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ABSTRACT
Knowledge of functional groupings of neurons can shed light
on structures of neural circuits and is valuable in many types
of neuroimaging studies. However, accurately determining
which neurons carry out similar neurological tasks via con-
trolled experiments is both labor-intensive and prohibitively
expensive on a large scale. Thus, it is of great interest to
cluster neurons that have similar connectivity profiles into
functionally coherent groups in a data-driven manner. In this
work, we propose the clustered Gaussian graphical model
(GGM) and a novel symmetric convex clustering penalty
in an unified convex optimization framework for inferring
functional clusters among neurons from neural activity data.
A parallelizable multi-block Alternating Direction Method
of Multipliers (ADMM) algorithm is used to solve the cor-
responding convex optimization problem. In addition, we
establish convergence guarantees for the proposed ADMM
algorithm. Experimental results on both synthetic data and
real-world neuroscientific data demonstrate the effectiveness
of our approach.

Index Terms— Gaussian graphical model, Convex clus-
tering, ADMM, Computational neuroscience

1. INTRODUCTION

In neuroscience, an important goal is to identify which neu-
rons are involved in similar computations and how they are
organized into functionally coherent units to carry out spe-
cific computational tasks in the brain. Such knowledge of
functional organizations of neurons could lead to a better un-
derstanding of structures of interconnected neural circuits and
thus the operating mechanisms of the brain. Advancement of
optical imaging technologies such as calcium imaging has en-
abled indirect recordings of spiking activity from thousands
of neurons simultaneously [1, 2]. Learning the functional or-
ganizations of large neuronal populations from such high-
dimensional neural activity recording data is a major chal-
lenge in computational neuroscience.

GA and TY acknowledge support from NSF DMS-1554821 and NSF
NeuroNex-1707400.

Functional connectivity, which is defined as statistical
dependence among measurements of neuronal activity in [3],
has been widely used to describe functional interactions
among measured neuronal populations. Because functional
connectivity is not directly observable, numerous techniques
such as correlations and partial correlations have been pro-
posed to estimate such functional connectivity from neural
recording data (see [3] for a comprehensive review). In this
work, we define functional connectivity between each pair of
recorded neurons to be their pairwise partial correlation or
edges in an undirected GGM in high dimensions. Because
the pairwise partial correlation between two neurons takes
activities of all the other recorded neurons into account, it
captures only direct associations between neurons and dis-
card all indirect associations [3, 4], which makes pairwise
partial correlation coefficient a better indicator of functional
connectivity than Pearson correlation. Furthermore, because
pairwise partial correlation is the same as the corresponding
off-diagonal entries of the standardized precision matrix, the
functional connectivity graph of all recorded neurons can
be represented by the standardized precision matrix or the
corresponding undirected GGM [5].

While there is no standardized definition for functional
cluster, many neuroscientific studies have found that each
neuronal type has its own distinct input-output connectivity
patterns [6] and neurons with similar connectivity patterns
typically have similar neurological roles and functions [7].
Therefore, in this work, we seek to define functional clusters
to be groups of neurons that share functional connectivity
patterns. Hence, inferring functionally coherent groups of
neurons is equivalent to clustering neurons with similar func-
tional connectivity patterns.

While many techniques have been proposed for uncover-
ing clusters from multivariate data (see [8] for a comprehen-
sive review) as well as for finding community structures in
network data (see [9] for a comprehensive review), they are
somewhat limited in this application for various reasons. First
of all, distance-based clustering techniques such as k-means
and hierarchical clustering on pairwise Euclidean distances
cluster variables based on the first-moment of the distribution,
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whereas functional clusters are defined by functional connec-
tivity patterns, which are characterized by the second-moment
of the distribution. Some studies in fMRI have applied hier-
archical clustering on empirical partial correlation based dis-
similarity matrix to cluster brain regions [10]. However, such
approaches are not applicable to high-dimensional neural ac-
tivity data because the MLE of partial correlation matrix does
not exist due to singularity of the empirical covariance ma-
trix. Others have taken a two-step approach where a func-
tional connectivity graph is first estimated and then commu-
nity detection algorithms are used subsequently to infer clus-
ters [11, 12]. Yet such two-step approaches are highly sensi-
tive to noise as a single erroneously estimated functional con-
nection in the first step could adversely impact the clustering
results of the community detection algorithms. Last but not
least, some studies have proposed nonparametric Bayesian
approaches for estimating the block structures of GGM and
clustering variables using a MCMC sampling method [13].
However, such MCMC-based approaches can easily become
computationally infeasible on moderate-sized graphs.

