

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Multilevel host-compiled simulation framework for
ROS-based UAV services using ArduCopter

Javier Merino
Dpt. TEISA

University of Cantabria
Santander, Spain

javierm@teisa.unican.es

Raul Gomez
Dpt. TEISA

University of Cantabria
Santander, Spain

raulgv@teisa.unican.es

Eugenio Villar
Dpt. TEISA

University of Cantabria
Santander, Spain

villar@teisa.unican.es

Hector Posadas

Dpt. TEISA
University of Cantabria

Santander, Spain
posadash@teisa.unican.es

Abstract— New services and business models based on
drones are continuously being proposed. System engineering for
these services have to include simulation as the cost of detecting
design mistakes during the first prototype flights may be very
high. If this fact is true in any complex system, in the case of
drone-based services design mistakes may compromise the
drones and the payload they carry increasing the associated cost.
System verification has to be made at different abstraction levels
so that each design step is verified. As a consequence, a
multilevel simulation framework is needed. In this paper, such a
simulation framework is proposed able to verify the system
functionality and performance along the design process.

Keywords—UAV, drone, ArduCopter, simulation, ROS,
multilevel, host-compiled

I. INTRODUCTION
The number and importance of new services and business

models based on drones is continuously growing. If in 2019
the Unmanned Aerial Vehicles (UAV) market was estimated
at USD 19.3 billion it is projected to reach USD 45.8 billion
by 2025, at a CAGR of 15.5% from 2019 to 2025 [1]. If
currently, drones are applied in a reduced number of niches
such as personal amusement, races, photography, public
spectacles and police surveillance, once the regulatory frame
is fixed, the number of potential applications will explode.
Most of these new services will go beyond a single drone
handled by a pilot. They will be based on smart, autonomous
drones able to follow a mission and react satisfactorily to
unexpected events. In many cases, the service will require an
intelligent cooperation among several, even many drones in a
swarm. In all these cases, the complexity of the functionality
supporting the service may be exceptionally large, distributed
on many devices of different nature such as drones, control
stations, edge devices, servers and, in some cases, the cloud.
Modeling the complete service, selecting the best functional
distribution based on an analysis of performance, validating
and verifying the solution and, finally, deploying it, is a
complex task.

The drone itself is a mechatronic device in which the SW
runs on a HW platform inside a mechanical structure allowing
it to fly. This is possible because there is an autopilot

electronics controlling the speed of each rotor accordingly to
the orders coming from the controlling entity (either a radio-
receptor receiving the orders from a pilot or a Ground Control
Station (GCS), an internal plan or a smart SW on-board) and
the signals provided by the sensors (gyroscope, accelerometer,
magnetometer, GPS, etc.). Each drone flies in a physical world
under mechanical and aero-dynamical laws ruling its
movement and its interaction with the environment. Therefore,
in the most general case, design and implementation of UAV-
based services is a hard, time consuming and error prone
Cyber-Physical System (CPS) design process. Detecting
design errors once the service is deployed, even before
commercialization, is very costly due to the following reasons:

1. Setting-up a real verification scenario for a service
based on drones is costly and time consuming.

2. Detecting and locating errors during real operation is
difficult.

3. Correcting the fault may require, in many cases,
backtracking to earlier stages of the design process
with the corresponding re-engineering costs and time.

As the verification scenario implies the use of real drones
fully equipped with the payload required by the service, any
mistake may compromise the drones and their payload.

UAV simulators have two fundamental pieces:

1. The model of the autopilot, which is the SW that runs
on the drone receiving the commands from the pilot
and the signals from the accelerometer, the gyroscope,
and the magnetometer and generating, accordingly, the
signals to the rotors.

2. The model of the physical environment of the drone,
that is, the aerodynamics defining the relation among
the signals applied by the autopilot to the rotors, their
speed, and the movement of the drone in the air under
concrete conditions. The resolution of the physical
equations provides the next position, direction, and
acceleration required by the sensors in the drone. This
functional piece defines the test-bench exercising the
autopilot functionality under a concrete scenario.

An additional component in many simulation frameworks
is a real-time 3D engine able to feature rendering, dynamic
physics and effects so that the drone flight can be visualized in
a realistic scenario.

