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Abstract—The highly beneficial contribution of intelligent sys-
tems in the industrial domain is undeniable. Automation, supervi-
sion, remote control, and fault reduction are some of the various
advantages new technologies offer. A protocol demonstrating
high utility in industrial settings, and specifically, in smart
grids, is Distributed Network Protocol 3 (DNP3), a multi-tier,
application layer protocol. Notably, multiple industrial protocols
are not as securely designed as expected, considering the highly
critical operations occurring in their application domain. In this
paper, we explore the internal vulnerabilities-by-design of DNP3,
and proceed with the implementation of the attacks discovered,
demonstrated through 8 DNP3 attack scenarios. Finally, we
design and demonstrate a Deep Neural Network (DNN)-based,
multi-model Intrusion Detection Systems (IDS), trained with our
experimental network flow cyberattack dataset, and compare
our solution with multiple machine learning algorithms used
for classification. Our solution demonstrates a high efficiency
in the classification of DNP3 cyberattacks, showing an accuracy
of 99.0%.

Index Terms—cyberattack, DNP3, ICS, Intrusion Detection,
SCADA

I. INTRODUCTION

Industrial Control Systems (ICS)/Supervisory Control And
Data Acquisition (SCADA) systems’ utility and benefit in
the industrial domain is undoubtful [1] [2] [3]. Such solu-
tions boost automation in contemporary, Internet of Things
(IoT)-enabled industrial processes, by supervising, monitoring,
and controlling the manufacturing procedures [4] [5]. Nowa-
days, an ever-increasing amount of industries are utilizing
ICS/SCADA solutions for automation, with this phenomenon
being especially highlighted in the energy sector [6] [7].
However, as the applications of intelligent monitoring systems
increase, the attack surface against such critical infrastructures
(CI) expands simultaneously [8] [9] [10]. The rate of cyberat-
tacks is at an all-time high, and the industrial domain has not
remained unscathed from this issue [11] [12] [13].
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Attacks against CI can have disastrous consequences as past
incidents have indicated [14] [15] [16]. Specifically, a cyber
incident in 2015 targeting Ukraine’s power grid resulted in
a complete black-out for almost 225,000 people [17] [18].
Furthermore, STUXNET is considered to be the biggest cy-
bersecurity incident to have ever occurred, since it targeted and
succeeded in causing malfunctions in Iran’s nuclear facilities
[19] [20] [21]. STUXNET’s success in nuclear-focused in-
frastructures raises significant concerns regarding the security
measures adopted in CIs. A further concern is the fact that a lot
of ICS/SCADA-oriented protocols, such as DNP3, a protocol
heavily used in the manufacturing process and especially in
smart grids, are not designed with security in mind [22], and
have to rely on different protocols or software to perform that
task [23].

As insinuated in the previous paragraphs, the rapid and ac-
curate detection of threats, especially in the industrial domain
and smart grids, is essential for mitigation purposes. Machine
Learning approaches have nearly global application in all IoT
domains [24] [25] [26]. The integration of such technology for
the protection of ICS/SCADA systems is a common approach
with machine learning contributing mostly to the creation of
IDS, able to perform a variety of tasks, such as anomaly
detection and classification of network traffic, intending to add
a layer of protection against cyberattacks in the procedures of
ICS/SCADA systems.

With the above topics into consideration, we are presenting
our research centered around attacking and defending the
industrial protocol DNP3, against malicious attempts. As such,
the contribution of this paper is two-fold:

o Investigate, describe and implement 8 DNP3 protocol-
specific cyberattacks and malicious attempts

o Design and implement a machine learning-based, multi-
model cyberattack classification IDS, trained to recognize
all of the aforementioned DNP3 attacks

The paper is organized as follows. In Section II, current
research on cybersecurity regarding DNP3, and IDS is pre-
sented. Section III aims in providing a background on the
DNP3 protocol, how it operates, and the various layers it is
composed of. Next, the detailed description of the attacks
conducted in a simulated DNP3-enabled infrastructure, are
explained in Section IV. Following, our multi-model DNP3
cyberattack detection and classification method is presented in
Section V, and the evaluation of the aforementioned approach
is conducted in Section VI, followed by the conclusions of
our research in Section VIL
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II. RELATED WORK

Undoubtedly, the topic of securing the extremely critical
industrial sector is a top research priority, given the continually
expanding attack surface and the potentially disastrous effect
of cyberattacks in such domains. As such, the aim of this
chapter is to present similar research works that have been
conducted in the field of cybersecurity in ICS.

