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Abstract

Third party software is now increasingly used in
systems with high dependability requirements. This
evolution of system development raises new challenges, in
particular regarding the implementation of fault-
tolerance. As systems are often built of black-box
components, some crucial aspects of their behavior
regarding replication cannot be handled. This is also true
to some extent for open-source components as mastering
their internal behavior is sometimes very tricky (e.g. OS
and ORBs). During the last decade reflection has
emerged as a very fruitful paradigm for the disciplined
management of non-functional aspects, among which
fault-tolerance. In this paper we discuss how to apply
reflection to multi-layer systems for implementing fault-
tolerance in an independent and principled manner. We
analyze the connections between the underlying
assumptions of fault-tolerance strategies and the different
layers of a system. Based on this multi-layer analysis we
show how the requirements of a family of replication
algorithms can be addressed on a concrete architecture,
resulting in what we name Multi-Layer Reflection.

1. Introduction

Flexibility, reuse, and adaptation are becoming key
aspects of today's large computer systems (satellite
systems, transport, automotive), and explain the increasing
use of component-based approaches (including COTS).
This trend raises two challenges when considering the
dependability of the resulting systems: How can we build
dependable systems from components that don't
specifically target dependability concerns? What are the
dependability figures of the resulting systems? We focus
in this paper on the first question, and more particularly on
the implementation of fault-tolerance into systems made of
third party software components. Fault-tolerance is very
difficult to achieve without a minimal understanding and
control of the internal structure and behavior of the
considered systems. This implies intrusion within system
components, which is very problematic. For this reason,
integrators are looking for sound and principled
approaches that help them separate functional

development from fault-tolerance concerns, within large
projects, over long life cycles.

Computational Reflection [11], an architectural
paradigm that appeared in the late eighties, and related
technologies such as aspect oriented programming, appear
as very promising approaches to tackle this issue. Using
reflection to implement fault-tolerance into multi-
component systems induces, however, several sub-
problems. Reflective architectures are centered on a key
element, their meta-model, that ensures the separation of
concerns between the "base" system (here the system
resulting from component integration) and the
mechanisms (here fault-tolerance) that are added to the
base system. To be effective, this meta-model must take
into account both the multi-component nature of the
system and the requirements of fault-tolerance that it
should help implement. In this paper, we address this dual
issue and propose a methodology to help designing meta-
models that specifically target the implementation of fault-
tolerance into systems made of third party components.

The paper is organized as follows. Section 2 briefly
recalls essential notions regarding computational reflection
and introduces the steps of our approach. Section 3
proposes a requirement analysis of a set of well-known
replication strategies from a reflective perspective. Based
on a small example, Section 4 shows how this analysis can
be applied to a concrete system architecture made of
several components. This discussion leads us to the notion
of Multi-Layer Reflection (MLR). Section 5  further
develops the practical use of this notion by presenting, on
a concrete architecture (CORBA and POSIX based), how
the requirements obtained in Section 3 lead to the precise
specification of a meta-model that is both optimized for
fault-tolerance and the considered system structure.

2. Computational Reflection

A reflective system is basically structured around a
representation of itself —or meta-model — that is causally
connected to the real system [11]. This approach divides
the system into two parts: a base-level where normal
computation takes place, and a meta-level where the
system computes about itself (meta-computation or meta-
level software). (See Figure 1)
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The meta-model is structured around notions that are
major (runtime) elements of the base level, and common
to all applications sharing the same programming model.
The systems we are interested in are made of third-party
components that are most often organized in a layered
architecture: OS kernel, system libraries, compilers, virtual
machines, middleware, etc. These layers introduce
different abstraction levels that each provide different sets
of elements from which applications can be built to run on
top of these levels. As a consequence, different meta-
models corresponding to different abstraction levels of the
same system can be defined. For instance, the meta-model
of an object-oriented application considered at the
language level would typically contain entities and events
such as “Class ”, “Method ”,  “Instanciation”,
“Invocation”, or “Attribute”, but would probably not
contain anything about OS-level issues such as memory
paging, or task scheduling.