This work has been funded by the EU and the Spanish
MICINN/AEI through the ECSEL Comp4Drones and the
TEC2017-86722-C4-3-R PLATINO projects.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

To minimize the number of design errors to be detected
during deployment in field, simulation is widely used during
the design process of a new drone [2] or the autopilot SW of
the drone [3]. Several commercial and open-source simulators
are available enabling to simulate a mission to be executed by
previously available drones [4-5].

Smart drones can take autonomous decisions instead of
depending continuously on the commands from the pilot or the
GCS. They have to implement an additional functionality to
be executed by the HW platform of the drone. Some services
require the cooperation among several UAVs in a swarm. In
that case, additional functions are required in each drone and,
in some cases, in the GCS. Depending on the service to be
provided the complexity of the complete system may growth
significantly.

The growing use of drones and robots in general, foster the
use of common standards. So, the Robot Operating System
(ROS) is an open-source set of software libraries and tools
widely used to facilitate the development of robot applications
becoming a ‘de-facto’ standard. From drivers to state-of-the-
art algorithms, ROS provides the required facilities for
robotics projects [6]. Most applications in this domain use
ROS. The C++ version of ROS is called ROScpp. ROS acts as
an underlying middleware providing a series of
communication features among nodes. Although the main
Model of Communication is the publisher-subscriber, it also
supports the client-server paradigm. Two separated parts can
be identified in the ROS framework:

1. The functional part, that is, the user’s application
functionality developed in C++ using ROS facilities
(ROScpp). This functional part may have as many
ROScpp nodes as required,

2. The ROS core, which handles all the communication
mechanisms among nodes, and is in charge of timing,
synchronization, etc. The ROS core is an underlying
code which the simulation framework has to take into
account but which is transparent for the system
engineer.

ROS has built-in time and duration primitive types, in
order to specify a specific moment or a period of time,
respectively. Although ROS is meant to work with wall-clock
(Operating System) time, it is possible to set-up a simulated
clock.

Most drones use MAVLink for drone communication [7].
MAVLink is a lightweight messaging protocol for
communicating with drones and between onboard drone
components. ROS includes MAVROS, a communication
driver for various autopilots with MAVLink communication
protocol. Additionally, it provides UDP MAVLink bridge for
ground control stations [8].

Any modeling and simulation environment for drones
should support ROS models. As in many cases the interface
with the autopilot is through MAVLink, the simulation
environment should be able to integrate it.

The SESAR Joint Undertaking has recently drafted the U-
Space, a set of new services relying on a high level of
digitalization and automation of functions and specific
procedures designed to support safe, efficient and secure
access to the European airspace for large numbers of drones

[9]. Services complying with the U-Space will have to
implement a large set of procedures closely interacting among
them. Modeling, simulation, performance analysis, validation
and verification of such complex services will require of
adequate system design frameworks where the system
engineers can model, analyze, and implement the service
ensuring its correct behavior once deployed in the field.

Therefore, drone-based applications require long and
complex design processes, as they must deal with strict non-
functional requirements such as criticality, timeliness,
reliability and safety. The huge number of simulations,
performance analysis and evaluations to be performed requires
powerful simulations technologies combining high simulation
speed and accuracy. Moreover, simulation-based verification
should be performed all along the design process. This
requires multi-level simulation capability with two main
purposes. On the one hand, to enable adding and simulating
new details as they are decided. In an initial, functional
simulation one pretends to validate the behavior of the system
under a certain test-bench. Once the functional components
are mapped to concrete HW devices, one pretends to estimate
non-functional constraints such as execution time and energy.
The model of the drone(s) can be as simple as a moving object
at constant speed or as detailed as a full mechatronic model.
On the other hand, one may require to analyze in detail a
certain component (i.e. a drone in a swarm) inside a functional
model of the rest of the system

Host-compiled simulation is a powerful, flexible approach
able to achieve fast, performance simulation of software
running on complex embedded systems [10]. The background
technology used in this work is VIPPE, a host-compiled
simulation tool able to support simulation and performance
analysis of complex systems as part of the S3D Model-Driven
system-design framework [11].

