v o (I + ©,)~* X v. (Note that Huang et al. [8] define
their smoothing matrices S.,, S+ as the multiplicative inverses of the definitions we use.) With A,, = A, = 0, the SFPCA KKT
conditions derived in Lemma 2 simplify to:
Xv" — 27,8, u" =0
ulllu s, —1) =0
XTu" — 29, 8,v" =0
Yo([v"lls, —1) =0
From these, we find u* o« S, Xv* and v* S, ' XTw*, which clearly match the two-way FPCA stationary conditions if we
take av,, = iy = 1, thereby establishing the desired equivalence. We note, however, that the scaling factors used by SFPCA and
the method of Huang et al. [8] are different, as we take u = S;lX'u/'vTXTS;lX'v while they take u = S;lX'v/vTSv'v and
similarly for the v-normalization. This change in scaling is essentially cosmetic, as it does not effect the direction or relative weights
of the estimated principal components. O
Theorem 3. Under Assumption 1, Algorithm 1 has the following properties:
(i) Step 2(a) converges to a stationary point of

arg min %HXv — w3 + A Pu(u) + %uTﬂuu. 4)

u€eBy,
Furthermore, if Py, is convex, the convergence is monotone, at an O(1/K) rate, and to a global solution. Step 2(b) converges analogously
for v and P,,.
(ii) If Py is convex, Step 2(a) yields a global solution to (3), considering v fixed; if P, is non-convex, Step 2(a) yields a stationary point for
Py, considering v fixed. An analogous result holds for © returned by Step 2(b), with G considered fixed.

(iii) If Py, Py are both convex, then (G, ) returned by the SFPCA Algorithm (1) is both a coordinate-wise global maximum (Nash point) and
a stationary point of Problem (3).

Proof of Theorem 3. We first note that the u-subproblem (4) can be re-written as

T

; T . u Syu

arg min —u" Xv+ Ay Pu(u) = argmin ——=—

uedy uerr 2
u

T
Suu —u" Xv+ A Pu(u) + iy (u)

smooth non-differentiable

where ¢ represents the (infinite) indicator of the feasible set: that is, tx () is zero if x is an element of X" and (positive) infinity otherwise. We
note that the use of the indicator function here is justified despite possible non-convexity because it always holds as a tight constraint since have
a feasible point at 0.

The first (smooth) term is strictly and strongly convex, since S, > 0 by construction, and has a continuous gradient whose Lipschitz
constant is given by the leading eigenvalue of S,,. We will make repeated use of the proximal mapping of the non-differentiable term,
AuPu + 157, given by prox () = arg min, 1|z — (|3 + f(z) for a given function f. For convex functions, the existence and uniqueness

of the proxirﬁal mapping follow immediately from the properties of strongly convex functions; the properties of the proximal mapping were
studied for a wide class of so-called prox regular non-convex functions by Poliquin and Rockafellar [9], [10]. Where the proximal mapping
is not unique, any minimizer can be used in Algorithm 1. Gong et al. [11] give proximal operators for a range of widely-used convex and
non-convex penalty functions.

We note a general result for any f satisfying the second part of Assumption 1 (positive-homogeneity):

et 't .
prox, ., (@) = argmin g 1@ - 23 + f(=) + 15 (=) = argmin g @ — =3 + (=) = prolsy_ (prox, ()
wu z u zeBgu w



where pProj () denotes the projection of & onto X'. This follows from Theorem 4 of Yu [12] where we take h(-) = tg., which is clearly an
increasing function, and ||z|| = & S,a. (See also Corollary 1 of Yu [12].) Since we assume positive homogeneity of £, it is in the class of
functions covered by that theorem and the desired result holds.

