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Abstract

We present a new streaming algorithm for the k-Mismatch problem, one of the most basic
problems in pattern matching. Given a pattern and a text, the task is to find all substrings of the
text that are at the Hamming distance at most k from the pattern. Our algorithm is enhanced with
an important new feature called Error Correcting, and its complexities for k = 1 and for a general
k are comparable to those of the solutions for the k-Mismatch problem by Porat and Porat (FOCS
2009) and Clifford et al. (SODA 2016). In parallel to our research, a yet more efficient algorithm
for the k-Mismatch problem with the Error Correcting feature was developed by Clifford et al.
(SODA 2019). Using the new feature and recent work on streaming Multiple Pattern Matching

we develop a series of streaming algorithms for pattern matching on weighted strings, which are a
commonly used representation of uncertain sequences in molecular biology. We also show that these
algorithms are space-optimal up to polylog factors.

A preliminary version of this work was published at DCC 2017 conference [24].

1 Introduction

In this work we design efficient streaming algorithms for a number of problems of approximate pattern
matching. In this class of problems we are given a pattern and a text and wish to find all substrings of
the text that are “similar” to the pattern. We assume that the text arrives as a stream, one symbol at
a time.

The first small-space streaming algorithms for pattern matching were suggested in the pioneering
paper by Porat and Porat in FOCS 2009 [22]. In particular, they showed an algorithm for the Pattern

Matching problem, where one must find all exact occurrences of the pattern in the text. For a pattern
of length m their algorithm takes only O(logm) space and O(logm) time per each symbol of the text,
and reports all exact occurrences of the pattern in the text as they occur. In 2010, Ergün et al. [14]
presented a slightly simpler version of the algorithm, and finally in 2011 the running time of the algorithm
was improved to constant by Breslauer and Galil [6]. All of the aforementioned results are randomised
Monte Carlo algorithms.

The next logical step was to study the complexity of approximate pattern matching in the streaming
model in which we are to find all substrings of the text that are at a small distance from the pattern.
The most popular distances are the Hamming distance, L1, L2, L∞-distances, and the edit distance.
Unfortunately, the general task of computing these distances for each alignment of the pattern and of the
text precisely requires at least Ω(m) space. This lower bound holds even for randomised algorithms [11].

However, this is not the case if we allow approximation or if it is sufficient to compute the exact
distances only when they are small. Here we focus on approximate pattern matching under the Hamming
distance. Let m be the length of the pattern and n be the length of the text. If we are interested in
computing a (1 + ε)-approximation of the Hamming distance for all alignments of the pattern and
of the text, then this can be done in O(ε−5√m log4 m) space and O(ε−4 log3 m) time per arriving
symbol [13]. If we are only interested in computing the Hamming distances at the alignments where they
do not exceed a given threshold k, which we call the k-Mismatch problem, then Porat and Porat [22]
showed a randomised streaming algorithm that solves this problem in O(k3 log7 m/ log logm) space and
O(k2 log5 m/ log logm) time per arriving symbol; they also presented an algorithm for a special case of
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k = 1 with O(log4 m/ log logm) space and O(log3 m/ log logm) time per arriving symbol. Their result
was improved (in terms of the dependency on k) to O(k2 log11 m/ log logm) space and O(

√
k log k +

log5 m) time per arriving symbol by Clifford et al. [9].1 The error probability of all these solutions is at
most 1/poly(m).

Our first contribution is a new streaming algorithm for the k-Mismatch problem. The crucial feature
of our algorithm is that, for each alignment where the Hamming distance is at most k, it can also output
the differences of symbols of the pattern and of the text in the mismatching positions. This is particularly
surprising as we are not allowed to store a copy of the pattern or of the text in the streaming setting.
The k-Mismatch problem extended with computing this additional characteristic is called here the
k-Mismatch with Error Correcting problem. We first develop a solution for k = 1.

Theorem 1.1. 1-Mismatch with Error Correcting can be solved in O(log5 m/ log logm) space
and O(log5 m/ log logm) time per arrival. The probability of error is at most 1/poly(n).

As a corollary we obtain a k-Mismatch with Error Correcting algorithm for arbitrary k via
an existing randomised reduction to the case of k = 1 [22, 9].