In this paper, a multi-level simulation framework is
proposed based on VIPPE, which has been extended to
simulate system models using ROS and to integrate drone
models at different levels of accuracy vs speed, from a simple
functional model to a model integrating the autopilot (i.e.
Ardupilot) and the physical environment (SITL or Gazebo).

II. RELATED WORK
As commented above, simulation is essential when

developing UAV-based services as design errors should be
detected before deployment. Matlab/Simulink has been used
to develop ad-hoc simulators both when designing a new
drone [2] or only the autopilot SW of the drone [3]. In both
cases, it is necessary to model the behavior of the autopilot SW
and the physical equations modeling the aerodynamics of the
drone. Being a Simulink model may limit its simulation speed
and, therefore, its scalability. MATLAB includes a ROS
Toolbox [12]. The toolbox provides an interface that connects
MATLAB and Simulink with ROS, allowing you to create a
network of ROS nodes. The toolbox allows to verify ROS
nodes through desktop simulation and by connecting to
external robot simulators such as Gazebo. Nevertheless,
MATLAB/Simulink is not an appropriate framework for
simulation and performance estimation at several abstraction
levels.

In order to improve the simulation speed, several flight
simulators have been proposed covering UAVs. The
fundamental pieces they include are the autopilot and the
model of the flying aerodynamics. In many cases, a 3D virtual

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

reality engine is provided [4-5]. Each one of these added
features slow-down the simulation speed significantly. Most
of these simulators are ‘Real-Time’ (RT), that is, simulated
and simulation times are the same (1/1) so that there is possible
a direct interaction between the executable model and a
human-in-the-loop as a pilot or a GCS operator. Nevertheless,
RT simulation makes difficult the simulation of large services
(i.e. a full day of a parcel delivery service).

An important conclusion of these analysis about drone
simulation is that currently, it is no longer necessary to build
an UAV autopilot and flight simulator from scratch. This
makes sense only when the service to be modeled is complex
enough and there is no need to analyze all the details of its
behavior. The modeling and simulation of UAV swarms
configuration and mission planning falls into this case,
justifying the development of an ad-hoc simulation framework
[13]. In this case, the realistic but slow physics simulation is
substituted by a simple model of the drone movement. This
brings a pure functional simulation of the SW controlling each
drone in the swarm. Parallelization should improve simulation
speed but it is not always an easy task [14]. Functional
simulation brings a way to verify the SW in complex drone-
based services [15].

Functional simulation can incorporate estimations of
extra-functional characteristics such as execution times and
energy. When a more accurate estimation is required, host-
compiled simulation or virtualization can be used.

III. PROBLEM DESCRIPTION
From the analysis of the state-of-the-art, one concludes

that there is a lack of multi-level simulation environments
where a complex, drone-based service can be analyzed
holistically but with different levels of details under the same
simulation test-bench. In order to improve scalability, the
simulation should be as fast as possible (AFAP), in addition to
Real-Time (RT) so that the simulated time can be as higher as
possible than the simulation time (i.e. being able to simulate a
full day of a parcel delivery service in minutes). This is a first
problem to be solved as both the ROS infrastructure as the
drone simulators are RT.

The first, more abstract simulation model will be pure
functional. Depending on the most appropriate ratio
accuracy/speed, the drone-based service SW can be simulated
without any performance estimation, with workload modeling
(constant execution times and energies) or using host-
compiled simulation. This SW will include ROScpp code to
control the drones. The ROS infrastructure will be simulated
with a simple ROScpp test bench able to react in the same way
as the real drone would do. Nevertheless, both the drone
autopilot and the physics simulator are substituted with a
simple drone movement model with constant vertical and
horizontal speeds. This simulation model is targeted to the
verification and debugging of the application SW.

The next level will be adding the ROS infrastructure. This
would allow to detect any mistake in the interaction between
the functional SW and the ROS implementation of the
communication mechanisms among components without
including the details of the drone autopilot and aerodynamics.

In a third simulation level, the autopilot and the physics
simulator are added for a more realistic simulation and
detailed timing analysis. This will slow-down the simulation
but will allow detecting potential faulty interactions among the

application SW, the ROS infrastructure and the drone
behavior. An additional problem to be solved is the integration
of the ROS time and duration primitives within the system
simulation environment. In the same way, it is necessary to
integrate the timing of the drone simulator into the
environment keeping the correct behavior of the physical
model.