Radoglou-Grammatikis et.al. [27] suggest a network flow-
based intrusion and anomaly detection and prevention tech-
nique, named DIDEROT, using both supervised and unsu-
pervised machine learning. Network flows are classified with
a Decision Tree model trained on various attacks according
to the Rodofile dataset, as well as normal behavior collected
from real-world substation traffic. If the flow is classified as
non-malicious, the autoencoder gets activated and searches
for possible anomalies. If a malicious activity or anomaly is
discovered, the Response module informs the SDN controller
to drop the specific flow. According to the evaluation results,
both the autoencoder and decision tree were able to achieve
very high accuracy and F1 score, namely 99.7 percent and 99.1
percent respectively for the decision tree, and 95.1 percent and
95.3 percent respectively for the autoencoder.

Another important work is presented in the field of cy-
bersecurity in [28] by Radoglou-Grammatikis et.al., where
the authors are introducing the Secure and PrivatE smArt
gRid (SPEAR) Security Information and Event Management
(SIEM) system, able to directly address the needs and peculiar-
ities of smart grid ecosystems. Their SPEAR SIEM tool is able
to detect attacks targeting multiple application layer protocols
used in smart grids, while the proposed solution’s efficiency
is demonstrated through 4 real-life smart grid infrastructures.

A work addressing the DNP3 and its vulnerabilities is
presented in [29] by Darwish et.al., where the authors highlight
the weaknesses of DNP3 and continue by implementing two
attack scenarios against the protocol, where the former aims
in intercepting and stopping an unsolicited message from the
slave, and the latter modifies the content of the TCP payload
to manipulate and redirect the DNP3 traffic. In addition,
the authors propose a round trip time delay (RTTD) and a
pass-and-drop algorithm-based attack detection and mitigation
strategy.

Lin et. al. [30] propose a technique for protecting SCADA
systems based on the Bro network traffic analyzer. Specifically,
the authors introduce a custom DNP3 analyzer based on Bro,
to get a concrete view of SCADA-related events. In addition,
they constructed a protocol validation policy to verify that the
DNP3 network traffic adheres to the predefined communica-
tion patterns.

Irvene et.al. argue with the fact that machine learning
options constitute the best solution for creating efficient
IDS. Specifically, with their work in [31], they demonstrate
a lightweight security mechanism for substations utilizing
DNP3. Furthermore, data were collected and analyzed through
the span of 2.5 years from four real energy plants, concluding
to the observation that master’s and outstations’ communica-
tion does not present the variety in application layer function
codes assumed in many works. Taking into consideration the

monotone communication patterns in regular traffic, a rule-
based system for detecting abnormalities was realized, based
on characteristics including the frequency of appearance of
a specific function code and the interarrival time of packets
presenting the same function code.

Amoah et.al. [32] emphasize the lack of security solutions
for the case in which the master broadcasts messages to the
outstations in large-scale infrastructures. Thus, the authors
present a novel hash-chain-based lightweight security measure
for broadcast mode communications, entitled DNP3 Secure
Authentication for Broadcast (DNP3-SAB). The solution of
DNP3-SAB is tested and verified through the utilization of
Coloured Petri Nets (CPN), against a variety of common
DNP3 cyberattacks.

Further addressing the security issues of DNP3, Bagaria
et.al. [33] address the protection of existing and future infras-
tructures utilizing the protocol for their internal communica-
tions. Specifically, they designed an encryption bump-in-the-
wire prototype, able to blend in with legacy systems without
the need of modifying them.