Theorem 1.2. k-Mismatch with Error Correcting can be solved in O(k2 log10 m/ log logm) space
and O(k log8 m/ log logm) time per arrival. The probability of error is at most 1/poly(m).

A comparison of the complexities of our algorithm and the previous algorithms can be found in
Table 1. Since in the k-Mismatch with Error Correcting problem we need at least Ω(k) time
per arrival to list the symbol differences, the dependency of the running time of our algorithm on k is
optimal. The time complexity of our k-Mismatch with Error Correcting algorithm is better than
the time complexity of the k-Mismatch algorithm of [22] and worse than that of [9]. Our algorithm also
uses less space than the k-Mismatch algorithm of [22] (in terms of k) and the k-Mismatch algorithm
of [9]. For the former, it is explained by the fact that we use a more efficient reduction. For the latter, it
is because we do not need the involved time-saving techniques of Clifford et al. [9] (as the running time
of our algorithm is already almost optimal). We note that a similar problem was considered previously
by Porat and Lipsky [23]. They introduced a small-space representation of a stream called a “sketch”
that can be efficiently maintained under a symbol change and can be used to compute the Hamming
distance between two streams as well as to correct the errors between them. Unfortunately, it is not
clear whether their sketches can be efficiently maintained over a sliding window (i.e. for substrings of the
text) and therefore we cannot use them in our model.

Algorithm Space Time per symbol Err.

Corr.

Porat and Porat [22] O(k3 log7 m/ log logm) O(k2 log5 m/ log logm) No

Clifford et al. [9] O(k2 log11 m/ log logm) O(
√
k log k + log5 m) No

This paper O(k2 log10 m/ log logm) O(k log8 m/ log logm) Yes

Clifford et al. [12] O(k log n

k
) O(k + log n

k
(
√
k log k + log3 n)) Yes

Table 1: Comparison of the previous solutions to the k-Mismatch problem with our solution to the
k-Mismatch with Error Correcting problem and a parallel contribution by Clifford et al. [12].

In parallel to our research, Clifford et al. [12] presented a new streaming algorithm for the k-
Mismatch with Error Correcting problem with space complexity O(k log n

k ) which spends O(k +

log n
k (
√
k log k + log3 n)) time per text symbol. Their algorithm introduces a new, much more elabo-

rate way to sketch the pattern and the text. In particular, in contrast to the approach used by Porat
and Porat [22] and Clifford et al. [9] their algorithm does not reduce the k-Mismatch problem to the
1-Mismatch problem, but solves the problem immediately for an arbitrary k.

The Error Correcting feature is a powerful tool. We demonstrate this by using it to develop
efficient streaming algorithms for the problem of pattern matching on weighted strings. A weighted
string (also known as weighted sequence, position probability matrix or position weight matrix, PWM)
is a sequence of probability distributions on the alphabet. Weighted strings are a commonly used

1The logarithmic factors are hidden in [9], but can be restored easily from [22, 9].
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representation of uncertain sequences in molecular biology. In particular, they are used to model motifs
and have become an important part of many software tools for computational motif discovery; see e.g.
[25, 26]. In the Weighted Pattern Matching problem we are given a text and a pattern, both of
which can be either weighted or regular strings. If either only the text or only the pattern are weighted,
the task is to find all alignments of the text and of the pattern where they match with probability above
a given threshold 1/z. In the most general case, when both the pattern and the text is weighted, we
must find all alignments of the text and of the pattern where there exists a regular string that matches
both the text and the pattern with probability at least 1/z. We assume here that the distributions at
the respective positions are independent.

As previously, let m be the length of the pattern, n be the length of the text and assume a constant-
sized alphabet. We are the first to consider the Weighted Pattern Matching problem in the stream-
ing setting. In the offline setting the most commonly studied variant, when the text is a weighted string
and the pattern is a regular string, can be solved in O(n logn) time via the Fast Fourier Transform [7] or
in O(n log z) time using the suffix array and lookahead scoring [20]. This variant has been also consid-
ered in the indexing setting, in which we are to preprocess a weighted text to be able to answer queries
for multiple patterns; see [1, 3, 5, 18]. The symmetric variant of the Weighted Pattern Matching

problem, when only the pattern is weighted, is closely related to the problem of profile matching [21] and
admits O(n log n)-time and O(n log z)-time solutions as well. Finally, the variant when both the text and
the pattern are weighted was introduced in [4], where an O(nz2 log z)-time solution was presented. Later
a more efficient O(n

√
z log log z)-time solution was devised in [20]. The offline algorithms use Ω(m) space

and the best indexing solution uses Ω(nz) space. A problem of computing Hamming and edit distances
for weighted strings has been also considered [2].