Part (i) Step 2(a) of Algorithm 1 is a standard proximal gradient iteration with fixed step-size applied to the u-subproblem (4). If P, is
convex, then monotone O(1/K) convergence to a global solution follows from well-known results on proximal gradient methods:
see, e.g., Theorems 10.21 (O(1/K) convergence), 10.23 (Fejér Monotonicity), and 10.24 (convergence to a global optimum) of
Beck [13]. If P, is non-convex, convergence to a stationary point follows from Theorem 10.15(d) of Beck [13]. Additionally, we
note that, even in the nonconvex setting, step 2(a) monotonically decreases the objective function of the u-subproblem (4) Beck [13,
Theorem 10.15(a)].

Part (ii) This follows immediately from Lemma 3 and Part (i).

Part (iii) We note that Algorithm 1 can be considered a block-coordinate ascent algorithm for the SFPCA problem (3), where a proximal
gradient scheme is used to solve each subproblem. While SFPCA (3) is non-concave, it is block bi-concave in w and v, allowing for
certain convergence results to be used. In particular, for P, P, both convex, we can use the results of Gorski et al. [14, Theorem
4.7] to establish convergence to a so-called Nash point (coordinate-wise optimum) satisfying

flu,v*) < f(u*,v*) forallu € By,
f(u*,v) < f(u*,v*) forallv € By,

where f(wu,v) is the SFPCA objective f(u,v) = u” Xv — Ay Pu(t) — Ay Py (v). (Theorem 2.3 of Xu and Yin [15] generalizes
this approach to approximate solutions of the subproblem, at the cost of requiring strong convexity.)

To show that the output of Algorithm 1 is also a stationary point, we use the regularity analysis of Tseng [16]: in particular, we
note that the smooth part of our objective (fo(u,v) = u” Xy) is (Gateaux-)differentiable everywhere, so Tseng’s assumption Al
holds.? This establishes regularity everywhere, including at each coordinate-wise maximum, which implies each Nash point is also a
stationary point. O

We conjecture, but do not prove here, a generalization of the above: if P, or P, are non-convex, Algorithm 1 is still guaranteed to converge to
a coordinate-wise local maximum (local Nash point). Xu and Yin [17] prove a related result, establishing convergence to a critical point, but
where only a single gradient step is taken instead of fully solving the u- and v-subproblems as we do in Algorithm 1.

Additionally, we note that experimental evidence suggests neither positive-homogeneity nor convexity of P,, P, are required for
convergence of Algorithm 1, though we are unable to provide a full proof. Similar results have been previously demonstrated for coordinate
descent schemes applied to related problems [18, Theorem 4] [19, Proposition 1] [17, Theorem 3.1], though they do not consider constraints
and require a quadratic smooth term which we do not have here.

Finally, we note that in Step 2(a) of Algorithm 1, we self-normalize w under the S,,-norm in order to obtain @ at each step. Algorithmically,
this can be considered a projected gradient scheme, where projection is required to ensure feasibility at each step. In the non-sparse case
(Aw = 0), this update has the closed form @ = S;* Xv/||S; ' Xv|s, = S;le/HX'vHS;l, which is closely related to the updates in the
two-way functional PCA algorithm of Huang et al. [8], but using a different normalization. As Huang et al. [8] discuss, this is equivalent
to the more standard “half-smoothing” approach popularized by Silverman [6]. (As Allen [20] discusses, this equivalence does not extend
straightforwardly to the higher-order array (tensor) context.)

Theorem 4. Suppose P, (u) = ||ul||1. Then an unbiased estimate degrees of freedom of the u-subproblem (4) is given by
~ -1
df(’l},) =Tr |:<I\.A| + Ozuﬂﬁ) :| ~ Tr [I‘A‘ — auﬂjﬂ

where A denotes the indices of the estimated non-zero elements of 4 and Q7 denotes the corresponding submatrix of 2,,. Hence, the
approximate BIC to be optimized for subproblem (4) is given by

BIC(4) = log EHXv - aué] + %log(n) dt(a).