Undoubtedly, a lot of great research has been conducted
in the previous years, focusing on the protection of the highly
critical SCADA systems and the industrial domain as a whole.
To aid in the previous research efforts, we are presenting in
the following sections an in-depth view on vulnerabilities-by-
design and exploitable points of DNP3, and our multi-model
machine learning tool for the detection of DNP3 cyberattacks.

III. DNP3 BACKGROUND

DNP3 is a multi-tier application layer protocol utilized in
the industrial domain, with its application being highlighted
in the energy sector and smart grids [34]. DNP3 usually runs
on top of Transmission Control Protocol (TCP) and occupies
port 20000. DNP3 follows a client-server model, according to
which there are two entities, the master with client functions,
and the slave or outstation with server functions, whose aim is
to provide responses to the master’s requests [35]. This model
gives the master the opportunity to supervise, control, and
acquire data from slaves, thus fully controlling the production
processes. Regarding the protocol’s architecture, it is divided
into 3 layers, namely the Data Link layer, the Transport layer,
and the Application layer.

The Link layer is responsible for sending and receiving
frames, and contains header information such as source DNP3
address and destination DNP3 address, while it is also respon-
sible for calculating errors through Cyclic Redundancy Check
(CRCO), and checking the link’s status. The Transport layer’s
purpose lies in the fragmentation of large packets received by
the Application layer, while its header contains the information
required to reassemble the aforementioned fragments. Finally,
the Application layer creates the message to be communicated;
however, this layer’s header differs, depending on whether
the message creator is a master or a slave, as the latter’s
header contains the Internal Indications field to better describe
the node’s status. Still, in both cases, the function code field
describes the way the received message should be handled.
Figure 1 represents the information flow through the multi-
layered architecture of DNP3, during message creation.
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IV. ATTACKING DNP3 SCADA/ICS AND DATA
COLLECTION

DNP3 is a protocol widely used in ICS for automating
the control and supervision of the production process, in the
electricity, oil, and water industries. Notably, over 75% of
North America’s electrical plants utilize DNP3 as a SCADA
protocol, to allow communication between field devices and
master stations [36]. Therefore, attacks against a protocol
of such extreme utilization in highly critical domains can
have disastrous consequences. The aim of this section is to
provide a summary of the attacks which can have the highest
impact on DNP3-enabled SCADA environments, and describe
the training dataset generated through the execution of the
aforementioned attacks.

Our experimental setup included two different topologies of
master and slave instances, which can be observed in the Fig-
ures 2 and 3 below. All DNP3 communications were simulated
with opendnp3 [37], which is an open-source application of the
DNP3 protocol written in C++. A total of 8 attack scenarios
were executed against the simulated DNP3 environments,
capturing the network traffic generated through this process.
Through all the attacks, we assume that the attacker has
already obtained access to the DNP3 network. In the following
subsections, an overview of the attacks performed is given.
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A. Disable Unsolicited Messages

The first attack conducted, had the objective of ordering
the slave to disable the functionality of sending unsolicited
messages to the master. As the slave can use this function to
rapidly notify the master of possible faults, disabling it may
cause the slave to delay in communicating the abnormality
through an unsolicited response. This specific attack took ad-
vantage of the fact that slaves conform to the order regardless
of whether the node sending the order is a legitimate master.
As such, we had our attacking nodes of topology 1, as seen
in Figure 2 connect as masters to each slave and request them
to disable their spontaneous messages, by sending a DNP3
packet with an application layer function code 21. This attack
was repeated in the [20, 30] second interval by each attacking
node, with the aim to create a large enough training dataset.

B. Cold Restart

The second attack executed, had the objective to force
the slave to fully restart and go through all the self-check
processes, through a cold restart packet. This specific attack
takes advantage of regular DNP3 functions to possibly send
the slave offline for some time and cause a Denial of Service
(DoS) as the slave fails to respond to the masters’ requests.
As such, similarly to the implementation of the first attack, we
took advantage of the fact that slaves reply to any node sending
master requests, and had each attacking node of topology 1
send DNP3 requests with application layer function code 13
to each slave, repeatedly, in a [20, 30] second interval.

