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Abstract— New services and business models based on 
drones are continuously being proposed. System engineering for 
these services have to include simulation as the cost of detecting 
design mistakes during the first prototype flights may be very 
high. If this fact is true in any complex system, in the case of 
drone-based services design mistakes may compromise the 
drones and the payload they carry increasing the associated cost. 
System verification has to be made at different abstraction levels 
so that each design step is verified. As a consequence, a 
multilevel simulation framework is needed. In this paper, such a 
simulation framework is proposed able to verify the system 
functionality and performance along the design process. 

Keywords—UAV, drone, ArduCopter, simulation, ROS, 
multilevel, host-compiled 

I. INTRODUCTION 
The number and importance of new services and business 

models based on drones is continuously growing. If in 2019 
the Unmanned Aerial Vehicles (UAV) market was estimated 
at USD 19.3 billion it is projected to reach USD 45.8 billion 
by 2025, at a CAGR of 15.5% from 2019 to 2025 [1]. If 
currently, drones are applied in a reduced number of niches 
such as personal amusement, races, photography, public 
spectacles and police surveillance, once the regulatory frame 
is fixed, the number of potential applications will explode. 
Most of these new services will go beyond a single drone 
handled by a pilot. They will be based on smart, autonomous 
drones able to follow a mission and react satisfactorily to 
unexpected events. In many cases, the service will require an 
intelligent cooperation among several, even many drones in a 
swarm. In all these cases, the complexity of the functionality 
supporting the service may be exceptionally large, distributed 
on many devices of different nature such as drones, control 
stations, edge devices, servers and, in some cases, the cloud. 
Modeling the complete service, selecting the best functional 
distribution based on an analysis of performance, validating 
and verifying the solution and, finally, deploying it, is a 
complex task. 

The drone itself is a mechatronic device in which the SW 
runs on a HW platform inside a mechanical structure allowing 
it to fly. This is possible because there is an autopilot 

electronics controlling the speed of each rotor accordingly to 
the orders coming from the controlling entity (either a radio-
receptor receiving the orders from a pilot or a Ground Control 
Station (GCS), an internal plan or a smart SW on-board) and 
the signals provided by the sensors (gyroscope, accelerometer, 
magnetometer, GPS, etc.). Each drone flies in a physical world 
under mechanical and aero-dynamical laws ruling its 
movement and its interaction with the environment. Therefore, 
in the most general case, design and implementation of UAV-
based services is a hard, time consuming and error prone 
Cyber-Physical System (CPS) design process. Detecting 
design errors once the service is deployed, even before 
commercialization, is very costly due to the following reasons: 

1. Setting-up a real verification scenario for a service 
based on drones is costly and time consuming. 

2. Detecting and locating errors during real operation is 
difficult. 

3. Correcting the fault may require, in many cases, 
backtracking to earlier stages of the design process 
with the corresponding re-engineering costs and time. 

As the verification scenario implies the use of real drones 
fully equipped with the payload required by the service, any 
mistake may compromise the drones and their payload. 

UAV simulators have two fundamental pieces: 

1. The model of the autopilot, which is the SW that runs 
on the drone receiving the commands from the pilot 
and the signals from the accelerometer, the gyroscope, 
and the magnetometer and generating, accordingly, the 
signals to the rotors. 

2. The model of the physical environment of the drone, 
that is, the aerodynamics defining the relation among 
the signals applied by the autopilot to the rotors, their 
speed, and the movement of the drone in the air under 
concrete conditions. The resolution of the physical 
equations provides the next position, direction, and 
acceleration required by the sensors in the drone. This 
functional piece defines the test-bench exercising the 
autopilot functionality under a concrete scenario. 

An additional component in many simulation frameworks 
is a real-time 3D engine able to feature rendering, dynamic 
physics and effects so that the drone flight can be visualized in 
a realistic scenario. 

This work has been funded by the EU and the Spanish 
MICINN/AEI through the ECSEL Comp4Drones and the 
TEC2017-86722-C4-3-R PLATINO projects. 
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To minimize the number of design errors to be detected 
during deployment in field, simulation is widely used during 
the design process of a new drone [2] or the autopilot SW of 
the drone [3]. Several commercial and open-source simulators 
are available enabling to simulate a mission to be executed by 
previously available drones [4-5]. 

Smart drones can take autonomous decisions instead of 
depending continuously on the commands from the pilot or the 
GCS. They have to implement an additional functionality to 
be executed by the HW platform of the drone. Some services 
require the cooperation among several UAVs in a swarm. In 
that case, additional functions are required in each drone and, 
in some cases, in the GCS. Depending on the service to be 
provided the complexity of the complete system may growth 
significantly. 