Proof of Theorem 4. Consider the u-update with ¢;-penalization [21]. In this case, the u-subproblem (4) is essentially a generalized elastic
net problem, [22] which can be analyzed using the techniques of Tibshirani and Taylor [23]. In particular, we re-write Problem (4) as a lasso
problem with an augmented design matrix:

L) (X I
argfnnZ 0 chol(a.2) “

where X is the augmented design matrix X = (I Chol(auQu)T) " Then the degrees of freedom are given by

2

+ Aullully
2

df=E [Tr ((XATXA)‘I)] .

2Tseng’s treatment of constraints is somewhat unclear here, but we incorporate the unit ellipse constraints as indicator functions in the non-convex penalty
portion of the problem, as discussed above, so dom fp = R™ x RP.



Note that the general form of their estimator is Tr(X 4 (X% X 4) ™' X 4) but we omit the outer terms as they are simply I for this problem.
The sample value of this quantity gives an unbiased estimate of the degrees of freedom:

df = Tr ((XﬁXA)*l) =Tr ((Iw n aﬂﬁ)*l) .
Rather than calculating the inverse, we substitute the first two terms of the Taylor expansion (I + A)™' =1 — A+ A% — A® + ... to get
CTf% Tr (I|A| —Ozﬂé) .

The approximate BIC can then be obtained by substitution into the standard BIC formula [24], [25], using the maximum likelihood estimate of
the residual variance 6* = 1 || Xv — 4|5 = RSS/n:

T2
log-likelihood = —% log(2m0%) = > (us — @i v)”

_ 202
=1
_n 2 lu — Xv|3
=-3 log(2mc”) — T
log-likelihood| ;2 _ss /,, = —g log(RSS /n) — glog(Zﬂ') - g

s2=rss/n = 110g(RSS/n) + nlog(2m) +n

. 1 12 1 ~
= BIC(4) = log |:EHX’U —al3| + - log(n) df(a)
where the n log(27) and n constant terms can be omitted in the BIC criterion. O
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Fig. 4. Simulated factors used for the simulation study in Section B.1 and estimates thereof: for each sub-figure, the first two panels are the left
singular vectors (w1, u2), while the third panel shows the right singular vectors, v (red, dotted-dashed) and v2 (blue, dashed). While SFPCA
and SGPCA both perform well on the left singular vectors, only SFPCA is able to simultaneously identify the spatial sparsity and smooth
structure of the sinusoidal pulses in the right singular vectors.

B. ADDITIONAL RESULTS

In this section, we extend the results given in Sections 4 and 5.

B.1. Two-Way Simulation Study

The simulation presented in Section 4 (Table 1 and Figure 2) contain exhibit smooth and sparse structure in the right singular vectors (v), but
not in the left singular vectors (u), which are selected from the unit sphere randomly (Haar measure). In this section, we demonstrate the
performance of SFPCA on data exhibiting smoothness and sparstity in both « and v in a rank-2 model.

The true factors in this simulation are inspired by neuroimaging data with both spatial and temporal structure. U € are the spatial
factors corresponding to a 25 x 25 imaging grid, with w1 = U.; containing two non-overlapping regions of interest with smooth edges and
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uz = U. containing a single region of interest with sharp edges. V' € R2°°*? are the same temporal factors used in Section 4, namely
time-localized sinusoidal pulses. These factors are shown in the top left panel of Figure 4.

Data are generated as n = 200 samples from the low-rank model X = Ei:1 diuvy + E where the elements of E are are independently
and identically drawn from a standard normal distribution. The signal-to-noise ratio is fixed at d; = n/6 and d2 = n/7. As before, SFPCA is
compared with several competing methods, including the two-way FPCA (TWFPCA) method of Huang et al. [8], the sparse SVD (SSVD)
method of Lee et al. [26], the penalized matrix decomposition (PMD) of Witten ez al. [S], and the sparse generalized PCA (SGPCA) of Allen et
al. [3]. Each method was tuned according to the authors’ recommendation, with SFPCA tuned using the greedy BIC scheme described above.
For SFPCA and TWFPCA, (2., is the second differences matrix over a 25 x 25 grid and €2, is the second-differences matrix of a chain graph
of length 200 (i.e., a tridiagonal matrix with (—1, 2, —1) on the tridiagonal). For SGPCA, the generalizing operators (Q, R matrices) were
again constructed from €2, and €2,, using the methods suggested by Allen and Maleti¢-Savati¢ [27].