C. Warm Restart

Following the idea of the second attack, our third attack
has the aim of causing the slave to restart DNP3 applications
only, but not perform a full restart like the second attack.
As a result, the slave becomes unresponsive for some time,
until the application’s restart process is completed. To that
aim, we send a warm restart request packet containing the
DNP3 application layer function code 14 by each attacker
impersonating a master, according to topology 1, similarly to
the previous attack scenarios. Similar to the previous scenarios,
the attack is repeated in the [20, 30] second interval, for the
training dataset generation process.



D. Slave Discovery

Our fourth and fifth malicious actions against DNP3 in-
volved launching two Nmap Scripting Engine (NSE) against
our DNP3 slave nodes, whose aim is to recognize whether
the given Internet Protocol (IP) address belongs to a DNP3
slave. The former NSE sends to the target IP a packet to
request the status of the link, with data link layer function
code 9, to the first 100 DNP3 data link addresses in order to
check whether a response is given. Similarly, the latter NSE
sends requests to the first 100 DNP3 data link addresses of
the given IP address and awaits for a response. In both cases,
if a response is given, then the NSE successfully recognized a
DNP3 slave and its data link address, running on the target IP.
The scripts were run against our second topology of DNP3,
as seen in Figure 3, while the scanning was executed in a
repeated manner, randomly every [20, 30] seconds.

E. Initialize Data

On the same logic as the attacks aiming to exploit DNP3
by leveraging the protocol’s application layer function codes,
our sixth attack aimed to command the slave to initialize its
data. As such, the objective was to request the slave to reset its
data to the initial values, thus, any updates sent from the point
of the attack, will not reflect the system’s actual status. This
attack was achieved by intercepting a legitimate packet from
the master via Man-In-The-Middle (MiTM) approaches, and
modifying it with scapy [38] to set the function code of the
application layer to 15 and handle all the necessary changes to
the payload accordingly. The modified packet is then injected
back into the traffic. This attack was run against the setup
of the second topology as seen in Figure 3, while it is also
repeated in the [20, 30] second interval.

FE. Stop Application

Taking a system offline by deliberately causing DoS is an
extremely common cyber incident. DNP3 function codes can
play an important part as previously explained, in silently
making the slaves unresponsive. Specifically, DNP3 features a
master request function code to order the slave to immediately
cease the function of the DNP3 application and thus no longer
respond to DNP3 requests. Our seventh attack is accomplished
by capturing a request packet via MiTM, accordingly modify-
ing its fields via scapy, setting the application layer function
code to 18, and injecting it back in the traffic. Similar to
the attack above, this scenario was conducted in the second
topology and involved sending modified packets every [20, 30]
seconds.

G. Replay

Our eighth and final attack scenario involved the repetition
or the delay in transmission of a non-malicious packet. Al-
though this specific attack was not centered around DNP3 and
its functions, it is still an effective measure of causing disrup-
tions and obstructing communications between DNP3 nodes.
To implement this scenario, MiTM techniques, specifically,
Address Resolution Protocol (ARP) Poisoning, was utilized
to capture traffic of the second topology, save the packets and

then delay their transmission in a random time, in the [5, 10]
second interval.

During the execution of the aforementioned attack scenar-
ios, all traffic was being continually captured by each node in
the corresponding topology. As a result, we have curated a set
of datasets to train our DNNSs, able to capture and represent
the attacks conducted in TCP/IP flows, and DNP3-specific
flows. In detail, we captured the network traffic generated by
each node during each attack’s execution, and transformed the
packet capture files into TCP/IP flows, through the utilization
of CICFlowMeter [39], and flows centered around DNP3
attributes, through a custom flow generator. Finally, we pro-
ceeded by labeling the datasets with the corresponding attack
occurring during each flow, in order to train the classifiers.