Metamodel
(supported by 

reflective mechanisms)

Metalevel 
(software components for non-functional requirements)

Base-level
(application, middleware and operating system components)

Reification
Introspection,
Intercession

Figure 1. Organization of a Reflective System

Meta-models provide an abstract view of the base-level
system that enables the implementation of non-functional
mechanisms at the meta-level (notion of separation of
concerns). The information contained in the meta-model
determines the range of non-functional mechanisms that
can be implement at the meta-level. In our case, an ideal
meta-model should provide all the reflective features that
are required to implement correctly and efficiently fault-
tolerance. To this aim, we propose the following steps
when designing a fault-tolerance oriented meta-model:

1. Establish the set of reflective features required by
fault-tolerance

2. Map the requirements of Step 1 onto the different
layers of the considered system

In the next section, we investigate from a reflective
perspective the requirements of a set of fault-tolerance
mechanisms (Step 1). In section 4, we address Step 2.

3. A reflective View of Replication Strategies

Defining the complete meta-model that allows the
implementation of all known fault-tolerance strategies is
very ambitious. For illustration purposes, we limit our
analysis to well known replication mechanisms namely
passive replication (e.g. primary-backup strategy), semi-
active replication (or leader-follower strategy) and active

replication (e.g. TMR strategy)1. This section discusses the
set of reflective features that are required to implement
these strategies. We only address the requirements (i.e. the
"What i s  needed?") of the different replication strategies
from a logical viewpoint and express them in reflective
terms. From a conceptual viewpoint, this exercise is very
interesting as it collects the assumptions (e.g. interception
of client requests, identification of non-deterministic
decisions, state access, etc.) fault-tolerance designers have
in mind when they propose a given algorithm. These
assumptions usually become implicit, as the designer dives
into the details of the algorithm, fault assumptions or
performance aspects.  Those conceptual and
implementation assumptions are, however, key aspects to
decide on the practicality of the proposed algorithms, and
have often a crucial impact on the implementation. If the
information is easy to obtain, then fine, if not, then the
proposed algorithm cannot be implemented or can only be
implemented with some restrictions, which often make the
resulting implementation questionable. In this section, we
try to collect all (most of) the conceptual and
implementation assumptions made by the designers of the
three replication strategies we investigate, and we
factorize them into a meta-model.

3.1. System Model

We assume a conventional client / server model where
servers process client requests and return the results of this
processing. Servers encapsulate data (their state) and code
(describing the services they offer to clients). When a
service request is received, an "execution point" appears
within the server. This execution point travels through the
code, processes the received request, possibly modifies the
server's state, and possibly produces a reply that is
returned to the client. In this section, we don't make any
assumption about the nature of servers, but we assume that
server replicas are "distributed" so that they fail
independently. Our notion of server is very similar to
those of "replication entities, whatever they are" or
"distributed processes" commonly found in works on
distributed algorithms.

3.2. Considered Replication Strategies

We consider three replication mechanisms (passive,
semi-active, and active replication techniques) according
to the criteria identified above. We focus here on
implementation requirements rather than on fault
assumptions. To simplify the analysis, we also assume that
requests are delivered to server replicas using an atomic
multicast protocol. Table 1 summarizes the key well-
known characteristics of the three replication strategies.

                                                            
1 Please see [14] for more details about these strategies.
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Passive replication: the checkpointed information must
ensure that the backup execution after a primary crash
remains consistent with the previous execution as
perceived by the rest of the system before the crash.

Semi-active replication  requires that all non-
deterministic decisions made by the leader are intercepted
and forwarded to the followers.

Active replication (i.e. TMR) can only be considered
for deterministic servers. If this holds, non-deterministic
decisions do not need to transit between the replicas.

3.3. Control and Observability Requirements

For each considered replication strategy, we distinguish
three control and observation facets: communication,
execution, and state. At each level, we consider the entities
that are concerned by the replication strategy, the actions
of these entities that must be observed and controlled, the
motivation for this, and finally the available means to
satisfy these requirements. We do not consider the cloning
of new replicas, as cloning involves operations (request
synchronization, state transfer) that are very similar to
those found in passive replication. The result of our
analysis is presented in Table 2.

Our analysis is limited here to the requirements of the
three considered replication strategies provided the
assumptions of Table 1 are guaranteed. For instance, semi-
active replication requires a mechanism that ensures
"determinism" across replicas (e.g. notification messages).
However, mechanisms have been proposed to enforce
replica determinism with no communication between the
replicas, and could be used for active replication [2, 7, 12].