The growing use of drones and robots in general, foster the 
use of common standards. So, the Robot Operating System 
(ROS) is an open-source set of software libraries and tools 
widely used to facilitate the development of robot applications 
becoming a ‘de-facto’ standard. From drivers to state-of-the-
art algorithms, ROS provides the required facilities for 
robotics projects [6]. Most applications in this domain use 
ROS. The C++ version of ROS is called ROScpp. ROS acts as 
an underlying middleware providing a series of 
communication features among nodes. Although the main 
Model of Communication is the publisher-subscriber, it also 
supports the client-server paradigm. Two separated parts can 
be identified in the ROS framework: 

1. The functional part, that is, the user’s application 
functionality developed in C++ using ROS facilities 
(ROScpp). This functional part may have as many 
ROScpp nodes as required, 

2. The ROS core, which handles all the communication 
mechanisms among nodes, and is in charge of timing, 
synchronization, etc. The ROS core is an underlying 
code which the simulation framework has to take into 
account but which is transparent for the system 
engineer. 

ROS has built-in time and duration primitive types, in 
order to specify a specific moment or a period of time, 
respectively. Although ROS is meant to work with wall-clock 
(Operating System) time, it is possible to set-up a simulated 
clock. 

Most drones use MAVLink for drone communication [7]. 
MAVLink is a lightweight messaging protocol for 
communicating with drones and between onboard drone 
components. ROS includes MAVROS, a communication 
driver for various autopilots with MAVLink communication 
protocol. Additionally, it provides UDP MAVLink bridge for 
ground control stations [8]. 

Any modeling and simulation environment for drones 
should support ROS models. As in many cases the interface 
with the autopilot is through MAVLink, the simulation 
environment should be able to integrate it. 

The SESAR Joint Undertaking has recently drafted the U-
Space, a set of new services relying on a high level of 
digitalization and automation of functions and specific 
procedures designed to support safe, efficient and secure 
access to the European airspace for large numbers of drones 

[9]. Services complying with the U-Space will have to 
implement a large set of procedures closely interacting among 
them. Modeling, simulation, performance analysis, validation 
and verification of such complex services will require of 
adequate system design frameworks where the system 
engineers can model, analyze, and implement the service 
ensuring its correct behavior once deployed in the field. 

Therefore, drone-based applications require long and 
complex design processes, as they must deal with strict non-
functional requirements such as criticality, timeliness, 
reliability and safety. The huge number of simulations, 
performance analysis and evaluations to be performed requires 
powerful simulations technologies combining high simulation 
speed and accuracy. Moreover, simulation-based verification 
should be performed all along the design process. This 
requires multi-level simulation capability with two main 
purposes. On the one hand, to enable adding and simulating 
new details as they are decided. In an initial, functional 
simulation one pretends to validate the behavior of the system 
under a certain test-bench. Once the functional components 
are mapped to concrete HW devices, one pretends to estimate 
non-functional constraints such as execution time and energy. 
The model of the drone(s) can be as simple as a moving object 
at constant speed or as detailed as a full mechatronic model. 
On the other hand, one may require to analyze in detail a 
certain component (i.e. a drone in a swarm) inside a functional 
model of the rest of the system 

Host-compiled simulation is a powerful, flexible approach 
able to achieve fast, performance simulation of software 
running on complex embedded systems [10]. The background 
technology used in this work is VIPPE, a host-compiled 
simulation tool able to support simulation and performance 
analysis of complex systems as part of the S3D Model-Driven 
system-design framework [11]. 

In this paper, a multi-level simulation framework is 
proposed based on VIPPE, which has been extended to 
simulate system models using ROS and to integrate drone 
models at different levels of accuracy vs speed, from a simple 
functional model to a model integrating the autopilot (i.e. 
Ardupilot) and the physical environment (SITL or Gazebo). 

II. RELATED WORK 
As commented above, simulation is essential when 

developing UAV-based services as design errors should be 
detected before deployment. Matlab/Simulink has been used 
to develop ad-hoc simulators both when designing a new 
drone [2] or only the autopilot SW of the drone [3]. In both 
cases, it is necessary to model the behavior of the autopilot SW 
and the physical equations modeling the aerodynamics of the 
drone. Being a Simulink model may limit its simulation speed 
and, therefore, its scalability. MATLAB includes a ROS 
Toolbox [12]. The toolbox provides an interface that connects 
MATLAB and Simulink with ROS, allowing you to create a 
network of ROS nodes. The toolbox allows to verify ROS 
nodes through desktop simulation and by connecting to 
external robot simulators such as Gazebo. Nevertheless, 
MATLAB/Simulink is not an appropriate framework for 
simulation and performance estimation at several abstraction 
levels.  