The generation of the different simulation environments
commented above should be simple. Ideally, generated
automatically from the same model.

IV. MODELING FRAMEWORK
In order to better explain the simulation framework

proposed, it is important to describe the modeling
methodology followed to describe drone-based services.
Figure 1 shows the fundamental elements of a model including
ROScpp components. The model is divided in two parts, the
system model, which is invariant, and the test-bench. The
system model is composed by functional components in C++
and components controlling the drones in ROScpp. The C++
components communicate and synchronize among them, with
the ROScpp components and with the test-bench through
Required-Provided (R-P) services.

Figure 1: Elements of a S3D model of a drone-based service.

The ROScpp components communicate with the C++
components using R-P services but they may use ROS
function calls among them. These function calls will be
implemented using ROS communication mechanisms based
on the Publish-Subscriber paradigm supported by the ROS
infrastructure. Each ROS component controlling a drone will
be connected with the drone’s autopilot. This communication
will use also ROS function calls. The autopilot for the drone is
considered part of the test-bench. The autopilot has to be
connected to the model of the physical environment
simulating the drone aerodynamics. As commented above, the
physical model may be connected to a 3D graphics engine of
the environment inside which the drone moves. This 3D
environment may be shown to the user either as a subjective
view from the drone or as a third-party observer. The main use
of the 3D graphical output is as a Graphical User’s Interface
(GUI). In some cases, the physical model has to interact with
the system through the C++ test-bench (i.e. an alarm when the
drone deposit a good in a reception box). As we are interested
in AFAP simulation, the 3D graphic engine will not be
integrated in the framework.

Although the code associated to the system components is
invariant it will be modeled at different abstraction levels

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

along the design process thus requiring of a multi-level
simulation framework.

V. MULTILEVEL SIMULATION FRAMEWORK
In this section, the simulation framework will be

described. Then its use in multi-level simulation will be
explained.

A. Simulation Framework
ArduCopter has been chosen as the multicopter autopilot

platform for this work. ArduCopter makes use of the
MAVLink serial protocol for control and telemetry
communication. MAVLink will make use of a radio link when
the communication source is outside the drone (the GCS or a
pilot). Internal communication makes use of a serial port.
Although it is widely used in this field and supports many
different features, its usage is not trivial for a software
developer and requires a deep knowledge of the protocol.

As a consequence, the integration of ArduCopter requires
an underlying MAVROS node, working as a wrapper in
charge of the translation between ROS and MAVLink
messages, thus avoiding to program directly using MAVLink.
This additional code will run on the same HW device to which
the corresponding ROScpp node has been mapped. Usually,
the GCS controlling the drone. In the case of smart drones, the
ROScpp code and the corresponding MAVROS wrapper will
be executed by an additional board coupled on the drone and
connected via serial port to the autopilot board. This
configuration allows moving the drone communication
interface from MAVLink to ROS and treat the drone as a ROS
node.

ArduCopter makes use of SITL (Software in the Loop)
simulator. This software emulates the drone aerodynamics
inside a realistic physical environment. Basically, SITL takes
as input the Pulse Wide Modulation signals to the rotors and
generates the signals to the drone sensors (i.e. acceleration and
direction) periodically, depending on the previous speed and
direction. Non ideal conditions as gusty wind can be taken into
account. SITL can be substituted by other physical
environment simulators such as Gazebo [16].

In its most general form, the architecture of the simulation
framework is shown in Figure 2:

Figure 2: Multilevel drone simulation framework.

The simulation framework requires two interrelated
simulation domains. On the one hand, the functionality under
the control of the VIPPE kernel. It is in charge of the
simulation of the C++ code, the ROScpp code and the drone
simulation code. The drone simulation code includes the
model of the autopilot and the model of the physical
aerodynamics. On the other hand, the ROS functionality
which includes the ROS Core and the MAVROS in charge of

the translation between ROS and MAVLink supporting the
communication with the drone. By default, the ROS timing is
related with the OS (i.e. Linux) clock. Nevertheless, ROS
supports using simulated time instead of wall-clock time by
setting the /use_sim_time configuration parameter to true. In
order to coordinate the two domains, a ROS node is created
for clock synchronization. It obtains VIPPE current simulated
time every kernel loop and publish it to the /clock topic of
ROS, forcing it to advance its time at the VIPPE rate.