3.4. The resulting Meta-Model

The essential reflective features given in Table 3 result
from the aggregation of the requirements presented in
Table 2. The corresponding meta-model results from the
interactions between the base-level (application), and the
meta-level (fault-tolerance). These interactions (see
Figure 1) are classified as follows:
1 .  Reification: initiated by the base level to provide

information to the meta-level.
2 .  Introspection: initiated by the meta-level to obtain

information from the base-level.
3. Behavioral intercession: initiated by the meta-level to

modify the behavior of the base-level.

Passive replication Entities Action Motivation Means

Communication requests / replies send / receive Synchronization between replicas. Interception

Execution execution points activation / progress /
termination

Capture/ restore on-going requests in
concurrent servers.

Interception
Platform instrumentation

State internal data,
platform data

change on internal
data, interactions with
the local platform

Consistent state restoration, i.e.
transparent recovery from the client
point of view.

Memory dump
Serialization
Interactions journals

Semi-active replication Entities Actions Motivation Means

Communication idem as passive idem as passive control over leader / follower
notifications

idem as passive

Execution idem as passive +
non-deterministic
decision points

idem as passive + non-
deterministic operations

control over non-deterministic
decisions

idem as passive

State idem as passive idem as passive control over platform interactions
with non-deterministic results

idem as passive

Active replication Entities Actions Motivation Means

Communication idem as passive reply validation & propagation idem as passive

Execution Not needed

State Not needed (cloning not considered)

Table 2. Control and Observability Requirements for the considered Replications Strategies

Strategy Fault assumptions Tolerated
faults

Replica
Determinism

Resource
overhead

Communication
overhead

Recovery overhead

Passive Fail-silent servers Crash faults Not required 1 active server High (checkpoints) Medium (re-execute)

Semi-active Fail-silent servers Crash faults Not required 2 active servers Low (no checkpoints) Low (switch)

Active Fail-uncontrolled Value faults Required 3 active servers Low (no checkpoints) Low (null)

Table 1. Assumptions and Key Characteristics of Well-Known Replication Strategies
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4. Structural intercession: initiated by the meta-level to
modify the state of the base-level.

Table 3 does not contain all the possible features one may
encounter in generic reflective systems [5, 10, 18].
However, although limited, these reflective features
supports a meta-model for the replication strategies
discussed in § 3 . 3 . Interestingly, according to the
motivations of each reflective feature found in Table 3, the
proposed facets (Communication, Execution, and State)
can be related to two different concerns of replication
strategies. The communication facet enables the
coordination of the different replicas and is the least
intrusive. It can be implemented using wrapping
techniques for instance. The execution and state facets
relate to the control of consistency across replicas. Those
facets are the most intrusive, as they deal with internal
non-determinism and state information. The key question
is now: How can this meta-model be implemented on a
real platform?

4. Introducing Multi-Layer Reflection

As previously mentioned in Section 2, a real platform
encompasses several abstraction levels that correspond to
the different components of the concrete system. Several
reflective architectures have been proposed for fault-
tolerant systems [1, 6, 13], and have proved the interest of
reflection in this context. All these reflective architectures,
however, use reflective capabilities from a single
abstraction level. Using a small example, we show in this
section that the meta-model obtained in Section 3 cannot
be implemented at a single level without threatening the
interest of reflection itself. This example illustrates the
motivation for MLR (Multi-Layer Reflection concepts
previously introduced in [17]).

Consider the semi-active replication of a concurrent
server implemented on top of an Object Request Broker
(ORB), used in thread pool mode. Most ORB
implementations offer such a concurrency model by
spawning a fixed number of threads at initialization, and

putting them in a "waiting state". When a request arrives,
the ORB forwards the request to one of the threads of the
pool, and this thread starts processing the request. The
initial size of the thread pool (say p) determines the
highest number of active concurrent requests. How a
particular thread is assigned a particular request is ORB-
implementation dependent, and remains totally hidden (i.e.
non-deterministic) to the application2. In the same way, the
ORB doesn't necessarily follow the order in which it
receives requests from lower communication layers;
requests may be delivered to the application objects in any
order, even if they are received at lower layers through an
atomic multicast protocol. In summary, the role of the
ORB is two-fold: (i) dispatching of at most p requests
among received requests to the application, and (ii)
allocation of the selected requests to available pool-threads
(at-most p). In our example, we further assume that the
application itself is deterministic, i.e. that the results
returned by the different requests only depend on the order
in which requests are processed by application objects.

Consider now three fault-tolerance programmers who
must add a replication mechanism to this kind of server.

•  The first one has no access to any meta-information
regarding the executive layers (black-box case).