In order to improve the simulation speed, several flight 
simulators have been proposed covering UAVs. The 
fundamental pieces they include are the autopilot and the 
model of the flying aerodynamics. In many cases, a 3D virtual 
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reality engine is provided [4-5]. Each one of these added 
features slow-down the simulation speed significantly. Most 
of these simulators are ‘Real-Time’ (RT), that is, simulated 
and simulation times are the same (1/1) so that there is possible 
a direct interaction between the executable model and a 
human-in-the-loop as a pilot or a GCS operator. Nevertheless, 
RT simulation makes difficult the simulation of large services 
(i.e. a full day of a parcel delivery service). 

An important conclusion of these analysis about drone 
simulation is that currently, it is no longer necessary to build 
an UAV autopilot and flight simulator from scratch. This 
makes sense only when the service to be modeled is complex 
enough and there is no need to analyze all the details of its 
behavior. The modeling and simulation of UAV swarms 
configuration and mission planning falls into this case, 
justifying the development of an ad-hoc simulation framework 
[13]. In this case, the realistic but slow physics simulation is 
substituted by a simple model of the drone movement. This 
brings a pure functional simulation of the SW controlling each 
drone in the swarm. Parallelization should improve simulation 
speed but it is not always an easy task [14]. Functional 
simulation brings a way to verify the SW in complex drone-
based services [15]. 

Functional simulation can incorporate estimations of 
extra-functional characteristics such as execution times and 
energy. When a more accurate estimation is required, host-
compiled simulation or virtualization can be used. 

III. PROBLEM DESCRIPTION 
From the analysis of the state-of-the-art, one concludes 

that there is a lack of multi-level simulation environments 
where a complex, drone-based service can be analyzed 
holistically but with different levels of details under the same 
simulation test-bench. In order to improve scalability, the 
simulation should be as fast as possible (AFAP), in addition to 
Real-Time (RT) so that the simulated time can be as higher as 
possible than the simulation time (i.e. being able to simulate a 
full day of a parcel delivery service in minutes). This is a first 
problem to be solved as both the ROS infrastructure as the 
drone simulators are RT. 

The first, more abstract simulation model will be pure 
functional. Depending on the most appropriate ratio 
accuracy/speed, the drone-based service SW can be simulated 
without any performance estimation, with workload modeling 
(constant execution times and energies) or using host-
compiled simulation. This SW will include ROScpp code to 
control the drones. The ROS infrastructure will be simulated 
with a simple ROScpp test bench able to react in the same way 
as the real drone would do. Nevertheless, both the drone 
autopilot and the physics simulator are substituted with a 
simple drone movement model with constant vertical and 
horizontal speeds. This simulation model is targeted to the 
verification and debugging of the application SW. 

The next level will be adding the ROS infrastructure. This 
would allow to detect any mistake in the interaction between 
the functional SW and the ROS implementation of the 
communication mechanisms among components without 
including the details of the drone autopilot and aerodynamics. 

In a third simulation level, the autopilot and the physics 
simulator are added for a more realistic simulation and 
detailed timing analysis. This will slow-down the simulation 
but will allow detecting potential faulty interactions among the 

application SW, the ROS infrastructure and the drone 
behavior. An additional problem to be solved is the integration 
of the ROS time and duration primitives within the system 
simulation environment. In the same way, it is necessary to 
integrate the timing of the drone simulator into the 
environment keeping the correct behavior of the physical 
model. 

The generation of the different simulation environments 
commented above should be simple. Ideally, generated 
automatically from the same model. 

IV. MODELING FRAMEWORK 
In order to better explain the simulation framework 

proposed, it is important to describe the modeling 
methodology followed to describe drone-based services. 
Figure 1 shows the fundamental elements of a model including 
ROScpp components. The model is divided in two parts, the 
system model, which is invariant, and the test-bench. The 
system model is composed by functional components in C++ 
and components controlling the drones in ROScpp. The C++ 
components communicate and synchronize among them, with 
the ROScpp components and with the test-bench through 
Required-Provided (R-P) services. 

 
Figure 1: Elements of a S3D model of a drone-based service. 