Qualitative results from this study are shown in Figure 4, where we see that SFPCA clearly outperforms the competing methods. Results
for the temporal (V') factors are similar to those for our one-way simulation, so we focus on the spatial (U) factors here. The standard SVD
provides neither sparsity, nor spatial smoothness, though the outline of the true signals can be discerned. TWFPCA recovers the smooth
structure spatial signals well, but is not able to provide sparsity elsewhere. PMD appears to identify the signal, but as it does not allow for
spatial smoothness, is insufficiently sparse elsewhere. SFPCA and optimally tuned SGPCA (here shown with ¢ = 1) both perform well here,
but SGPCA is unable to recover the temporal smoothness patterns in the right singular vectors.

Quantitative results are presented in Table 2, where again we report the true positive rate (TP) and false positive rate (FP) for support
recovery, as well as the relative angle and relative squared error to measure smoothness, which measure overall signal recovery. (See the
main text for definitions). Consistent with the qualitative results, TWFPCA does well at recovering the true spatial signal in the first left
singular vector, but cannot identify the sparse activation regions. Optimally-tuned SGPCA and SFPCA both perform well, with SFPCA slightly
outperforming for the leading singular vectors and SGPCA outperforming for the following singular vectors. The good performance of SGPCA
on this example is somewhat surprising as GPCA assumes smoothness in the noise, which is here IID, rather than the signal itself.

TWFPCA SSVD PMD SGPCA (0 =1) SGPCA(s=5)  SFPCA

TP - | 0.944 (.004) | 0.697 (.005) 0.843 (.005) 0.532 (.004) | 0.876 (.013)

w; FP -1 0.611(111) | 0.015 (.002) 0.024 (.002) 0.000 (.000) | 0.007 (.012)
rZ | 0.0832(.041) | 0.608 (.110) | 0.934 (.024) 0.321 (.011) 1.140 (.034) | 0.356 (.084)

TP - | 0.852(.004) | 0.679 (.004) 0.629 (.005) 0.659 (.007) | 0.765 (.006)

vi  FP -1 0.617(111) | 0.259 (.003) 0.018 (.001) 0.045 (.004) | 0.055 (.033)
tZ | 0.252(.071) | 0.664 (.115) | 0.565 (.009) 0.235 (.004) 0.186 (.005) | 0.142 (.053)

TP - | 0.892(.005) | 0.751 (.006) 0.679 (.006) 0.031 (.002) | 0.562 (.016)

us FP -1 0,616 (.111) | 0.202 (.005) 0.032 (.002) 0.000 (.000) | 0.006 (.011)
r/ | 0.498(.100) | 0.547 (.105) | 0.376 (.011) 0.325 (.010) 3.650 (.088) | 0.568 (.107)

TP - | 0.996 (.001) | 0.983 (.003) 0.981 (.003) 0.659 (.010) | 0.946 (.008)

vy FP -1 0,614 (.111) | 0.256 (.002) 0.014 (.001) 0.058 (.005) | 0.024 (.022)
r/ | 0.720 (.120) | 0.647 (.114) | 0.439 (.007) 0.213 (.006) 1.240 (.036) | 0.355 (.084)

tSE | 0.276 (001) | 0.501 (.001) | 0.470 (.004) |  0.203(.003) |  0.642(.015) | 0.212 (.001)

Table 2. Performance of various regularized PCA methods for the simulation study described in Section B.1. Results are averaged over 50
replicates, with standard errors given in parentheses. For each method, the true positive rate (TP), false positive rate (FP), relative angle
compared to that of the SVD (r£), and relative squared error compared to that of the SVD (rSE) are reported. (TP and FP are not reported for
the non-sparse TWFPCA..) The best performing method on each metric is bold-faced. Both SFPCA and SGPCA perform well on this example,
though SFPCA has the additional advantage of not requiring the user to choose the smoothing parameter o.