B. Multilevel Simulation
Once the simulation framework is described, the different

simulation levels are now introduced. The multilevel approach
aims to facilitate the development of the application, allowing
the possibility of testing it on a simple, pure functional model
of a drone, and once its correctness is verified, easily migrate
to a more detailed and accurate model integrating ROS and the
drone simulator. In our case, ArduPilot and the physical model
(SITL or Gazebo).

Three different levels are considered. The first level is
based on a simple drone movement model with constant
speeds, so its movements and elapsed time can be easily
calculated, allowing a fast simulation. This level does not
make any use of the ROS facilities, so neither the ROS core,
nor the MAVROS, nor the clock synchronization elements are
needed. The elements of the simulation framework used at this
level are those shown in Figure 3:

Figure 3: Functional simulation elements.

The ROS function calls made by the ROScpp components
are executed as direct orders to the drone by the drone
simulator. At this abstraction level, the ROSCpp and the C++
code are usually handled without execution times. That is, the
code is supposed to be executed in no-time. The advantage
using VIPPE comes from the possibility to use workload
models when the code has not been developed yet and only
rough estimations of its performance can be made. This
enables to introduce estimated execution times and energy
consumption to each function. Once the full code is available,
host-compiled simulation technology would provide much
more accurate results. It is worth mentioning that, from the
user’s perspective, moving from one abstraction level to the
other only affects the model of the drone as the VIPPE
simulation technology for the C++ and ROScpp components
is multilevel by itself. The model of the drone can be an object
that switch-on and moves vertically and horizontally at
constant speeds with an aerodynamics as simple as:

Δe(x,y,z) = v(x,y,z)Δt

that is, the space moved by the drone in any direction is equal
to the component of the speed of the drone in that direction
multiplied by the time elapsed by the movement.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

The second level keeps the simple model for the drone but
integrates the ROS core. In this way, it is possible to verify the
complete functionality including the behavior of the ROS
infrastructure. At this level it makes more sense to use a timed
model for the C++ and ROScpp components as both
simulation domains are synchronized by the VIPPE time. Thus
the temporal behavior can be analyzed and its interaction with
the ROS infrastructure taken into account. The drone is still
modeled using the simple functionality commented above but
now, as an actual ROS node. The corresponding instantiation
of the simulation framework is shown in Figure 4.

The last, more detailed simulation set-up introduces all the
previously described ROS infrastructure together with the
autopilot drone model (i.e. ArduCopter), as shown in the
general framework in Figure 2. Now, MAVROS is needed as
the communication with the autopilot usus MAVLink. In this
level, two physical models are tested, showing the flexibility
of the proposed simulation framework to integrate third-party
tools. In the first configuration, ArduCopter uses SITL as
physical environment simulator. On the second one, Gazebo
simulator is attached to be used as the physical simulator
(some SITL interfaces remain to simulate the I/O devices of
the drone). Introducing Gazebo is relevant since it presents a
wide series of features such as multi-vehicle deployment and
collision simulation, so external actors can be considered
during the application development. Furthermore, simulation
speed can be configured for a faster simulation. However, if
this speedup is increased excessively, the host processor could
not be fast enough to perform all required calculations and
result on a poor performance of the drone.

Figure 4: Functional simulation including ROS.

VI. EXPERIMENTAL SET-UP AND RESULTS
In order to validate the multilevel simulation framework

proposed, it is applied to a representative use-case, a drone-
based delivery service of goods. The service and its
environment are shown in Figure 5:

Figure 5: Goods delivery service in its test-bench.

The system has two interaction points. On the one hand,
the service portal through which the clients access the service.
On the other, the communication links with the drone fleet
sending and receiving the ROS commands and data to and

from each one of the drones. The functional architecture of the
system is shown in Figure 6.