We consider each of the three variants of the Weighted Pattern Matching problem. If z ≥ m,
the offline algorithms listed above [20, 7] and the black box transformation [8] give O(m)-space on-line
algorithms. The time complexities are O(log2 m) for the variants where only the pattern or only the text
are weighted, and O(

√
z logm log log z) for the variant when both the pattern and the text are weighted.

Below we assume z ≤ m. For the two variants of Weighted Pattern Matching where the text is
weighted, our solutions are approximate. Namely, at each alignment we output either “Yes” or “No”.
If the pattern matches the fragment of the text, we output “Yes”. If the match probability is between
(1− ε)/z and 1/z, we output either “Yes” or “No”, and otherwise we output “No”. If we output “Yes”,
we also output a (1− ε)-approximation of the match probability between P and T .

We show two series of streaming algorithms for the Weighted Pattern Matching problem. The
first one is based on the k-Mismatch with Error Correcting problem. Let Slog z , Tlog z, and
Plog z be the space and the time complexities and error probability for the k-Mismatch with Error

Correcting for k = log z, a pattern of length m, and a text of length n. With Theorem 1.2 we
obtain space Slog z = O(log2 z · log10 m/ log logm), time Tlog z = O(log z · log8 m/ log logm), and error
probability Plog z = 1/poly(m) (the new work of Clifford et al. [12] yields space Slog z = O(log z logm),
time Tlog z = O(log z + logm(

√
log z log log z + log3 m)), and error probability Plog z = 1/poly(n)).

Theorem 1.3. Assume that z ≤ m. If only the pattern is weighted, there is a streaming algorithm
that solves the Weighted Pattern Matching problem in O(z) + Slog z space and O(log2 z) + Tlog z

time per arrival. If only the text is weighted, the problem can be solved (1 − ε)-approximately in
O(z log1/(1−ε) z)+Slog z space and O(z log1/(1−ε) z)+Tlog z time. At each arrival, the algorithms can err
with probability Plog z.

Second, we show three streaming algorithms for the Weighted Pattern Matching problem that
are based on the recent breakthroughs for the streaming Multiple Pattern Matching problem [10,
17, 16], the last two carried out in parallel with our research. In the Multiple Pattern Matching

problem we are given a set of strings (a dictionary) and a set of texts that arrive in a streaming fashion.
When a new symbol of a text arrives, the algorithm must decide if the current text ends with an
occurrence of a string in the dictionary. In the weighted-pattern-regular-text version of Weighted

Pattern Matching, we use a single-text-stream version of Multiple Pattern Matching for which
the current best algorithm is by Golan and Porat [16], which for a dictionary D of m-length strings
takes O(|D| logm) space and O(1) time per symbol. In the weighted-text-regular-pattern case we apply
the Pattern Matching algorithm of Breslauer and Galil [6]. Finally, in the both-weighted case we
apply the most general version of Multiple Pattern Matching for which the algorithm of Golan et
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al. [16] uses O(|D| logm) shared memory, O(log |D| logm) space per stream, and O(logm) time per each
arriving character of the text.

Theorem 1.4. Assume that z ≤ m. If only the pattern is weighted, there is a streaming algorithm that
solves the Weighted Pattern Matching problem in O(z logm) space and O(1) time per arrival. If
only the text is weighted, the problem can be solved (1 − ε)-approximately in O(z(log1/(1−ε) z + logm))
space and O(z log1/(1−ε) z) time. Finally, when both the pattern and the text are weighted, there is a
(1−ε)-approximation streaming algorithm with space complexity O(z(log1/(1−ε) z+log z logm)) that uses
O(z(log1/(1−ε) z + log z logm)) time per arrival. At each arrival, the algorithms can err with probabil-
ity 1/poly(n).

Finally, in Section 3.5 we show that the space complexity of our algorithms is almost optimal.

Proposition 1.5. If z ≤ m, then any streaming algorithm, exact or (1− ε)-approximate, solving one of
the three variants of the Weighted Pattern Matching problem must use Ω(z) space.