•  The second can control all OS-level thread related
operations (scheduling, synchronization, etc.) through a
dedicated OS-level meta-model (mono-level reflection).

•  The third one can both inspect and control the OS
and the ORB through a multi-layer meta-model.

4.1. The Black-Box Case

This first programmer has only access to the application
level, all underlying executive layers being black-boxes.
This approach gives him no control whatsoever on the
order in which requests are delivered to the application
objects. If a thread-pool-ORB with a pool size of two

                                                            
2 The CORBA standard does not recommend any specific multi-threaded
object implementation.

Reflective features Communication Execution State

Reification RequestReception

RequestSending

ReplySending

ReplyReception

ExecutionPointStart

ExecutionPointEnd

ExecutionPointReach

NonDeterministicFlowChange

NonDeterministicPlatformCall

Introspection getRequestContent
getReplyContent

getExecutionPoint getServerState

getPlatformState

Behavioral Intercession doSend

doReceive

createExecutionPoint

setExecutionPoint

forceResultOfFlowChange

ForceResultOfPlatformCall

Structural Intercession piggyBackDataOnMsg setServerState

setPlatformSate

Table 3. Towards an Aggregate Meta-Model for Replication Strategies
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threads simultaneously receives three requests, only two
out of the three requests will be non-deterministically
delivered to the application (the third one being queued).
Consider three requests R, S, and T delivered in this order
to the replicated ORBs. Assume the ORB of the leader
dispatches R and S to the two threads of its pool, and the
leader chooses to serve R first and then S. If the ORB of
the follower dispatches S and T to the application instead,
the follower will be unable to follow the leader's choice.
Although visible at the application level, this decision is
internal to the ORB and so cannot be controlled in this
case. This problem (called PB1) relates to ORB internal
messages shuffling, which destroys any total order
provided by an underlying atomic multicast protocol.

A possible solution to this problem is to serialize
incoming requests at the communication level before they
are delivered to the ORB (but it also eliminates the
benefits of the thread-pool mode [12]).

4.2. The Mono-Layer Reflection Case

Our second fault-tolerance programmer has access to
the OS level only, the ORB remaining a back-box. In this
case, low level communication primitives, thread
scheduling and synchronization can be controlled. Forcing
all replicated OS to schedule threads and to allocate
mutexes in exactly the same way, ensures that requests are
processed in the same order by all object replicas. This
approach inhibits ORB message shuffling and solves
problem PB1 under our assumptions (deterministic
application). This is however quite complex in a multi-
layer architecture and not optimal. We call this "non-
optimality" problem PB2.

The reason is that, forcing threads to process requests in
exactly the same order at the OS level enables object
replicas to reach identical states, but introduces useless
constraints. Indeed, different activation profiles can reach
the same state, even when threads are not run exactly in
the same order. An example is given in Figure 2.

Consider two different dispatchings of two successive
requests (R1 and R2) on a pool containing two threads (T1
and T2). Request R1 interacts with the application state
variable X (potentially shared), whereas request R2
interacts with the state variable Y. Request processing is
represented by dashed bars and interactions by dotted
areas limited by double arrows.

In Case 1, both requests are handled by T1. In Case 2,
request R1 is processed by T1, request R2 is processed by
T2. Clearly, having full visibility of the thread behavior
leads to understand that the final states after both
computation profiles are identical. However, as OS level
instrumentation restricts the visibility (and thus semantic

understanding) to threads and mutex actions alone, the
fault-tolerance programmer cannot easily reach this
conclusion. From his point of view, as only one thread T1
is used, the result of processing R1 may impact the
processing of R2. In other words, as a potential causal
dependency exists between the state of Y after R2
(Y_after_R2_by_T1_after_R1), and the state of X
before R1 (X_init), the application may reach two
different states (X,Y) depending on the dispatching
decision. Figure 3-a traces the FT-programmer view of the
computation as perceived at the OS level, and shows that
two possible major states are perceived after processing
R2 (as shown in Figure 3-b).