In this paper, we make several methodological contribu-
tions: (1) We propose the clustered GGM that involves a
novel symmetric convex clustering penalty, which allows us
to exploit the symmetric structures of a functional connectiv-
ity graph for better estimation of functional clusters. (2) We
provide a tractable ADMM algorithm with convergence guar-
antees to fit our clustered GGM method in big-data settings.
Because of these contributions, our clustered GGM method
enjoys many advantages over existing approaches to infer-
ring functional clusters from neural activity data: (i) With
our novel symmetric convex clustering penalty, our method
explicitly leverages functional connectivity patterns to cluster
neurons into functionally coherent groups. (ii) Because the
clustered GGM is formulated in an unified convex optimiza-
tion framework, our single-step method is more stable and
conducive to data-driven model selection.

2. THE CLUSTERED GGM

2.1. Model Setup and Background

Suppose the neural activity recordings of p neurons over n
time points are arranged into the data matrix X ∈ Rn×p
and the recording of all p neurons at the ith time point,
Xi = {Xi1, . . . , Xip}, is a random p-vector independently
drawn from the same time-invariant p-variate Gaussian dis-
tribution N (0p,Σp×p) [4]. We can approximately achieve
the assumption of independence by prewhitening the raw
time series using appropriate time series models. As noted
before, the functional connectivity graph can be repre-
sented by the standardized precision matrix Θ � 0, where

Θij = −Σ−1ij /
√

Σ−1ii Σ−1jj . Hence, estimating functional
clusters based on functional connectivity patterns is equiva-
lent to recovering the group structures that form checkerboard
patterns in Θ.

2.2. The Symmetric Convex Clustering Penalty

At first glance, designing a penalty function to encourage
checkerboard patterns in the estimate of Θ seems straight-
forward as one might ask whether we can simply apply the
convex biclustering fusion penalty [14] to simultaneously
force rows and columns of Θ to coalesce to form block struc-
tures. However, simply applying such biclustering penalty
does not guarantee the same amount of fusion along the rows
and columns of Θ and it can easily result in different esti-
mated functional clusters between rows and columns. In fact,
any fusion penalty that directly regularizes elements of Θ
would lead to asymmetric estimates, thus leading to difficult
interpretations. Also recognized by [13], designing a penalty
function to force such checkerboard patterns in a GGM in a
computationally feasible way is indeed a challenging task.

Our objective is to develop a convex penalty function that
allows us to explicitly model functional clusters among neu-
rons based on mutual pairwise functional connectivity pat-
terns and preserve the symmetry of estimated functional con-
nectivity graph as well as neuron cluster assignments. To this
end, we build upon the convex fusion penalty [15, 16] and
introduce a novel symmetric convex clustering penalty that
encourages symmetric checkerboard patterns in the estimated
precision matrix.

Consider a p×p symmetric matrix Θ, the symmetric con-
vex clustering penalty function takes the form

P (Θ) =
∑
l∈M

wl||Ψl,1 −Ψl,2 ||2

subject to (QlΘRl)−Ψl = 0,∀l ∈M

Here, we index a neuron pair by l = (i, j) with 1 ≤ i < j ≤ p
and define the fusion set over the non-zero fusion weights
M = {l = (i, j) : wl > 0}. The set of all nonnega-
tive, pairwise fusion weights {wl}1≤i<j≤p can be specified
beforehand to incorporate domain knowledge and take aux-
iliary information (e.g. interneuron distances) into account.
Additionally, Ψl,1 (and Ψl,2) denotes the 1st (and 2nd) col-
umn of Ψl ∈ R(p−2)×2, which can be interpreted as cluster
centroid matrix corresponding to the l = (i, j)th neuron pair.
For l = (i, j), the rows of Ql ∈ R(p−2)×p consist of canon-
ical basis vectors eq for q ∈ {1, 2, . . . , p} \ {i, j} and the
columns of Rl ∈ Rp×2 consist of canonical basis vectors er
for r ∈ {i, j}.