This is an extended version of a paper that was published at DCC 2017 conference [24].

Model of computation We assume that we receive the pattern first and can preprocess it by reading
it in a streaming fashion several times. After having preprocessed the pattern we receive the text that
arrives as a stream, one symbol at a time. We account for all the space that is used after the preprocessing
and cannot afford to store a copy of the text or of the pattern. The indicated error probabilities are per
arrival. We assume a constant-sized alphabet Σ. A symbol of a weighted string is a vector of probabilities

of the letters in which all entries are of the form cp/2
dw

, where w is the machine word size, c and d are
constants, and p is an integer that fits in a constant number of machine words (log-probability model).
Additionally, the probability 0 has a special representation. The only operations on probabilities in our
algorithms are multiplications and divisions, which can be performed exactly in O(1) time in this model.

2 k-Mismatch with Error Correcting

In this section we give our solution to the k-Mismatch with Error Correcting problem for k = 1
(Theorem 1.1) and for a general value of k (Theorem 1.2).

2.1 Proof of Theorem 1.1: k = 1

Let us start with a brief overview of the algorithm. Assume that letters of a string are numbered starting
from 1. We reduce the 1-Mismatch with Error Correcting problem to O(logm) instances of a
special case of this problem where the mismatch is required to belong to the second half of the pattern.
More formally, consider ⌈logm⌉+1 partitions P = PiSi, where Pi is a prefix of length min{2i,m} and Si

is the remaining suffix, for i = 0, 1, . . . , ⌈logm⌉. We say that a substring of T is a right-half 1-mismatch
occurrence of Pi if either i = 0 and P0 does not match, or i ≥ 1 and the mismatch is at position j > 2i−1

in Pi.

Observation 2.1. Any 1-mismatch occurrence of P in T is a right-half 1-mismatch occurrence of some
Pi followed by an exact occurrence of Si.

We run two parallel processes for each i. The first process searches for right-half 1-mismatch occur-
rences of Pi. After having found a right-half 1-mismatch occurrence, it passes the information about it
to the second process that decides if it is followed by an exact occurrence of Si.

2.1.1 Preliminaries

Rabin–Karp fingerprints and 1-mismatch sketches The Rabin–Karp fingerprint of a string X =
X [1] . . .X [ℓ] is defined as φ(X) = (

∑ℓ
i=1 X [i] · ri) mod p, where p is a prime and r is a random integer

in Fp. If we choose p to be large enough, then the collision probability for any two ℓ-length strings X
and Y , where ℓ ≤ m, will be at most 1/poly(m) [19]. We will also need the following fact which follows
immediately from the definition.
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Fact 2.1. Let X,Y be two strings and Z = XY be their concatenation. Assuming that together with a
Rabin–Karp fingerprint of a string of length ℓ we store rℓ mod p and r−ℓ mod p, from the Rabin–Karp
fingerprints of two of the strings X, Y , Z one can compute the Rabin–Karp fingerprint of the third string
in O(1) time using the formula:

φ(Z) = (φ(X) + r|X| · φ(Y )) mod p.

We now introduce a notion of 1-mismatch sketches and show its basic properties.

Definition 2.2 (1-mismatch sketch). For a prime q, the 1-mismatch sketch of a string X is a vector of
length q, where the j-th element is the Rabin–Karp fingerprint of the subsequence X [j]X [j+q]X [j+2q] . . .

This notion was implicitly used by Porat and Porat [22] in their 1-Mismatch algorithm. In particular,
they showed the following lemma.

Lemma 2.3 ([22]). The Hamming distance between two m-length strings X and Y is equal to 1 if and
only if for each prime q ∈ [logm, 2 logm] there is exactly one j ≤ q such that subsequences X [j]X [j +
q]X [j + 2q] . . . and Y [j]Y [j + q]Y [j + 2q] . . . are not equal. Moreover, knowing which subsequences are
not equal, we can determine the mismatch position between X and Y in O(logm) time.

Let us list a few simple properties of 1-mismatch sketches that generalise Fact 2.1.