B.2. Additional EEG Results

In Section 5 of the main text, we compared the estimated SFPCA factors with ICA on electroencephalography (EEG) data from the UCI
Machine Learning repository. In Figure 5, we show the results of applying (standard) PCA, two-way FPCA [8], two-way SPCA via the
penalized matrix decomposition (TWSPCA) [5], and two-way sparse generalized PCA (TWSGPCA) [3].

As noted in the main body of the text, SFPCA and ICA identify similar temporal and temporal patterns for the first two components, but
the SFPCA components have superior temporal sparsity, yielding improved interpretability. Standard PCA returns similar results to ICA,
again failing to identify structure after the first two components. TWFPCA identifies smooth and biologically plausible smooth signals in all
components, but cannot yield sparse estimates, hindering interpretation. TWSPCA returns similar first components (recall that these estimates
are only defined up to a sign factor), but returns significantly more jagged estimates for the following components. The temporal components
estimated by TWSGPCA are significantly more jagged and less sparse than those returned by SFPCA and do not exhibit meaningful temporal
or spatial localization.



PCA (middle-left),

right),

, ICA (top

-left)

-left), and TWSGPCA (bottom-right). The spatial and temporal signals identified by

5. EEG Case Study: first five spatial and temporal components as calculated by SFPCA (top

Fig.

, TWSPCA / PMD (bottom
SFPCA are the most interpretable (sparsity) and the most biologically plausible (smoothness), while,

identifying meaningful structure past the first two components.

TWFPCA (middle-right)

unlike the other methods considered, also



C. ADDITIONAL BACKGROUND

Since its introduction by Pearson [28] and Hotelling [29], principal component analysis (PCA) has been a mainstay of applied statistics. PCA
provides a unified, computationally efficient, and mathematically elegant approach to dimension reduction, data visualization, and feature
engineering. The usefulness of PCA has lead to its rediscovery by many other fields where it is variously known as the Karhunen-Loeve
transform [30], [31] in the theory of stochastic process, the method of empirical orthogonal functions in the environmental and atmospheric
sciences (at least when the observation grid is regular; see the note of Buell [32] and the discussion thereof by Wikle and Cressie [33]), and
the proper orthogonal decomposition in various engineering fields [34], among other names. In its classical form, PCA is performed on a
(centered) data matrix X by taking the eigendecomposition of the scatter (covariance) matrix: X TX. The Eckart-Young theorem [35], [36]
establishes an equivalence between this formulation and the low-rank formulation we consider:

k
X = Z d;w;v; for {ui}le, {vi}le orthogonal elements of R™, R? respectively.

i=1

The elements of this low-rank representation can be found using the singular value decomposition of X, which can be efficiently computed for
large data matrices using the algorithms of Golub and Kahan [37] and Golub and Reinsch [38], as well as many more modern variants. We
favor the low-rank formulation as it captures patterns in both the rows and columns of X, but emphasize that equivalence between the two
formulations holds only for the standard formulations and is broken when regularization is introduced. While we focus on matrix decomposition
approaches, PCA may also be interpreted as the MLE of a certain probabilistic model, as shown by Tipping and Bishop [39]. The model-based
framing is particularly useful when extending PCA to more complex data structures, e.g., the integrative PCA (iPCA) model for multi-block
data recently proposed by Tang and Allen [40].