Request R1
Thread T1

Thread T2

Request R2
State Variable X

State Variable Y

T1_after_R1_R2

T1_after_R1

X_after_R1_by_T1_init

Y_after_R2_by_T1_after_R1

State

Possible causal dependency

Case 1: T1 handles the two requests R1 and R2

Request R1

Request R2
T2_after_R2

T1_after_R1X_after_R1_by_T1_init

Y_after_R2_by_T2_init

Thread T1

Thread T2

State Variable X

State Variable Y

Case 2: T1 handles R1, T2 handles R2

Figure 2: Request vs Thread using a Thread Pool

In practice, one of these two computation profiles will
be imposed to both leader and follower. So, the non-
determinism problem PB1 is solved at the expense of blind
forcing of thread scheduling at both replicas (as in [7]).
However, in a complex multi-layer architecture controlling
all individual OS actions induces unacceptable overheads
as middleware layers intensively use threading and mutex
locks. The non-optimality of this solution is due to the lack
of visibility and semantics of the computation in the ORB.
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4.3. The Multi-Layer Reflection Case

Consider now the third fault-tolerance programmer,
who can control both the OS and the middleware, running
in thread pool mode in our example. From the particular
semantics of a thread-pool, he knows that the thread states
T2_init, and T1_after_R1 are equivalent, as pool
threads do not keep memory of previously processed
requests. In other words, threads in the pool always
process requests from a pre-defined initial state. No
information regarding the processing of R1 can propagate
to R2 through thread T1. The potential causal dependency
shown on Figure 2 does not exist3. So, taking into account
the semantics of concurrency models at the middleware
level allows him to discard the “request-to-thread
allocation” as a source of non-determinism. There is no
need for the ORB running the leader replica to force its
follower to allocate requests to exactly the same threads.
The distinction made in Figure 3-b between the states
after_R2-1 and after_R2-2 is useless. after_R2-1
and after_R2-2 are grouped into the single state
after_R2, as shown in Figure 3-c.
Our third programmer can thus avoid problem PB2. In
addition, having access to the internal decision of the
ORB, i.e. delivery and retrieval to/from the pool, solves
problem PB1 in a more elegant and efficient manner. In
§5, we describe how this can be done in practice.

This small example illustrates how combining
information obtained from several levels can help
discarding sources of non-determinism as non-relevant for
handling replication of multi-threaded objects.

                                                            
3 In our example the R1 and R2 do no share state variables, and the
resulting state does not depend on their interleaving. However, the causal
dependency through shared variables could be handled by enforcing
access to shared variables X and Y in the same order, using mutex-
control approaches as in [2].

The complementary nature of high and low level
reflection and lessons learnt from reflective systems
development [15], prompted us to introduce the notion of
multi-layer reflection and its attached terminology [17]. In
brief, this notion focuses on the interdependencies
between individual system layers to provide an end-to-end
meta-model that is explicitly tailored for fault-tolerance.
Notions of mapping and projection support the analysis of
interlevel coupling from a reflective perspective. A
mapping describes the various possible representations of
a given entity at a given abstraction level i by entities
available at a (lower) abstraction level i-1. A projection is
the transitive closure of mapping relations that maps a top-
level entity to lower level entities (useful for state
handling). Reverse projections map low-level entities to
higher level ones (useful for error confinement).

5. A Multi-Layer Reflection: Case Study

In this section, we present on a concrete architecture,
how the MLR solution (cf. §4.3) can be implemented in
practice, and propose for the chosen case study an explicit
meta-model that corresponds to the requirements of Table
3. From the reverse engineering of a simple application
running on an ORB, we discuss step-by-step the two facets
of the consistency problem of replication strategies: the
control of non-determinism and the state transfer.

5.1. Case-Study Description

We consider a system composed of a POSIX-compliant
OS, a CORBA-compliant middleware, and a simple
application that implements the following IDL interface:

interface Hello {
  unsigned long say_hello();
};

R1 by T1

R2 by T1

R1 by T2

R2 by T2

after_R1

after_R2-2

after_R2-1

init

...

T1_after_R1
T2_after_R2
X_after_R1_by_T1_init
Y_after_R2_by_T2_init

T1_after_R1
T2_init
X_after_R1_by_T1_init
Y_init

T1_after_R1_R2
T2_init
X_after_R1_by_T1_init
Y_after_R2_by_T1_after_R1

T1_init
T2_init
X_init
Y_init

R1

init

after_R1

R2

after_R2-1 after_R2-2

R2

R1

init

after_R1

after_R2

R2

a- Detailed states (OS view) b- Major of the states (OS view) c- States (MLR view)

Figure 3: Different Views of the Computation
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On receiving a request "say_hello()", the application
increments an internal counter (originally set to 0), and
returns the new value to the client. A possible C++
implementation of this application can be as follows.