V. DETECTING DNP3 ATTACKS

In the previous section, a description of cyberattacks ex-
ploiting DNP3-related vulnerabilities was given. Evidently,
the successful execution of the aforementioned attacks in a
DNP3-based SCADA environment can result in the disruption
of services, alteration of messages, and avert the delivery
of critical notifications. As such, solutions aiming to rapidly
and accurately detect malicious attempts are necessary to
avoid cyberattack-related consequences. In this section, we are
presenting our multi-layered Deep Learning-based IDS, which
aims to classify potential threats by leveraging network flows
related to DNP3 traffic.

Our proposed flow-based IDS solution is divided into 4
components, layered to operate in collaboration to timely
recognize attacks targeting DNP3-based SCADA infrastruc-
ture. Our first component is responsible for sniffing network
traffic in the form of packets; next, the captured traffic is
transformed into network flows in our second component. The
aforementioned flows are generated through the utilization of
2 different tools, the one being CICFlowMeter, which handles
the transformation of traffic into TCP/IP flows, and the other
one being a custom flow generation tool able to extract flows
based on DNP3-specific attributes. After the finalization of the
network traffic analysis through our second component, our
third machine learning-based component handles the classifi-
cation of the extracted flows. Specifically, our DNN models are
trained to recognize the 8 DNP3-based attacks demonstrated
in Section IV, as well as normal traffic, while CICFlowMeter
additionally recognizes ARP poisoning flows. As a result,
the network flows extracted in our second component, get
labeled through the inference mode of our third component,
resulting in the creation of the fully labeled file. Our fourth
and final component is responsible for creating alerts in case
a cyberattack is detected by the DNNs, concluding a circle of
operation of our IDS. The components making up our DNP3
IDS solution, as well as their interplay, can be observed in
Figure 4 below in a step-by-step manner, while their operation
is explained in detail through the following subsections.

A. Sniffing and Flow Generation

Capturing the traffic generated through the communication
of ICS/SCADA systems is a crucial first step when creating
an IDS. This ensures that communications from all parties are
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captured and registered in a common format, to facilitate the
successful execution of the next step, which is the analysis
of the communications. Our IDS solution captures communi-
cations in a network traffic format, meaning, it sniffs packets
from each system it is installed in. Specifically, it captures
packets throughout a pre-defined time window in each entity,
and stores the results in a packet capture (.pcap) file.

Next, the analysis of the .pcap files follows, in a flow-based
manner. According to Request for Comments (RFC) 2722
[40], the operation of a network flow is comparable to a phone
call action. There is a source, a destination, data exchanged
throughout its duration, a start, and an end. Our purpose is
to utilize network flows to structure and analyze the packets
captured through the sniffing procedure.

To achieve that, we use two different flow-generating soft-
ware tools to thoroughly analyze the .pcap files. The first one,
is CICFlowMeter, which takes as an input the packets and
extracts the network flows in a Comma Separated Values (.csv)
format, taking into account a predefined time duration for each
flow. Each network flow instance is characterized by more than
80 features centered around the transport layer of the packets,
as well as interarrival time-related data. The second software
used to extract flows from .pcap is a custom-made DNP3-
centered tool written in python. Our tool utilizes the well-
known packet dissector scapy and its DNP3 library to extract

essential features from all DNP3 packets, and form the flows.
The analysis begins by taking the first DNP3 packet in the
.pcap file and searching the rest of the file for packets captured
in a pre-defined time window, with the same or reversed
characteristics of the source and destination IP address and
ports. In case of matches, then a flow is formed, consisting of
over 100 features centered around attributes of all the layers
of DNP3, and time-related data. This process is repeated until
there are no packets left in the .pcap to analyze. Similar to
CICFlowMeter, our DNP3-based tool stores the results in a
.csv format to facilitate the training procedures of machine
learning models.

B. Deep Neural Network and Attack Response

DNNs are heavily utilized to aid in resolving complex
problems that would have been extremely difficult to address
through different means. As such, our attack detection and
classification models demonstrated in this paper, follow a
DNN scheme. The above procedure of traffic analysis and
categorization in network flows aims to prepare data to be
used for training a DNN or to use it as a means for the
extraction of results. As such, in the former case, the dataset
is labeled depending on the attack that took place during each
flow’s duration. In the latter case, the unlabeled dataset is used
as an input to the DNN which is considered to be the core



of the machine learning-based IDS, in order to have it label
automatically each flow, according to the training it received.