The ROScpp components communicate with the C++ 
components using R-P services but they may use ROS 
function calls among them. These function calls will be 
implemented using ROS communication mechanisms based 
on the Publish-Subscriber paradigm supported by the ROS 
infrastructure. Each ROS component controlling a drone will 
be connected with the drone’s autopilot. This communication 
will use also ROS function calls. The autopilot for the drone is 
considered part of the test-bench. The autopilot has to be 
connected to the model of the physical environment 
simulating the drone aerodynamics. As commented above, the 
physical model may be connected to a 3D graphics engine of 
the environment inside which the drone moves. This 3D 
environment may be shown to the user either as a subjective 
view from the drone or as a third-party observer. The main use 
of the 3D graphical output is as a Graphical User’s Interface 
(GUI). In some cases, the physical model has to interact with 
the system through the C++ test-bench (i.e. an alarm when the 
drone deposit a good in a reception box). As we are interested 
in AFAP simulation, the 3D graphic engine will not be 
integrated in the framework. 

Although the code associated to the system components is 
invariant it will be modeled at different abstraction levels 
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along the design process thus requiring of a multi-level 
simulation framework. 

V. MULTILEVEL SIMULATION FRAMEWORK 
In this section, the simulation framework will be 

described. Then its use in multi-level simulation will be 
explained. 

A. Simulation Framework 
ArduCopter has been chosen as the multicopter autopilot 

platform for this work. ArduCopter makes use of the 
MAVLink serial protocol for control and telemetry 
communication. MAVLink will make use of a radio link when 
the communication source is outside the drone (the GCS or a 
pilot). Internal communication makes use of a serial port. 
Although it is widely used in this field and supports many 
different features, its usage is not trivial for a software 
developer and requires a deep knowledge of the protocol. 

As a consequence, the integration of ArduCopter requires 
an underlying MAVROS node, working as a wrapper in 
charge of the translation between ROS and MAVLink 
messages, thus avoiding to program directly using MAVLink. 
This additional code will run on the same HW device to which 
the corresponding ROScpp node has been mapped. Usually, 
the GCS controlling the drone. In the case of smart drones, the 
ROScpp code and the corresponding MAVROS wrapper will 
be executed by an additional board coupled on the drone and 
connected via serial port to the autopilot board. This 
configuration allows moving the drone communication 
interface from MAVLink to ROS and treat the drone as a ROS 
node. 

ArduCopter makes use of SITL (Software in the Loop) 
simulator. This software emulates the drone aerodynamics 
inside a realistic physical environment. Basically, SITL takes 
as input the Pulse Wide Modulation signals to the rotors and 
generates the signals to the drone sensors (i.e. acceleration and 
direction) periodically, depending on the previous speed and 
direction. Non ideal conditions as gusty wind can be taken into 
account. SITL can be substituted by other physical 
environment simulators such as Gazebo [16]. 

In its most general form, the architecture of the simulation 
framework is shown in Figure 2: 

 
Figure 2: Multilevel drone simulation framework. 

The simulation framework requires two interrelated 
simulation domains. On the one hand, the functionality under 
the control of the VIPPE kernel. It is in charge of the 
simulation of the C++ code, the ROScpp code and the drone 
simulation code. The drone simulation code includes the 
model of the autopilot and the model of the physical 
aerodynamics. On the other hand, the ROS functionality 
which includes the ROS Core and the MAVROS in charge of 

the translation between ROS and MAVLink supporting the 
communication with the drone. By default, the ROS timing is 
related with the OS (i.e. Linux) clock. Nevertheless, ROS 
supports using simulated time instead of wall-clock time by 
setting the /use_sim_time configuration parameter to true. In 
order to coordinate the two domains, a ROS node is created 
for clock synchronization. It obtains VIPPE current simulated 
time every kernel loop and publish it to the /clock topic of 
ROS, forcing it to advance its time at the VIPPE rate. 

B. Multilevel Simulation 
Once the simulation framework is described, the different 

simulation levels are now introduced. The multilevel approach 
aims to facilitate the development of the application, allowing 
the possibility of testing it on a simple, pure functional model 
of a drone, and once its correctness is verified, easily migrate 
to a more detailed and accurate model integrating ROS and the 
drone simulator. In our case, ArduPilot and the physical model 
(SITL or Gazebo). 