CORBA::ULong Hello_impl::say_hello() {
  CORBA::ULong result ;
  pthread_mutex_lock(&_object_lock);
    _count++ ;
    result = _count ;
    cout << "Hello World!: "
         << _count << endl;
  pthread_mutex_unlock(&_object_lock);
  return result ;
}

The counter _count  represents the application's
internal state. As this counter is returned to the client, the
order in which requests are scheduled (indirectly through
the mutex Hello_impl::_object_lock) determines
which client sees which result.
In order to replicate this very simple application, we need
to identify the reflective features of Table 3: control over
execution points and determinism for active and semi-
active replication, and the state transfer for passive
replication and cloning. To reach this goal, Figure 4 shows
the reverse engineering of a concrete CORBA
implementation running our example. This figure shows
simplified traces of the different active threads within the
Orbacus CORBA implementation when processing the
say_hello() request in pool mode. Orbacus (version
4.1.1) was used in thread_pool mode with four threads
in its pool (p = 4), on Linux (version 2.4.18), leading in
this case to 8 active threads (4 additional service threads!).

On the figure, four threads are shown, with numbers 1,
3, 4 and 8. 1 is the main thread, 3 the thread that accepts
socket connections (i.e. it executes the accept system
call). Thread 4 is one of the pool threads (the other pool
threads correspond to the numbers 5, 6, 7– not shown).
Thread 8 is the receiver thread associated to the invoking
client. The thread number 2, not shown, corresponds to the
manager thread of the current Linux pthread
implementation. This manager thread is totally hidden to
the user of the pthread library, and is used internally to
carry out all thread management actions (blocking,
signaling, suspension, creation, and destruction). This
manager thread is an example of implementation choices
that remain totally invisible to higher system levels
implemented on top of it.

In this figure, we can distinguish four main phases:
1. First, the ORB is initialized (calls numbered from (0)

to (5)). The thread pool is created (calls number (2)
and (3)) and the accepting thread 3 is spawn.

2. In the second phase, a connection request is received
from a remote client, and a receiver thread is launched
(call number (6)): several connections, several

receiver threads. Connection management realized
within the ORB is transparent to the application level.

3. In a third phase, the request is received by the receiver
thread (call (8)), and travels up to the application code
(call (14) to say_hello()). The transfer of the
request from Thread 8 (receiver) to Thread 4 (thread
pool member) occurs through the a shared request
queue (Thread 8 invokes ThreadPool::add(..),
which awakes Thread 4 and have it return from
ThreadPool::get(..).).

4 .  Thread 4 returns from the application and calls a
sequence of object methods (15 to 18) to return the
result of the request execution (call (19)) to the client.

5.2. Request Execution Related Meta-Model

Definition of the Meta-Model

In order to handle the non-determinism and control the
execution, we focus on the part of the meta-model of
Table 3 related to request execution. We model here the
lifecycle of a request as follows: (i) a request is received
by the ORB, (ii) delivered to the application and finally
(iii) results are sent back to the client. This lifecycle could
be refined, but other aspects have not been identified as
relevant to the fault-tolerance mechanisms discussed in
Section 3. Based on this lifecycle, we must be able to
observe the following classes of reified events (see Figure
4) for a detailed control of request execution through the
ORB:

BeginOfRequestReception
EndOfRequestReception
RequestBeforeApplication
RequestAfterApplication
BeginOfRequestResultSend
EndOfRequestResultSend
RequestContentionPoint

The processing of a request reifies exactly one instance
of each of these event classes, except for the last one:
RequestContentionPoints correspond to the several
decision points, in the ORB and the application, that
determine the ordering of request processing.

The Meta-Model applied to the Example

From the reverse engineering4 analysis in Figure 4, one
can easily identify the first six "Request related events"
mentioned previously. BeginOfRequestReception is
mapped to the call to recv (number (8) in the figure);
EndOfRequestReception to the return of the same call.
RequestBeforeApplication is mapped to the call to
say_hello(); RequestAfterApplication to the
return of the same call; BeginOfRequestResultSend

                                                            
4  A special reverse engineering tool was developed on purpose to obtain
this graph by analyzing the runtime execution of an open-source ORB,
here Orbacus.
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and EndOfRequestResultSend are mapped to the call
and the return of send respectively (number (19).