When applying PCA, the selection of the true number of principal components is an important task. The “scree” heuristic of Cattell
[41] considers the rate at which the singular values of X level off. To address the inherent subjectivity of this approach, several data-driven
cross-validation-type techniques have been proposed [42]-[47]. More recently, rank selection methods based on the sampling distribution of
noise eigenvalues have been proposed [48]-[50]. Several of these strategies are based on recent developments in random matrix theory which
characterize the asymptotic properties of random matrices for standard null hypotheses [51], [52]. Before proceeding further, we note that we
have only touched on a small fraction of the vast literature on PCA and refer the reader to the book of Jolliffe [53] or the more recent review of
Abdi and Williams [54] for more a comprehensive coverage. The statistical properties of PCA have been studied by many authors, among
which Anderson [55] and James [56] stand out as early and important references. These authors, and the rich theory developed afterward [57],
establish asymptotic consistency of PCA in the large-sample (n — co) setting. As statistical interest in data-sets for which the “aspect ratio”
n/p is small grew, the short-comings of standard PCA were widely noted. New results in random matrix confirmed this observation: that
standard PCA performs quite poorly unless the aspect ratio is large [58]—[62]. (Johnstone and Paul [63] give a useful and accessible review of
the implications of random matrix theory for PCA. Bai and Ng [64] review the closely related literature on high-dimensional econometric
factor models, among which Bai [65] stands out as a key reference.) To address this, regularized variants of PCA were proposed, several of
which were later shown to yield consistent estimates.

The earliest forms of regularized PCA to appear in the literature arose in the functional data analysis community, where the principal
components themselves were assumed to follow a smooth (functional) structure with respect to some norm. The early development of PCA of
functional dates back to Dauxois er al. [66] and Besse and Ramsay [67], but Rice and Silverman [68] was the first, to the best of our knowledge,
to explicitly impose a curvature penalty and propose an explicitly functional PCA (FPCA). Silverman [6] later penalized the curvature by
altering the constraint region of the PCA problem and showed that this approach is equivalent to changing the norm and closely related to
half-smoothing the data. From here, Huang ef al. [7] showed that this approach can be formulated as a regression problem with a penalty on
the v-terms. Huang ef al. [8] extended this idea to the low-rank model and proposed two-way FPCA via an alternating penalized regression
scheme. They further established that this approach could be interpreted as attaining a (potentially local) solution to a penalized SVD problem.
Zhang et al. [69] proposed a robust extension of the method of Huang et al. [8] where the Frobenius loss used for formulate the low-rank model
is replaced by a robust loss function. Allen [20] later extended these approaches to the multi-way (tensor) setting. The literature on FPCA is
vast and we refer the reader to the books by Ramsay and Silverman [70], [71] and the review of Hall [72] for more comprehensive coverage.

Sparsity-inducing regularized PCA (SPCA) was first proposed by Jolliffe ef al. [73] who augmented the eigenvalue formulation of PCA
with an ¢; (LASSO [21]) constraint on the eigenvectors. Yuan and Zhang [74] and Ma [75] proposed algorithmic variants of the sparse
eigenvalue problem which incorporate truncation and hard-thresholding steps, respectively, into standard eigenvector algorithms. (Journée et al.
[76] give an interesting variant of this approach which retains convexity.) Convex semi-definite relaxations of the sparse eigenvalue problem
were proposed by several authors [77]-[79], while Moghaddam et al. [80] propose a greedy search scheme. Johnstone and Lu [60] proposed a
wavelet thresholding method which attempts to improve estimation of the covariance eigenstructure before standard PCA is performed, while
Deshpande and Montanari [81] consider an algorithm based on direct covariance thresholding previously considered by Bickel and Levina [82],
[83]. Wang et al. [84] propose an iterative approach to approximately solve the k-sparse eigenvalue problem with statistical guarantees. Finally,
Asteris et al. [85] propose an intriguing method for estimating several sparse principal components based on bipartite graph matching.