We now discuss the intuition behind the symmetric con-
vex clustering penalty P (Θ). For any neuron pair l = (i, j)
in the fusion setM, the canonical basis matrices Ql and Rl

extracts a portion of Θ such that the 1st (and 2nd) column
of QlΘRl ∈ R(p−2)×2 represents the functional connec-
tivity patterns of neuron i (and neuron j) with all the other
recorded neurons. Ψl is taken to be a copy of QlΘRl and
the fusion penalty term || Ψl,1 − Ψl,2 ||2 induces sparsity
in the difference between neuron i and j’s respective func-
tional connectivity patterns with all the other recorded neu-



rons, thus encouraging the estimates of Ψl,1 and Ψl,2 to fuse.
Neuron i and j are assigned to the same functional cluster
if Ψ̂l,1 = Ψ̂l,2, which means neuron i and j have the same
conditional relationships with all the other recorded neurons.
All such fusions can be done separately and in parallel for
each neuron pair l ∈ M, and the set of equality constraints
QlΘRl−Ψl = 0,∀l ∈M aggregates all fusion results back
to Θ to form symmetric checkerboard patterns denoting func-
tional clusters among neurons.

2.3. The Clustered GGM via Symmetric Convex Cluster-
ing

While one can apply the symmetric convex clustering penalty
to any loss functions that take a symmetric matrix as input, we
specifically apply P (Θ) to the negative log-likelihood of the
multivariate Gaussian distribution to yield the clustered GGM
problem.

minimize
Θ∈Sp++,{Ψl}

− log detΘ + trace(Σ̂Θ)

+ λ
∑
l∈M

wl||Ψl,1 −Ψl,2 ||2 (1)

subject to (QlΘRl)−Ψl = 0,∀l ∈M

where Sp++ denotes the set of positive definite matrices of size
p and Σ̂ = 1

nXTX denotes the empirical covariance matrix
(assuming the columns of X are properly centered). Unlike
the GLasso problem [17], our clustered GGM does not aim to
produce a sparse graph estimate. Instead, our clustered GGM
leads to a graph estimate Θ̂ with block structures that indicate
cluster assignments of nodes. In addition, fusing many ele-
ments of Θ to the same values, the symmetric convex cluster-
ing penalty significantly reduces the effective number of pa-
rameters to be estimated, thus making our clustered GGM an
attractive choice for high-dimensional settings. The amount
of fusion, and hence the number of clusters, is determined
by the penalty parameter λ. The optimal λ can be chosen
via data-driven model selection techniques such as consensus
clustering [18].

2.4. The Clustered GGM Algorithm

We adopt the generalized ADMM framework described
in [19, 20] as well as an approach introduced in [15] for
convex clustering problems in order to develop a tractable
3-block ADMM algorithm to solve (1). ADMM is an ap-
pealing algorithm for this problem because it permits us to
decouple the terms in (1) that are challenging to jointly opti-
mize. Specifically, we reformulate (1) by introducing a set of
auxiliary variables {δl} and rewrite the penalty term in terms
of these auxiliary variables.

minimize
Θ∈Sp++,{Ψl},{δl}

− log detΘ + trace(Σ̂Θ)

+ λ
∑
l∈M

wl|| δl ||2 (2)

subject to QlΘRl −Ψl = 0,∀l ∈M
Ψl,1 −Ψl,2 − δl = 0,∀l ∈M

Following from [15,19,20], we give Algorithm 1 to solve the
clustered GGM problem:
∇ΘL(Θ(k,j−1)) denotes the gradient of the correspond-

ing augmented Lagrangian in scaled form evaluated at Θ(k,j−1)

and sj is the stepsize of gradient descent, which can be se-
lected via the Goldstein-Armijo line search procedure. Here,
k is the iteration counter for the outer 3-block ADMM updates
and j is the iteration counter for the inner gradient descent up-
dates for the Θ subproblem. e1, e2 ∈ R2 are canonical basis
vectors and D ∈ R(p−2)×2(p−2) = (e1−e2)

T ⊗ I(p−2) is the
directed difference matrix such that Dvec(Ψl) = Ψl,1−Ψl,2.
Convergence of the algorithm is measured by the norm of the
primal and dual residuals and the parameters ρ1, ρ2 > 0 are
fixed throughout the algorithm as recommended by [19].