Lemma 2.4. Let X,Y be two strings and Z = XY be their concatenation. Consider the 1-mismatch
sketches of X, Y , and Z defined for a prime q. Then:

(i) If X = Y , then their 1-mismatch sketches are equal;

(ii) Given the 1-mismatch sketches of X and Y , we can compute the 1-mismatch sketch of Z in O(q)
time;

(iii) Given the 1-mismatch sketches of X and Z, we can compute the 1-mismatch sketch of Y in O(q)
time;

(iv) Given the 1-mismatch sketch of X, we can compute the 1-mismatch sketch of Xα in O(q logα)
time, where α is an integer and Xα is a concatenation of α copies of X.

Proof. Property (i) is a direct corollary of the definitions of Rabin–Karp fingerprints and 1-mismatch
sketches. As for Property (ii), note that we need to compute the Rabin–Karp fingerprints of the at most
q concatenations of pairs of strings. Similarly, for Property (iii) we only need to compute the Rabin–Karp
fingerprints of the at most q strings constructed from Y given the Rabin–Karp fingerprints of the at most
q strings constructed from X and their concatenations (in Z). Thus, Properties (ii) and (iii) follow from
Fact 2.1. Finally, Property (iv) is implied by Property (ii) as we can compute the 1-mismatch sketch of
a square of any string given its 1-mismatch sketch in O(q) time.

Periodicity in strings For a string Q, by Q[i, j] we denote a substring of Q equal to Q[i] . . .Q[j].
We say that a string Q has a period p if Q[i] = Q[i + p] for all i = 1, . . . , |Q| − p (equivalently, if
Q[1, |Q| − p] = Q[p + 1, |Q|]). If Q has a period p, then the string Q[1, p] is the corresponding string
period of Q.

Lemma 2.5 (Fine and Wilf’s periodicity lemma [15]). If Q has two periods p and q such that p+q ≤ |Q|,
then Q also has a period gcd(p, q).

We will need the following two corollaries of this lemma. First, all the periods of Q not greater than
the half of the length of Q are multiplicities of the shortest period of Q. And secondly, if Q has at least
3 occurrences in a string P such that |P | ≤ 2|Q|, then all the occurrences of Q in P form an arithmetic
progression with the difference equal to the shortest period of Q.
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Streaming algorithm for Pattern Matching Let us now recall a streaming Pattern Matching

algorithm [22, 14, 6] for a pattern Q and text T that uses O(log |Q|) space and takes O(log |Q|) time
per symbol. The algorithm stores O(log |Q|) levels of positions of T . Positions in level j are occurrences
of Q[1, 2j] in the suffix of the current text T of length 2j+1. The algorithm stores the Rabin–Karp
fingerprints of strings from the beginning of T up to each of these positions. If there are at least 3 such
positions at one level, then, by Lemma 2.5, all the positions form a single arithmetic progression whose
difference equals the length of the minimal period of Q[1, 2j]. This allows to store the aforementioned
information very compactly, using only O(log |Q|) space in total. Finally, the algorithm stores the Rabin–
Karp fingerprint of the current text and of all prefixes Q[1, 2j]. When a new symbol T [q] arrives, the
algorithm considers the leftmost position ℓj in each level j. If q−ℓj+1 is smaller than 2j+1, the algorithm
does nothing. Otherwise if the fingerprints imply that ℓj is an occurrence of Q[1, 2j+1], the algorithm
promotes it to the next level, and if ℓj is not an occurrence of Q[1, 2j+1], the algorithm discards it.
When a position reaches the top level, it is an occurrence of Q and the algorithm outputs it. We note
that the algorithm above is not the fastest known solution, but it gives the desired time bounds and is
conceptually simple. For more details, see [22, 14, 6].

We now describe our 1-Mismatch with Error Correcting algorithm in detail.

2.1.2 Right-half 1-mismatch occurrences of Pi

We start by describing the first process that detects right-half 1-mismatch occurrences of Pi. When the
process finds a new occurrence T [q−|Pi|+1, q], it also computes the 1-mismatch sketches of T [q−|Pi|+1, q]
and sends them to the second process.

Suppose a new symbol T [q] has arrived. If i = 0, Pi = P [1] is a single letter string. The process
compares T [q] and P [1], and if they are not equal, outputs q and 1-mismatch sketches of T [q].