Three different levels are considered. The first level is 
based on a simple drone movement model with constant 
speeds, so its movements and elapsed time can be easily 
calculated, allowing a fast simulation. This level does not 
make any use of the ROS facilities, so neither the ROS core, 
nor the MAVROS, nor the clock synchronization elements are 
needed. The elements of the simulation framework used at this 
level are those shown in Figure 3: 

 
Figure 3: Functional simulation elements. 

The ROS function calls made by the ROScpp components 
are executed as direct orders to the drone by the drone 
simulator. At this abstraction level, the ROSCpp and the C++ 
code are usually handled without execution times. That is, the 
code is supposed to be executed in no-time. The advantage 
using VIPPE comes from the possibility to use workload 
models when the code has not been developed yet and only 
rough estimations of its performance can be made. This 
enables to introduce estimated execution times and energy 
consumption to each function. Once the full code is available, 
host-compiled simulation technology would provide much 
more accurate results. It is worth mentioning that, from the 
user’s perspective, moving from one abstraction level to the 
other only affects the model of the drone as the VIPPE 
simulation technology for the C++ and ROScpp components 
is multilevel by itself. The model of the drone can be an object 
that switch-on and moves vertically and horizontally at 
constant speeds with an aerodynamics as simple as: 

Δe(x,y,z) = v(x,y,z)Δt 

that is, the space moved by the drone in any direction is equal 
to the component of the speed of the drone in that direction 
multiplied by the time elapsed by the movement. 
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The second level keeps the simple model for the drone but 
integrates the ROS core. In this way, it is possible to verify the 
complete functionality including the behavior of the ROS 
infrastructure. At this level it makes more sense to use a timed 
model for the C++ and ROScpp components as both 
simulation domains are synchronized by the VIPPE time. Thus 
the temporal behavior can be analyzed and its interaction with 
the ROS infrastructure taken into account. The drone is still 
modeled using the simple functionality commented above but 
now, as an actual ROS node. The corresponding instantiation 
of the simulation framework is shown in Figure 4. 

The last, more detailed simulation set-up introduces all the 
previously described ROS infrastructure together with the 
autopilot drone model (i.e. ArduCopter), as shown in the 
general framework in Figure 2. Now, MAVROS is needed as 
the communication with the autopilot usus MAVLink. In this 
level, two physical models are tested, showing the flexibility 
of the proposed simulation framework to integrate third-party 
tools. In the first configuration, ArduCopter uses SITL as 
physical environment simulator. On the second one, Gazebo 
simulator is attached to be used as the physical simulator 
(some SITL interfaces remain to simulate the I/O devices of 
the drone). Introducing Gazebo is relevant since it presents a 
wide series of features such as multi-vehicle deployment and 
collision simulation, so external actors can be considered 
during the application development. Furthermore, simulation 
speed can be configured for a faster simulation. However, if 
this speedup is increased excessively, the host processor could 
not be fast enough to perform all required calculations and 
result on a poor performance of the drone. 

 
Figure 4: Functional simulation including ROS. 

VI. EXPERIMENTAL SET-UP AND RESULTS 
In order to validate the multilevel simulation framework 

proposed, it is applied to a representative use-case, a drone-
based delivery service of goods. The service and its 
environment are shown in Figure 5: 

 
Figure 5: Goods delivery service in its test-bench. 

The system has two interaction points. On the one hand, 
the service portal through which the clients access the service. 
On the other, the communication links with the drone fleet 
sending and receiving the ROS commands and data to and 

from each one of the drones. The functional architecture of the 
system is shown in Figure 6. 

The ‘Delivery_Central’ is the functional component 
storing the data-base of goods. Through the ‘ClientPortal the 
customers can find the products that the company sells and 
make a selection of them. The client has to register to the 
service providing the identity, payment method and address. 
After paying the price, the order is accepted and the delivery 
of the products starts. The first action is to ask the 
‘Route_Generator’ to find the most appropriate flying path to 
the client’s address satisfying all the U-Space regulations. The 
path is sent to the ‘Drone_Controller’ component. The 
‘Drone_Controller’ selects a drone in the fleet and is sends the 
flying path to it. Each time a waypoint is acceded, the drone 
informs the ‘Drone_Controller’ until the mission is finished. 
If something goes wrong the ‘Drone_Controller’ is advised 
and the information sent to the ‘Delivery_Central’. 

 
Figure 6: Functional architecture of the goods delivery service. 