Algorithm 1: ADMM algorithm for the clustered GGM

Input: Σ̂, λ ≥ 0, ρ1, ρ2 > 0

Initialize: Primal variables to identity matrices and
dual variables to zero matrices;

Precompute: D, {wl},M;

while not converged do
(i) Update Θ:

while not converged do

Θ(k,j) ← Θ(k,j−1) − sj∇ΘL(Θ(k,j−1));

end

(ii) Update Ψl (∀l ∈M in parallel):

Ψ
(k)
l ← ρ1

ρ1+2ρ2
[QlΘ

(k)Rl + U
(k−1)
l +

ρ2
ρ1
(δ

(k−1)
l −z

(k−1)
l )(e1−e2)

T ](I2+
ρ2
ρ1

11T );

(iii) Update δl (∀l ∈M in parallel):

δ
(k)
l ← proxλwl

ρ2
||.||2

(Dvec(Ψ(k)
l ) + z

(k−1)
l );

(iv) Update Ul (∀l ∈M in parallel):

U
(k)
l ← U

(k−1)
l + (QlΘ

(k)Rl −Ψ
(k)
l );

(v) Update zl (∀l ∈M in parallel):

z
(k)
l ← z

(k−1)
l + (Dvec(Ψ(k)

l )− δ
(k)
l );

end



Proposition 1 Algorithm 1 converges to a global solution to
problem (1).

Proof sketch: We can first recast our 3-block ADMM problem
(2) as the general 3-block ADMM formulation described in
[21] by re-writing the set of equality constraints in (2) as a
linear combination of the three optimization variables:

A1vec(Θ) + A2vec(Ψ) + A3vec(∆) = 0,
where Ψ = [Ψ1, . . . ,Ψ|M|], ∆ = [δ1, . . . , δ|M|],

A1 =

[
B2g×p2

0g×p2

]
, A2 =

[
−I2g

Hg×2g

]
, A3 =

[
02g×g
−Ig

]
with rows of B containing appropriate canonical basis vectors
and H containing |M| directed difference matrices D on its
diagonal. For notational simplicity, we use g = (p − 2)|M|.
With AT

1 A3 = 0, we can show that (2) satisfies the sufficient
conditions (Theorem 2.4 in [21]) for the convergence of such
3-block ADMM algorithm.

3. EXPERIMENTS

3.1. Synthetic Data

In this subsection, we evaluate the comparative performance
of our clustered GGM method on simulated data sets.

3.1.1. Data Generation

Suppose we have p neurons which form k functional clusters,
we simulate a standardized precision matrix Θ with the de-
sired checkerboard patterns reflecting groundtruth functional
clusters as follows: first we define the groundtruth cluster
membership for the p neurons by creating Zp×k ∈ {0, 1}
which has exactly one 1 in each row and at least one 1 in each
column. We then generate symmetric matrix Bk×k ∈ [−1, 1]
where Bii denotes the partial correlation between two neu-
rons if both neurons are in the ith cluster and Bij de-
notes the partial correlation between a neuron from the
ith cluster and a neuron from the jth cluster. Specifically,
Bii

i.i.d.∼ Unif([0.6, 0.95]) andBij
i.i.d.∼ Unif([0, 0.55]). Next,

we generate the groundtruth precision matrix Θ = ZBZT

and set the diagonal entries of Θ to 1’s to ensure positive-
definiteness. Finally, we generate the data matrix X ∈ Rn×p

according to x1, . . . ,xn
i.i.d.∼ N (0,Θ−1). We consider two

simulation scenarios: Scenario I with n = 110, and p = 50
neurons are randomly divided into k = 3 clusters with size
5, 15, and 30, respectively; Scenario II with n = 200, and
p = 200 neurons are randomly divided into k = 3 clusters
with size 30, 60, and 110, respectively.

3.1.2. Results

We compare our clustered GGM to other popular clustering
approaches: 1) k-means; 2) Hierarchical Clustering (HC)
with various linkage functions and dissimilarity metrics
(Euclidean distance and empirical correlation); 3) Spectral

Table 1. Simulation results averaged over 10 replicates in
terms of Rand Index. Best performing methods are boldfaced.

Dataset Method Rand Index

Scenario
I

Clustered GGM 0.964 (0.068)
k-means 0.505 (0.003)

HC Euclidean Ward 0.498 (0.007)

SC empirical corr 0.511 (0.006)

HC empirical corr Ward 0.521 (0.027)

GLasso + Louvain 0.556 (0.022)

Scenario
II

Clustered GGM 0.999 (0.003)
k-means 0.515 (0.01)

HC Euclidean Ward 0.791 (0.003)

SC empirical corr 0.526 (0.002)

HC empirical corr Ward 0.513 (0.023)

GLasso + Louvain 0.566 (0.003)

Clustering (SC) with various similarity metrics (empirical
correlation and various kernel functions), implemented using
R packages anocva and kernlab; 4) GLasso followed
by commonly used community detection algorithms such
as the Louvain method [22], implemented using R pack-
ages huge and igraph. The best penalty parameter for the
GLasso is selected by the ebic criterion embedded in huge.
Moreover, the oracle number of functional clusters k = 3 is
supplied to all aforementioned clustering techniques. Such
practice is reasonable in the neuroscientific context because
the number of functional clusters is typically known a priori
from domain knowledge.