Suppose now that i > 0. During the preprocessing phase, we compute the 1-mismatch sketches of
Pi for all primes in [logm, 2 logm]. During the main phase, we run two algorithms for Pi and T : the
1-Mismatch algorithm [22] and the Pattern Matching algorithm. The 1-Mismatch algorithm [22]
identifies 1-mismatch occurrences of Pi in T , and for each of them returns the mismatch position.
The algorithm uses O(log4 m/ log logm) space and O(log3 m/ log logm) time per symbol. However, the
algorithm does not know the difference of symbols at the mismatch position, and we will need this
information in order to compute the 1-mismatch sketches. To extend the algorithm with the required
functionality, we use the Pattern Matching algorithm. If T [q− |Pi|+ 1, q] is a right-half 1-mismatch
occurrence of Pi for i > 0, then Pi[1, 2

i−1] matches at the position q− |Pi|+1 exactly. It follows that at
time q the position q−|Pi|+1 is stored at level i−1 of the Pattern Matching algorithm, and we know
the Rabin–Karp fingerprints of T [1, q − |Pi|] and T [1, q]. Therefore, we can compute the Rabin–Karp
fingerprint of T [q − |Pi| + 1, q] in O(1) time using Fact 2.1. Let j be the mismatch position and φ(Pi)
and φ(T [q− |Pi|+1, q]) be the Rabin–Karp fingerprints of Pi and T [q− |Pi|+1, q], respectively. We use
the fingerprints to compute the difference of symbols of Pi and T [q − |Pi|+ 1, q] at position j.

Lemma 2.6. Assume that X and Y are two strings of length m that differ only at position j. Knowing
the Rabin–Karp fingerprints of X and Y , we can compute X [j]− Y [j] in O(logm) time.

Proof. Let φ(X) and φ(Y ) be the Rabin–Karp fingerprints of X and Y , respectively. Then X [j]−Y [j] is
equal to (φ(X)−φ(Y ))·r−j (mod p), where p and r are the integers used in the definition of Rabin–Karp
fingerprints. Finally, r−j (mod p) can be computed in O(logm) time.

Now that we know the mismatch position and the letter difference, we can compute the 1-mismatch
sketches of T [q − |Pi|+ 1, q] in O(log2 m/ log logm) time from the 1-mismatch sketches of Pi.

2.1.3 Exact occurrences of Si

If i = ⌈logm⌉, Si is the empty string and therefore the second process is not necessary. Henceforth we
assume 0 ≤ i < ⌈logm⌉. The second process is built on top of the Pattern Matching algorithm for
the pattern Q = Si and T . Since for each new position q the first process tells whether it is preceded
by a right-half 1-mismatch occurrence of Pi, all we need is to carry this information from the level 0 of
the Pattern Matching algorithm to the top level. We claim that it suffices to store the 1-mismatch
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sketches for a constant number of positions in each level. Using them, we will be able to infer the
remaining unstored information.

Consider level j. Let us assume that the algorithm has read T [1, q] so far. The progression that
the Pattern Matching algorithm currently stores for this level can be a part of a longer progression
of occurrences of Si[1, 2

j] in T . More precisely, we consider the maximal arithmetic progression Rj of
occurrences of Si[1, 2

j] in T [1, q] with difference ρij being the shortest period of Si[1, 2
j]. Then, if the

Pattern Matching algorithm stores at least three occurrences, they form a suffix of the progression
Rj . Otherwise there are at most two occurrences stored, so only the first occurrence may not belong to
Rj but to a previous such maximal progression.

Let ℓ be some occurrence of Si[1, 2
j] for which we would like to figure out whether it is preceded

by a right-half 1-mismatch occurrence of Pi. If ℓ is far from the start of the current progression Rj ,
then the text preceding ℓ is periodic with period ρij and we can use this fact to infer the 1-mismatch
information. So our main concern is the positions ℓ that are at the distance of at most |Pi| = 2i from the
start of the progression Rj . We define four positions ℓaj , a = 1, 2, 3, 4, relative to the progression Rj that
help us to restore the information in this case. Note that we can easily determine the moment when a
new progression Rj starts, as this is precisely the moment when the difference between two consecutive
positions in level j becomes greater than ρij . We define ℓ1j as the first position preceded by a right-half
1-mismatch occurrence of Pi that was added to level j since that moment. We further define ℓaj as the

leftmost terms in Rj preceded by a right-half 1-mismatch occurrence of Pi in [ℓ1j+(a−1)·2i−2, ℓ1j+a·2i−2]
for a = 2, 3, 4. (If such terms exist; otherwise they are left undefined). A schematic view is given in
Fig. 1. The algorithm stores 1-mismatch sketches of T [1, ℓaj −2i−1] and T [1, ℓaj −1] for each a = 1, 2, 3, 4.