We note that, however, that many of these approaches are derived from non-convex problems, which limits their theoretical tractability and
computational efficiency. Additionally, these methods require instantiating and repeated use of the sample covariance matrix, which may be
expensive for large scale problems. To address this, Zou et al. [86] proposed an alternative formulation which builds upon the ELASTICNET
[22] penalized regression approach but requires solving a bi-convex problem using an iterative alternating regression scheme, an computational
strategy shared with the low-rank model. Gataric et al. [87] propose an approach based on aggregating principal components of random
low-dimensional projections of X which helps to limit the computational complexity. The majority of the methods discussed above identify
only the leading principal component: if additional principal components are desired, they can be applied recursively to a “deflated” matrix.



The most commonly used deflation method is that of Hotelling (X := X — duvT) though Mackey [88] presents alternative approaches with
better orthogonality properties. More recently, manifold optimization techniques have been used by Benidis et al. [89] and by Chen et al. [90]
to simultaneously estimate multiple sparse principal components.

An early form of low-rank approximation with sparse factors was considered by Zhang et al. [91], [92]. In the statistical literature, the
low-rank model used in our SFPCA formulation was first considered by Shen and Huang [4] for one-way sparsity and by Witten et al. [5] for
two-way sparsity: both proposed alternating regression schemes to calculate leading singular values, though the Lagrangian form of Allen et al.
[3] is closer to our approach. Lee et al. [26] and Yang et al. [93] proposed similar sparse singular value frameworks. Allen [94] extended the
sparse low-rank model to the multi-way (tensor) setting. Udell et al. [95] review a range of similar models with the squared error loss replaced
by other (exponential family) losses.

Many theoretical results for SPCA have been established in the literature, primarily for the covariance model: see, e.g., the papers by
Amini and Wainwright [96], Jung and Marron [97], [98], Vu and Lei [99], [100], Birnbaum et al. [101], Berthet and Rigollet [102], Shen et al.
[103], d’ Aspremont et al. [104], Cai et al. [105], Lei and Vu [106], Krauthgamer ez al. [107], Ma and Wigderson [108], Wang et al. [109], and
Bresler et al. [110], among many others. For that reason, we do not attempt to pain a comprehensive picture here, instead referring the reader to
the review paper of Zou and Xue [111]. In addition to standard sparse PCA, several other sparse PCA variants have been proposed, including
non-negative sparse PCA [27], [112], structured-sparse PCA [113], [114], sparse PCA with structured noise [3], contamination-robust sparse
PCA [115], [116], and distributionally-robust sparse PCA [117], [118]. Lu et al. [119] propose an extension of sparse PCA to data sampled
from an exponential family, building on an early proposal of Collins et al. [120]. (See also the related proposals of Lee et al. [121] and of Liu et
al. [122].) Many of these schemes are based on the LASSO [21] penalty or structured variants thereof [113], [123], but the use of non-convex
penalties has been occasionally considered: Shen and Huang [4] compare the use of SCAD [124] and hard-thresholding (“/y”") penalties in
their scheme, while Lee ef al. [125] augment the method of Zou et al. [86] with a screening step followed by a penalized regression method
using an ADAPTIVELASSO [126], SCAD [124], or MCP penalty [127].

The combination of sparsity and smoothness that we consider has not been extensively explored in the matrix factorization literature,
though Slawski ez al. [128] and Hebiri and Geer [129] explore similar ideas in a regression context. Based on an early draft of this paper, Li et
al. [130] propose a framework for supervised SFPCA which combines standard (unsupervised) SFPCA with the Supervised SVD [131] and
Mohammadi-Nejad et al. [132] propose a sparse and functional version of Canonical Correlation Analysis (CCA) [133]. Chen and Lei [134]
propose a localized FPCA which performs FPCA with the additional constraint that the estimated factors have localized support, inducing
similar sparsity structures to what we observe from SFPCA. While similar in name, the multilevel sparse functional PCA of Di et al. [135]
refers to sparsely-sampled functional data, not sparsity in the factor loadings as we consider here.
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