In Table 1, results on functional cluster recovery are pre-
sented. In particular, the performance in terms of functional
cluster recovery is quantified using Rand Index which mea-
sures the agreement between the unsupervised clustering so-
lutions and the true cluster membership. Rand Index takes
values between 0 and 1 with 1 indicating perfect cluster re-
covery. We only include the best performing approaches from
each category 2), 3), and 4) in Table 1. Results in Table 1
reveal that our clustered GGM outperforms all competing ap-
proaches in terms of functional cluster recovery.

3.2. Case Study: Calcium Imaging Data

We test our method on a publicly available calcium imag-
ing data set from [23, 24]. Neural activity of a subset of
excitatory neurons in mouse visual cortex was recorded us-
ing multi-plane acquisition and 10 to 12 planes of different
depth were recorded at the same time at a sampling rate of
about 3Hz (see [23] for detailed data acquisition and pro-
cessing procedures). During the course of experiments, 32
natural images were shown to an awake mouse sequentially



Fig. 1. Comparison of empirically determined neuron tuning labels (inner circle) and functional cluster labels estimated by the
clustered GGM (outer circle). Nodes on the inner circle are colored according to neuron tuning labels whereas nodes on the
outer circle are colored according to functional cluster labels estimated by the clustered GGM. The Rand Index between neuron
tuning labels and functional cluster labels estimated by the clustered GGM is 0.868.

and averaged responses of each recorded neuron to the vi-
sual stimuli were determined after adjusting for trial-to-trial
variability via model-based approaches. Each neuron is said
to be tuned to the natural image to which it had the largest
averaged responses and was subsequently assigned a neuron
tuning label. Such neuron tuning labels are often used as es-
timates of functional clusters. However, such empirically in-
ferred neuron tuning labels are likely to be noisy and there
could be considerable amount of uncertainty associated with
functional groups determined solely by such tuning labels. In
this case study, we seek to evaluate how well the noisy neu-
ron tuning labels serve as proxies for identifying functional
clusters of neurons in mouse visual cortex.

We select 52 excitatory neurons residing in the most su-
perficial imaging plane that were empirically determined to
be tuned to three most dissimilar natural images. The cal-
cium imaging data come in the form of deconvolved calcium
traces, whose distributions are highly skewed. To accommo-
date our model assumptions of independence and Gaussianity,
we prewhiten individual calcium traces with an autoregres-
sive model of order 1 to remove temporal dependence and
subsequently perform the semiparametric copula transforma-
tion [25] to make the data approximately follow a multivari-
ate Gaussian distribution. Afterwards, we apply our clustered
GGM to the processed traces of these 52 neurons across 855
time points at stimulus onset. Specifically, we fit the clus-
tered GGM to the data on a fine grid of penalty parameter
values λ ∈ [0, 1.92] such that all neurons are clustered into
one group for λ ≥ 1.92. The best penalty parameter value se-
lected is λ = 1.06 and the corresponding estimated functional
clusters are displayed in the right panel of Fig. 1.

In Fig. 1, each node denotes a neuron and edges repre-
sent the functional connectivity graph. Nodes on the inner

circle are colored according to the noisy neuron tuning labels
whereas nodes on the outer circle are colored based upon
estimated functional cluster labels by our clustered GGM.
The Rand Index between neuron tuning labels and functional
cluster labels estimated by our clustered GGM is 0.868. Such
results show that the functional clusters estimated by our
clustered GGM largely agree with the empirically determined
neuron tuning labels except for a handful of singletons, sug-
gesting that neuron tuning labels serve as good proxies for
identifying functional clusters of neurons in mouse visual
cortex.