Simulation results are presented in terms of the usage of 
CPU by the different simulation elements obtained as the 
proportion of the total CPU time used by the whole simulation 
framework. Experiments have been made using an Intel Core 
i5 3470 at 3.2 GHz. Results obtained are shown in Table 1: 

Table 1: Simulation results 

For the functional simulation, only the application code 
and the VIPPE kernel are considered since there are no ROS 
elements and the simple model of the drone is an additional 
C++ code so that it is included in the VIPPE CPU usage, as 
part of the test-bench. This has been highlighted in Table 1 
with an asterisk (*). As the focus of the paper is the simulation 
technology, the associated C++ code for the 
‘Delivery_Central’ and the ‘Route_Generator’ is not fully 
developed so that a workload model is used. As shown, this 
configuration provides a very fast simulation of the service, 
obtaining a simulation speed of 660 s/s. Since the total 
simulation time is very low, VIPPE kernel utilizes most part 
of this time. This result shows that it is possible a functional 
simulation of very complex services based on drones when 
pure functional models of the drones are used. The focus, can 
be put in assuring that the functional and extra-functional 
constraints can be satisfied by using this functional 

 % CPU sec/sec 
Sim. Type App. 

Code 
VIPPE 
Kernel 

Syn. 
Clock 

ROS 
Core MAVROS Drone 

Sim. 
Sim. 

Speed 
Workload 

model 21.62 78.38 - - - * 660 

Workload + 
ROS 15.15 37.88 4.55 42.42 - * 27.23 

ArduCopter 
SITL 3.85 21.67 6.62 3.57 5.74 58.55 2.29 

ArduCopter 
Gazebo 2.18 12.35 3.97 2.06 3.21 76.23 1.65 
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architecture. Extra-functional constraints can be analysed on 
workload models. In a workload model a constant execution 
time and energy consumption is associated to each time each 
function is executed.  They can be mean values or worst-case 
estimations for each component. 

The next step would be to add the ROS infrastructure in 
order to detect any faulty behavior caused by an incorrect 
interaction between the C++ code and the ROScpp code when 
the synchronization and communication services offered by 
ROS are executed actually by the ROS infrastructure. As 
showed in Table 1, the ROS infrastructure has a deep impact 
in performance as the simulation speed is reduced to 27.23 s/s. 
Nevertheless, this is still high enough to enable the simulation, 
verification and performance analysis of large systems. The 
synchronization clock execution time is kept small. The 
contribution of the VIPPE kernel is still significant. 

The last level analyzed is when a detailed model of the 
autopilot and the drone aerodynamics are used. The autopilot 
selected is ArduPilot working with two different physical 
simulators, SITL, the native one and Gazebo, an external one 
to which an interface exists. As derived from the results in 
Table 1, when just a drone and its aerodynamics is modeled in 
detail, the simulation speed is strongly reduced. In the case of 
ArduCopter-SITL, the percentage of CPU consumed by the 
models of the autopilot and the physical environment is the 
largest (58.55%). The execution time required by MAVROS 
is kept small. The simulation speed is reduced to only 2,29 s/s, 
still enough to support RT simulation or even, its usage as a 
digital twin. Gazebo is even heavier with a total CPU usage of 
76.23% from which, 35.67% is the autopilot load and 40.56% 
the Gazebo physical model. The simulation speed is reduced 
to 1.65 s/s, still higher that RT. 

 

VII. CONCLUSIONS 
In this paper, the required simulation infrastructure 

allowing the verification and performance analysis of drone-
based applications along the design process has been set-up. 
Different models can be applied at different abstraction levels 
used along the design process of those systems. The 
infrastructure has shown to provide very fast simulation speed 
when only workload models for the drone and the application 
components are used so that it can be applied to complex 
services. Based on usual results found in literature, if instead 
of a workload model, a host-compiled simulation model is 
used, simulation speed would decrease around one order of 
magnitude leading to simulation speeds of around 70 s/s on a 
common desktop PC. This would allow to analyze in detail the 
execution time, delays and energy consumption of specific 
components to be optimized as part of the whole application. 
The introduction of the detailed drone autopilot and 
aerodynamics slow-down the simulation speed dramatically. 
This means that only a small number of drones might be 
simulated at a low level of abstraction while for the rest, a 
high-level model can still be used. The focus in this case would 
be put on the detailed behavior of the critical drones in the 
application. 

The simulation infrastructure proposed puts the time 
advance under the control of the system simulator, in our case 
VIPPE. 

 

The paper shows how this can be done for the ROS 
infrastructure, using a synchronization clock but also for the 
drone simulators integrating them into the simulation 
framework. As the simulation infrastructure is the same, the 
generation of the different simulation models is seamless for 
the system engineer using the tool. 
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