We have developed a set of DNNs following a similar
process and architecture as explained in the paragraphs below,
which are at the center of the implemented DNP3 IDS,
each one individually trained with data generated through
the procedure mentioned in V-A. Moreover, one DNN is
trained with CICFlowMeter-generated flows, while the second
DNN is trained with flows extracted through our custom-
made DNP3 parser; in both cases, the datasets were labeled
accordingly. The structure of the cyberattack detection and
classification DNNs can be observed in Figure 5. As a first
dataset preprocessing step to prepare them for the training
process, we applied feature normalization to turn data into
values in the [0, 1] range, where z,. is the scaled feature value,
x is the feature vector and z; is the initial feature value;
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Fig. 5. Structure of Attack Detection and Classification DNNs

Furthermore, our DNNs’ architectures consist of 10 layers,
optimized through Adam with a learning rate of 0.0001. Both
of the attack detection models are compiled with Categorical
Crossentropy (2), as a loss function, where K indicates the
number of the classes, b;. which is a binary pointer, indicating
whether the kth input belongs to the c class, and finally the
output og., which denotes the probability predicted by the
model, that the kth input belongs to class c.

K
Lcce = — Z brclog(oke) 2
c=1
Every Dense layer in our neural networks apart from the output
one, is activated through the ReLu activation function (3),
where = denotes the value inputted to the neuron:

if x <0
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Finally, the last or the output layer is activated through
the Softmax activation function as seen in Equation (4) in
both of our DNNs, which can transform the input values
to probabilities. In detail, Softmax calculates a probability
distribution of class membership for every output of the final
layer. This is achieved by dividing the exponential value of
output z; with the summation of all exponentials:
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Our training process for both of the DNNs consumed
about 715MB of memory for both cases, including the afore-
mentioned data pre-processing steps. It consisted of 1000
epochs, and resulted in the generation of two different DNN-
based models; one able to perform multi-class classification of
attacks with flows generated through our custom DNP3 parser,
and the other able to perform the same task but with flows
created through CICFlowMeter. As such, during the operation
of our IDS, two separate .csv files containing data from the
two flow generation software are used as an input to each
corresponding model; thus, the output of our IDS would be
two fully labeled .csv files consisting of the network flows and
their characterization, according to the underlying model. The
timely and accurate detection of threats is of high importance
in the mitigation of a cyberattack. To this end, in case a DNP3
cyberattack is detected by either model, an alert is generated
with the malicious flows and the DNNSs’ classification of them,
to help the handlers react promptly and address the issue,
thus mitigating the impact of the cyberattack. The evaluation
analysis and the performance comparison of both models is
explained in detail in the following section.

SM(ZZ) =

VI. EVALUATION ANALYSIS

In order to fully and thoroughly evaluate the performance
of the two flow generation tools in terms of model generation,
we have conducted experiments featuring multiple supervised
machine learning classifiers such as Decision Tree, DNN, K-
Nearest Neighbor (k-NN), Naive Bayes, and Random Forest.
Specifically, we have trained the aforementioned classifiers
with datasets extracted through the two network flow genera-
tion tools, namely the DNP3-based flow tool and CICFlowMe-
ter, to locate the solution that provides the best means to
resolve the problem of creating a DNP3 cyberattack detection
software.

It is worth noting that, since our custom DNP3 flow
generation tool focuses solely on DNP3 attributes, it is not
designed to target or categorize in flows packets of Open
Systems Interconnection (OSI)’s data link layer; thus, any ARP
poisoning attempts are not detected through the custom tool.
Instead, CICFlowMeter is used as a means to additionally
detect this cyberattack, and provide the relevant flows and
statistics correlated with ARP poisoning scenarios. Hence, the
models trained based on CICFlowMeter flows, are inclusive
of ARP poisoning flows.