4. CONCLUSIONS

In this paper, we have introduced the clustered GGM via sym-
metric convex clustering in an unified convex optimization
framework, which can be used to infer functional clusters
among neurons from neural activity recordings. Key contri-
butions include developing a novel symmetric convex cluster-
ing penalty to explicitly group neurons with similar functional
connectivity patterns as well as providing a tractable algo-
rithm to solve the clustered GGM problem with notable con-
vergence guarantees. Experimental results on both synthetic
data and real-world neuroscientific data demonstrate the ef-
fectiveness of our proposed method.

Even though the focus of this paper has been on the clus-
tered GGM problem, our novel symmetric convex clustering
penalty can be applied to many other convex loss functions
that take symmetric matrices as inputs. Such flexibility of
our novel penalty function suggests that there is potential for
broad application of our approach to data in areas such as ge-
nomics and proteomics.
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6. DETAILED DERIVATIONS

In this section, we provide derivations of the ADMM algorithm in Algorithm 1 for the clustered GGM. Our notation here is the
same as that used in the main body of the paper unless otherwise stated.
After introducing the set of auxiliary variables {δl} and rewriting the clustered GGM problem as (2), the augmented Lagrangian
in scaled form is given by:

Lρ1,ρ2(Θ, {Ψl}, {δl}, {Ul}, {zl}) = − log detΘ + trace(Σ̂Θ) + λ
∑
l∈M

wl|| δl ||2

+
ρ1
2

∑
l∈M

(
||QlΘRl −Ψl + Ul||2F − ||Ul||2F

)
+
ρ2
2

∑
l∈M

(
||Dvec(Ψl)− δl + zl||22 − ||zl||22

)
Following from [19], the scaled form of the ADMM updates are given by:

Θ(k) = argmin
Θ∈Sp++

− log detΘ + trace(Σ̂Θ) +
ρ1
2

∑
l∈M

||QlΘRl −Ψ
(k−1)
l + U

(k−1)
l ||2F

Ψ
(k)
l = argmin

Ψl∈R(p−2)×2

ρ1
2
||QlΘ

(k)Rl −Ψl + U
(k−1)
l ||2F +

ρ2
2
||Dvec(Ψl)− δ

(k−1)
l + z

(k−1)
l ||22, ∀l ∈M

δ
(k)
l = argmin

δl∈Rp−2

λwl|| δl ||2 +
ρ2
2
||Dvec(Ψ(k)

l )− δl + z
(k−1)
l ||22, ∀l ∈M

U
(k)
l = U

(k−1)
l + QlΘ

(k)Rl −Ψ
(k)
l , ∀l ∈M

z
(k)
l = z

(k−1)
l + Dvec(Ψl)− δl, ∀l ∈M

where {Ul}l∈M and {zl}l∈M are the corresponding dual variables. First, we consider the Θ-update:

Θ(k) = argmin
Θ∈Sp++

− log detΘ + trace(Σ̂Θ) +
ρ1
2

∑
l∈M

||QlΘRl −Ψ
(k−1)
l + U

(k−1)
l ||2F

This is smooth and so we compute the gradient with respect to Θ:

∇ΘL = −Θ−1 + Σ̂ +
ρ1
2

∑
l∈M

(2QT
l QlΘRlR

T
l − 2QT

l ΨlR
T
l + 2QT

l UlR
T
l )

using the identity 1

∂

∂Θ
||AΘB + C||2F = 2AT (AΘB + C)BT .

Then the solution Θ(k) to the first subproblem can be obtained by applying gradient descent to convergence.
Now we consider the Ψl-update:

Ψ
(k)
l = argmin

Ψl∈R(p−2)×2

ρ1
2
||QlΘ

(k)Rl −Ψl + U
(k−1)
l ||2F +

ρ2
2
||Dvec(Ψl)− δ

(k−1)
l + z

(k−1)
l ||22

= argmin
vec(Ψl)∈R2(p−2)

ρ1
2
||vec(QlΘ

(k)Rl)− vec(Ψl) + vec(U(k−1)
l )||22 +

ρ2
2
||Dvec(Ψl)− δ

(k−1)
l + z

(k−1)
l ||22

Since this is fully smooth, we take the gradient with respect to vec(Ψl) to obtain the stationarity conditions:

−ρ1
(

vec(QlΘ
(k)Rl)− vec(Ψl) + vec(U(k−1)

l )
)
+ ρ2D

T
(
Dvec(Ψl)− δ

(k−1)
l + z

(k−1)
l

)
= 0.