The ‘Delivery_Central’ is the functional component
storing the data-base of goods. Through the ‘ClientPortal the
customers can find the products that the company sells and
make a selection of them. The client has to register to the
service providing the identity, payment method and address.
After paying the price, the order is accepted and the delivery
of the products starts. The first action is to ask the
‘Route_Generator’ to find the most appropriate flying path to
the client’s address satisfying all the U-Space regulations. The
path is sent to the ‘Drone_Controller’ component. The
‘Drone_Controller’ selects a drone in the fleet and is sends the
flying path to it. Each time a waypoint is acceded, the drone
informs the ‘Drone_Controller’ until the mission is finished.
If something goes wrong the ‘Drone_Controller’ is advised
and the information sent to the ‘Delivery_Central’.

Figure 6: Functional architecture of the goods delivery service.

Simulation results are presented in terms of the usage of
CPU by the different simulation elements obtained as the
proportion of the total CPU time used by the whole simulation
framework. Experiments have been made using an Intel Core
i5 3470 at 3.2 GHz. Results obtained are shown in Table 1:

Table 1: Simulation results

For the functional simulation, only the application code
and the VIPPE kernel are considered since there are no ROS
elements and the simple model of the drone is an additional
C++ code so that it is included in the VIPPE CPU usage, as
part of the test-bench. This has been highlighted in Table 1
with an asterisk (*). As the focus of the paper is the simulation
technology, the associated C++ code for the
‘Delivery_Central’ and the ‘Route_Generator’ is not fully
developed so that a workload model is used. As shown, this
configuration provides a very fast simulation of the service,
obtaining a simulation speed of 660 s/s. Since the total
simulation time is very low, VIPPE kernel utilizes most part
of this time. This result shows that it is possible a functional
simulation of very complex services based on drones when
pure functional models of the drones are used. The focus, can
be put in assuring that the functional and extra-functional
constraints can be satisfied by using this functional

 % CPU sec/sec
Sim. Type App.

Code
VIPPE
Kernel

Syn.
Clock

ROS
Core MAVROS Drone

Sim.
Sim.

Speed
Workload

model 21.62 78.38 - - - * 660

Workload +
ROS 15.15 37.88 4.55 42.42 - * 27.23

ArduCopter
SITL 3.85 21.67 6.62 3.57 5.74 58.55 2.29

ArduCopter
Gazebo 2.18 12.35 3.97 2.06 3.21 76.23 1.65

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

architecture. Extra-functional constraints can be analysed on
workload models. In a workload model a constant execution
time and energy consumption is associated to each time each
function is executed. They can be mean values or worst-case
estimations for each component.

The next step would be to add the ROS infrastructure in
order to detect any faulty behavior caused by an incorrect
interaction between the C++ code and the ROScpp code when
the synchronization and communication services offered by
ROS are executed actually by the ROS infrastructure. As
showed in Table 1, the ROS infrastructure has a deep impact
in performance as the simulation speed is reduced to 27.23 s/s.
Nevertheless, this is still high enough to enable the simulation,
verification and performance analysis of large systems. The
synchronization clock execution time is kept small. The
contribution of the VIPPE kernel is still significant.

The last level analyzed is when a detailed model of the
autopilot and the drone aerodynamics are used. The autopilot
selected is ArduPilot working with two different physical
simulators, SITL, the native one and Gazebo, an external one
to which an interface exists. As derived from the results in
Table 1, when just a drone and its aerodynamics is modeled in
detail, the simulation speed is strongly reduced. In the case of
ArduCopter-SITL, the percentage of CPU consumed by the
models of the autopilot and the physical environment is the
largest (58.55%). The execution time required by MAVROS
is kept small. The simulation speed is reduced to only 2,29 s/s,
still enough to support RT simulation or even, its usage as a
digital twin. Gazebo is even heavier with a total CPU usage of
76.23% from which, 35.67% is the autopilot load and 40.56%
the Gazebo physical model. The simulation speed is reduced
to 1.65 s/s, still higher that RT.

VII. CONCLUSIONS
In this paper, the required simulation infrastructure

allowing the verification and performance analysis of drone-
based applications along the design process has been set-up.
Different models can be applied at different abstraction levels
used along the design process of those systems. The
infrastructure has shown to provide very fast simulation speed
when only workload models for the drone and the application
components are used so that it can be applied to complex
services. Based on usual results found in literature, if instead
of a workload model, a host-compiled simulation model is
used, simulation speed would decrease around one order of
magnitude leading to simulation speeds of around 70 s/s on a
common desktop PC. This would allow to analyze in detail the
execution time, delays and energy consumption of specific
components to be optimized as part of the whole application.
The introduction of the detailed drone autopilot and
aerodynamics slow-down the simulation speed dramatically.
This means that only a small number of drones might be
simulated at a low level of abstraction while for the rest, a
high-level model can still be used. The focus in this case would
be put on the detailed behavior of the critical drones in the
application.