From the analysis of the control and data path followed
by a request, we identify two places corresponding to
RequestContentionPoints, namely RCP1 and RPC2:

•  RCP1: A lock protects the object ThreadPool and
serializes accesses to the request queue by both receiver-
threads and pool-threads in ThreadPool::add() and
ThreadPool::get().

•  RCP2: A second contention point in the application
code, which uses the this->_object_lock mutex.

Quite interestingly, controlling those two contention
points appears to be necessary and sufficient to control the
non-determinism introduced by the request dispatching
within the ORB. According to the above meta-
information, non-deterministic decisions can be identified
and propagated to a replica.

•  RCP1 controls the order in which the pool-threads
extract requests from the request queue within the ORB,

• RCP2 enables controlling in which order requests are
processed within the application objects.

This is a nice example of MLR as RCP1 belongs to the
ORB and RCP2 to the application. Both contention points
are needed to control non-determinism and solve PB1 and
PB2. RCP1 only cannot ensure the order in which requests
are processed by the application object. RCP2 only cannot
ensure that the same set of requests is extracted from the
queue. Both have an impact on the results returned the
clients (i.e. the value of the counter _count).

5.3. State Related Meta-Model

Passive replication requires a state-related meta-model
to be able to capture and restore a consistent server state
(platform and application). This can be done in two steps:
first restoring the ORB/OS state, then the application state
in a consistent way. The request life cycle presented
previously is used to restore the ORB state.

Indeed, once we control how requests and their
associated threads interleave within the ORB, we can
restore an ORB state by simply "re-injecting" requests at
the communication interface. This can be seen as an
adaptation of log-based checkpointing techniques [16].
Actually, the aim is not to restore the entire ORB state but
the relevant state driving the execution of our application.
This is the key benefit of our approach. This implies subtle
re-execution of the ORB parts related to the processing of
on-going requests thanks to meta-models information. The
objective of this re-execution is to reach a state that is
equivalent (not necessarily identical) for the application.

From the point of view of the ORB, requests can be
pending in the ORB for execution, in progress at the
application level (limited by the pool size) or pending in
the ORB for termination. The following ORB level
intercession actions are thus required:

• (i) Insertion of pending requests for execution,
• (ii) Insertion of requests in progress in the pool,
• (iii) Insertion of pending requests for termination.

ThreadPool

Upcall

(10) 8:add
a

Hello_impl

POA_Hello

(14) 4:say_hello
b

recv send

POA_impl

(2) 1:new
ThreadPool

a

ThreadPoolDispatcher

(11) 4:_OB_dispatch

b

ORB_impl

(1) 1:new
POA_impl

a

(3) 1:Create
Thread 4

(4) 4:get

a

main

(0) 1:-

GIOPServerWorkerThreaded

(5) 1:Create
Thread 3

b

(8) 8:recv
b

(19) 4:send
d

GIOPServerWorker

(18) 4:upcallReturn

(9) 8:invoke

c

(17) 4:upcallEndReply

b

(12) 4:_OB_dispatch
b

(13) 4:_OB_op_say_hello
a

ServantBase

(15) 4:_OB_postMarshal
c

(16) 4:postMarshal

ReceiverThread

(6) 3: Create
Thread 8

a

(7) 8:receiverRun

ORB_impl

Hello_impl

C++ class / C function

class / function 
of interest

invocation of method
"add" on an object of
class "A" by thread "8",
registered as the "10th"
observed event

A
(10) 8:add

A

(2) 1:new A instantiation  of an object
of class "A" by thread
"1", registered as the
"2nd" observed event(5) 1:Create

Thread 3

A
spawning  of a new
thread "3" into an object
of class "A" by thread
"1", registered as the
"5th" observed event

Application

Middleware

OS Kernel

Network

network communication

main program entry point

Xa

b order of observation of
calls made from objects
of class "X". Call labeled
"a" is observed before
call labeled "b".

Caption:

OS Kernel layer / abstraction level

Figure 4: Request Dispatching using a Thread Pool in Orbacus



DSN-2003 The Internatl. Conf. on Dependable Systems and Networks — San Francisco USA June 22nd - 25th, 2003

(Saved: Monday 30 June 2003 17:06) 11

In order to perform these operations in a portable and
disciplined manner, intercession facilities are required (see
ORB meta-interface in Figure 5). All requests are inserted
using the InjectRequestAtCommLevel ORB meta-
interface intercession function. As we control
RequestContentionPoints reified events, we can
block the execution of pending requests for execution (i).
For requests pending for termination (iii), we bypass the
execution of the request by forcing the continuation of the
execution within the ORB by means of the ORB meta-
interface function SkipCallToApplication. To trigger
this bypass operation, we intercept the execution flow
before it reaches the application, thanks to the reification
of event RequestBeforeApplication (cf. Section 5.2).