Re-arranging the terms, we obtain

(ρ1I2(p−2) + ρ2D
TD)vec(Ψl) = ρ1(vec(QlΘ

(k)Rl) + vec(U(k−1)
l )) + ρ2D

T (δ
(k−1)
l − z

(k−1)
l ) (3)

1See Equation (119) in the Matrix Cookbook: https://www.math.uwaterloo.ca/ hwolkowi/matrixcookbook.pdf

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf


Though an analytical solution can be obtained by:

vec(Ψl) = (ρ1I2(p−2) + ρ2D
TD)−1[ρ1(vec(QlΘ

(k)Rl) + vec(U(k−1)
l )) + ρ2D

T (δ
(k−1)
l − z

(k−1)
l )]

This update can quickly become computationally expensive as the dimension p grows due to matrix inversion. To avoid such
explicit computation of matrix inverse, we exploit the special structure in (ρ1I2(p−2) + ρ2D

TD) and take an approach that
parallel those of the ADMM for the completely connected convex clustering problem [15]. By definition, D ∈ R(p−2)×2(p−2) =
(e1 − e2)

T ⊗ I(p−2) is the directed difference matrix and DTD can be simplified as follows:

DTD = [(e1 − e2)⊗ I(p−2)][(e1 − e2)
T ⊗ I(p−2)]

= [(e1 − e2)(e1 − e2)
T ]⊗ I(p−2)

= (2I2 − 11T )⊗ I(p−2)

using the identity (A⊗B)(C⊗D) = (AC⊗BD) and (e1−e2)(e1−e2)
T = 2I2−11T . Expanding (ρ1I2(p−2)+ρ2D

TD),
we obtain:

ρ1I2(p−2) + ρ2D
TD = ρ1[I2 ⊗ Ip−2] + ρ2[(2I2 − 11T )⊗ I(p−2)]

= [ρ1I2 + ρ2(2I2 − 11T )]⊗ I(p−1)

using the identity A⊗C + B⊗C = (A + B)⊗C. Now the LHS of (3) becomes:

(ρ1I2(p−2) + ρ2D
TD)vec(Ψl) =

(
[ρ1I2 + ρ2(2I2 − 11T )]⊗ I(p−1)

)
vec(Ψl)

= vec
(
Ψl[ρ1I2 + ρ2(2I2 − 11T )]

)
using the identity [AT ⊗ I]vec(B) = vec(BA). Similarly, the RHS of (3) can be re-written as follows:

RHS = ρ1vec(QlΘ
(k)Rl + U

(k−1)
l ) + ρ2vec

(
(δ

(k−1)
l − z

(k−1)
l )(e1 − e2)

T
)

Hence, equation (3) can be re-written as

vec
(
Ψl[ρ1I2 + ρ2(2I2 − 11T )]

)
= ρ1vec(QlΘ

(k)Rl + U
(k−1)
l ) + ρ2vec

(
(δ

(k−1)
l − z

(k−1)
l )(e1 − e2)

T
)

(4)

Un-vectorizing both sides of (4), we obtain:

Ψl[(1 + 2
ρ2
ρ1

)I2 −
ρ2
ρ1

11T ] = QlΘ
(k)Rl + U

(k−1)
l +

ρ2
ρ1

(δ
(k−1)
l − z

(k−1)
l )(e1 − e2)

T (5)

Applying the Sherman-Morrison formula, we can write the inverse of [(1 + 2ρ2ρ1 )I2 −
ρ2
ρ1

11T ] as

[(1 + 2
ρ2
ρ1

)I2 −
ρ2
ρ1

11T ]−1 =
1

1 + 2ρ2ρ1
(I2 +

ρ2
ρ1

11T ).

Therefore, solving (5) for Ψl, we obtain

Ψ
(k)
l =

1

1 + 2ρ2ρ1
[QlΘ

(k)Rl + U
(k−1)
l +

ρ2
ρ1

(δ
(k−1)
l − z

(k−1)
l )(e1 − e2)

T ](I2 +
ρ2
ρ1

11T ).

To solve the third subproblem, we note that it can be written as a proximal operator:

δ
(k)
l = argmin

δl∈Rp−2

λwl|| δl ||2 +
ρ2
2
||Dvec(Ψ(k)

l )− δl + z
(k−1)
l ||22

= argmin
δl∈Rp−2

λwl
ρ2
|| δl ||2 +

1

2
||δl − (Dvec(Ψ(k)

l ) + z
(k−1)
l )||22

= proxλwl
ρ2
||.||2

(Dvec(Ψ(k)
l ) + z

(k−1)
l )
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