The metrics used to measure the performance of the classi-
fiers, are the accuracy, precision, F1-score and recall, described
in Equations 5, 6, 7 and 8 respectively. In detail, 7'P denotes
the number of true positives, TN denotes the number of
true negatives, F'P denotes the number of false positives and
finally, F'N denotes the number of false negatives classified
by the model. The results can be observed in Tables I for the
DNP3 flow-based training and II for the CICFlowMeter-based
training.

TP+TN

accuracy = (®)]

TP+TN+FP+FN




TP

precision = TPLFP (6)

M=Tpy ;(?; +FN) @

recall = TPFS-iPFN (®)
TABLE 1

DNP3 FLOW-BASED CLASSIFIER EVALUATION

Decision Tree DNN K-NN  Naive Bayes Random Forest
Accuracy 0.9305 0.9900 0.9494 0.6827 0.905
Precision 0.9306 0.9580 0.9497 0.7222 0.9053
F1 0.9305 0.9565  0.9494 0.6490 0.9049
Recall 0.9305 0.9549  0.9494 0.6827 0.9049
TABLE II

CICFLOWMETER-BASED CLASSIFIER EVALUATION

Decision Tree ~ DNN K-NN  Naive Bayes Random Forest
Accuracy 0.8818 0.9763  0.8794 0.6377 0.8690
Precision 0.8818 0.8845  0.8797 0.6746 0.8694
F1 0.8818 0.8832  0.8794 0.6022 0.8690
Recall 0.8818 0.8819  0.8794 0.6377 0.8690

As it can be observed from the tables above, the DNN was
able to yield better performance metrics in both flow genera-
tion cases in comparison with the rest of the classifiers. This
indicates that our choice of utilizing DNNs for attack detection
and classification, is supported by the resulting performance
evaluation, as following a DNN architecture seems to increase
the model’s reliability in categorizing network flows according
to the underlying traffic, in both flow generation cases.

Regarding the comparison of the two DNN models resulting
from training a similar DNN architecture with two different
datasets, one DNP3 flow-based and one based on TCP/IP flows
as generated through CICFlowMeter, the above performance
results in Tables I and II respectively, indicate increased
metrics for our DNP3 flow-based training. Furthermore, Figure
6 and Figure 7 represent the resulting confusion matrices for
both the DNN models.

According to the results above, the DNN trained on DNP3
flows is able to recognize more accurately and reliably the
vast majority of cyberattacks against DNP3. In contrast, the
DNN trained on CICFlowMeter flows, shows a decrease in
evaluation metrics and thus is not able to recognize DNP3 cy-
berattacks as accurately as its competitive DNN; it is however
able to classify correctly all samples of the ARP Poisoning
class, according to the confusion matrix in Figure 7. Hence,
the TCP/IP DNN complements the operation of the DNP3-
targeted DNN, by providing highly accurate detection of ARP
Poisoning instances.

VII. CONCLUSIONS

As discussed in the previous sections, protocols intended
for industrial applications are inherently insecure and present
vulnerabilities by design. The purpose of this paper included
a provision of a detailed overview of the security soft spots of
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DNP3. Specifically, we identified and implemented 8 DNP3-
centered cyberattacks and malicious actions, namely Disable
Unsolicited Messages, Cold and Warm Restart, two Slave
Discovery nmap scripts, Initialize Data, Stop Application,
and Replay. Utilizing the insightful outcomes of attacking
DNP3, we have created a multi-model IDS able to perform
cyberattack detection and classification tasks, presenting a
DNN accuracy as high as 99.0%. Evidently, the utilization
of network flows containing attributes specific to the protocol
to be analyzed for machine learning and intrusion detection
purposes, yields better metrics than using TCP/IP-based flows.
Concluding, flow generators presenting protocol-specific at-
tributes are the optimal solution for network flow-based IDS,
as they target and describe directly the protocol’s peculiarities
and thus, present an attractive solution for enhancing the
robustness against cyberattacks for ICS/SCADA.
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