The simulation infrastructure proposed puts the time
advance under the control of the system simulator, in our case
VIPPE.

The paper shows how this can be done for the ROS
infrastructure, using a synchronization clock but also for the
drone simulators integrating them into the simulation
framework. As the simulation infrastructure is the same, the
generation of the different simulation models is seamless for
the system engineer using the tool.

REFERENCES
[1] Unmanned Aerial Vehicle (UAV) Market. MarketsandMarkets. 2020.

[2] K. Patel and J. Barve. Modeling, simulation and control study for the
quad-copter UAV. 9th International Conference on Industrial and
Information Systems (ICIIS), Gwalior, 2014, pp. 1-6, doi:
10.1109/ICIINFS.2014.7036590.

[3] P. Lu and Q. Geng. Real-time simulation system for UAV based on
Matlab/Simulink. IEEE 2nd International Conference on Computing,
Control and Industrial Engineering, Wuhan, 2011, pp. 399-404, doi:
10.1109/CCIENG.2011.6008043.

[4] A. I. Hentati, L. Krichen, M. Fourati and L. C. Fourati. Simulation
Tools, Environments and Frameworks for UAV Systems Performance
Analysis. Proceedings of the 14th International Wireless
Communications & Mobile Computing Conference (IWCMC),
Limassol, 2018, pp. 1495-1500, doi: 10.1109/IWCMC.2018.8450505.

[5] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen, U. P. Schultz, A
survey of Open-Source UAV flight controllers and flight simulators,
Microprocessors and Microsystems, V.61, 2018, pp.11-20.

[6] Ros.org.

[7] https://mavlink.io/en/.

[8] http://wiki.ros.org/mavros.

[9] A. Prestigiacomo. U-SPACE Services Implementation Monitoring
Report. European Organization for the Safety of Air Navigation
(EUROCONTROL). 2020.

[10] O. Bringmann, W. Ecker, A. Gerstlauer, et al., “The Next Generation
of Virtual Prototyping: Ultra-fast Yet Accurate Simulation of HW/SW
Systems”, Proc. of DATE 2015.

[11] F. Herrera, J. Medina, E. Villar: "Modeling Hardware/Software
Embedded Systems with UML/MARTE: A Single-Source Design
approach", in Soonhoi Ha and Jürgen Teich (Eds): "Handbook of
Hardware/Software Codesign", Springer. 2017.

[12] https://es.mathworks.com/products/ros.html.

[13] Yi Wei, M. Brian Blake, Gregory R. Madey. An Operation-Time
Simulation Framework for UAV Swarm Configuration and Mission
Planning. Procedia Computer Science. Vol. 18,,2013, pp. 1949-1958.
doi.org/10.1016/j.procs.2013.05.364.

[14] J. J. Corner and G. B. Lamont. Parallel simulation of UAV swarm
scenarios. Proceedings of the Winter Simulation Conference,
Washington, DC, USA, 2004, pp. 363, doi:
10.1109/WSC.2004.1371336. gazebosim.org.

[15] N. Pathak, S. Misra, A. Mukherjee, A. Roy and A. Y. Zomaya. UAV
Virtualization for Enabling Heterogeneous and Persistent UAV-as-a-
Service. in IEEE Transactions on Vehicular Technology. Vol. 69, no.
6, pp. 6731-6738, June 2020, doi: 10.1109/TVT.2020.2985913.

[16] http://gazebosim.org/.

https://mavlink.io/en/
http://wiki.ros.org/mavros
https://es.mathworks.com/products/ros.html
http://gazebosim.org/

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

	I. Introduction
	II. Related Work
	III. Problem Description
	IV. Modeling Framework
	V. Multilevel Simulation Framework
	A. Simulation Framework
	B. Multilevel Simulation

	VI. Experimental set-up and Results
	VII. conclusions
	References