The management of requests in progress at the
application level (ii) implies complementary state recovery
actions at both the OS and the application layers:

• Update thread related data structures (OS);
• Update application state variables (Application);
• Resume execution of application objects (OS)
Similar meta-interface and reification facilities are thus

required at the OS level. Numerous techniques can be used
to restore thread execution stacks, for instance [8] that is
portable, or [3, 4] for platform specific solutions
(respectively on Java and Linux/i386).

The update of application state variables (here _count)
can be done in many ways, including reflective approaches
(already proposed as in [9]) that are very portable.

5.4. Towards Implementation of the Meta-Models

Figure 5 summarizes in a Java-like format the meta-
interface we have obtained. This meta-interface is quite
generic, and can be applied on any ORB that follows the
assumptions we made on this example. Its design
synthesizes the requirement analysis of the fault-tolerance
mechanisms, and the Multi-layer analysis we proposed.
Implementation using Orbacus and Linux is in progress
today.

6. Conclusion and Future Work

The rapid evolution of system platforms and the
variability of their configurations and surrounding
environments induces an increasing need for adaptive
systems at both functional and non functional levels. In the
particular case of fault-tolerance, many attractive
algorithms have been proposed to generically provide
fault-tolerance to a wide range of system classes. These
algorithms are based, however, on the availability of
specific observation and control features in the underlying
system platform that are often difficult to obtain in
practice. The difficulty arises from the multi-layer
structure of the considered platforms, and the increasing
use of off-the-shelf software components. These control
and observability features are, however, essential to the
correctness of these algorithms and cannot be ignored.

class Request ;
class Thread ;
class StackChunk ;
class ReifiedEvent ;
class RequestLifeCycleEvent extends ReifiedEvent {

public Request reifiedRequest ;
public Thread  reifyingThread ;

}
class BeginOfRequestReception extends RequestLifeCycleEvent ;
class EndOfRequestReception extends RequestLifeCycleEvent ;
class RequestBeforeApplication extends RequestLifeCycleEvent ;
class RequestAfterApplication extends RequestLifeCycleEvent ;
class BeginOfRequestResultSend extends RequestLifeCycleEvent ;
class EndOfRequestResultSend extends RequestLifeCycleEvent ;
class RequestContentionPoints extends RequestLifeCycleEvent ;

class IntercessionCommand ;
class ContinueExecution extends IntercessionCommand ;
class SkipCallToApplication extends IntercessionCommand ;

interface MetaLevel {
IntercessionCommand reifyEventToMetaSynchronous(ReifiedEvent e);

}
interface BaseLevel {

State captureApplicationState ();
void  restoreApplicationState (State s);
StackChunk captureApplicationStack (Thread t);
void       restoreApplicationStack (Thread t, StackChunk stack) ;
void  InjectRequestAtCommuncationLevel(Request r);

}

Figure 5: The resulting meta-interface
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In this paper we proposed an approach that provides
early answers to the above problems by using Reflection
to make platform assumptions easier to address. After
analyzing several conventional replication techniques, we
factorized the requirements of these techniques into a
high-level meta-model. We illustrated on a case study how
this meta-model can be mapped to a given system platform
by analyzing the structural and behavioral elements across
several abstraction levels. Multi-Layer Reflection
aggregates the meta-model of several abstraction levels in
order to select the most appropriate location to obtain
relevant meta-information.

In many works, people often tend to ignore
implementation details raising the argument of standard
interfaces. As far as fault-tolerant computing is concerned,
this kind of argument does not hold and we showed how
Multi-Layer Reflection could overcome this problem.
However, implementing MLR, although possible on open-
source executive layers, is very complex. The reason is
that, even when complying with standard interfaces, the
implementation of middleware and operating systems is
difficult to master for the development of fault-tolerance
strategies. The implementation of cross-cutting concerns
definitely calls for appropriate implementation
frameworks, and to some extent, a new generation of
components, namely reflective components. This is one of
our long term objectives for a better mastering and
adaptation of fault-tolerance in complex component-based
systems.
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