T

ρij

N Y Y N N Y Y Y Y N N N Y N

2i−2 2i−2 2i−2 2i−2

ℓ1j ℓ2j ℓ3j

Figure 1: A progression Rj ; the letter Y represents a 1-mismatch occurrence of Pi preceding a given
position from Rj and the letter N means there is no such occurrence. The special positions ℓ1j , ℓ

2
j , ℓ

3
j are

marked whereas ℓ4j is undefined.

Let us mention that when the first element of a new progression Rj arrives, the algorithm stores all
the data for the previous progressionRj as well. This accounts for the special case of just two occurrences
of Si[1, 2

j] in the suffix of T [1, q] belonging to two different progressions. Afterwards the data for the
previous progression can be safely discarded.

Besides, the algorithm stores a number of 1-mismatch sketches for the pattern, which are computed
during the preprocessing step and in total occupy O(log3 m/ log logm) space (for a fixed i). First, it
stores the 1-mismatch sketches of the shortest string period Pi[1, γi] of Pi[1, 2

i−1]. Second, it stores the
1-mismatch sketches of the shortest string period Si[1, ρij ] of Si[1, 2

j] for each j = 0, 1, . . . , ⌊log |Si|⌋.
Finally, the algorithm stores the 1-mismatch sketches of Si[1, δij ], where δij is the remainder of −2i

modulo ρij . To compute the periods and the sketches during the preprocessing step we make three
passes over the pattern. Over the first two passes we compute the minimal periods of Pi[1, 2

i−1] and
Si[1, 2

j] for all i and j using O(log2 m) instances of the streaming algorithm [14]. The algorithm requires
O(log2 m) space and computes the minimal period in one pass if the period is smaller than m/2, and in
two passes if otherwise. During the third pass we compute the 1-mismatch sketches.

Lemma 2.7. The algorithm can decide if a position ℓ ∈ Rj is preceded by a right-half 1-mismatch
occurrence of Pi in O(log3 m/ log logm) time and, if this is the case, it can also compute the 1-mismatch
sketches of T [1, ℓ− 2i − 1] and T [1, ℓ− 1].

Proof. We consider three cases based on the relationship between ℓ and the positions ℓaj .

Case 1: ℓ < ℓ1j or ℓaj + 2i−2 ≤ ℓ < ℓa+1
j for some a ∈ {1, 2, 3} In this case ℓ cannot be preceded by a

1-mismatch occurrence of Pi by definition. If ℓa+1
j is undefined, as the upper bound on ℓ we take ℓbj for
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the smallest b > a+ 1 that is defined or, if no such b > a+ 1 exists, ℓ1j + 2i.

Case 2: ℓaj ≤ ℓ < ℓaj +2i−2 for some a ∈ {1, 2, 3, 4} Recall that γi is the minimal period of Pi[1, 2
i−1].

Let us first show that if ℓ is preceded by a right-half 1-mismatch occurrence of Pi, then it is also preceded
by a 1-mismatch occurrence of (Pi[1, γi])

αPi, where α = (ℓ−ℓaj )/γi. To this end, recall that ℓ
a
j is preceded

by a right-half 1-mismatch occurrence of Pi. If the same property holds for ℓ, then T [ℓaj −2i, ℓaj −2i−1−1]

and T [ℓ− 2i, ℓ − 2i−1 − 1] are two occurrences of Pi[1, 2
i−1] that overlap by at least 2i−2 positions; see

Fig. 2. Therefore T [ℓaj − 2i, ℓ− 2i − 1] is a power of the minimal period of Pi[1, γi] by Lemma 2.5.

Below we explain how to compute the 1-mismatch sketches of T [ℓaj − 2i, ℓ− 1] and of (Pi[1, γi])
αPi in

O(log3 m/ log logm) time. The algorithm can then use Lemma 2.3 to determine in O(log2 m/ log logm)
time whether ℓ is preceded by a 1-mismatch occurrence of (Pi[1, γi])

αPi and, if so, to determine the
mismatch position. Hence, it can check whether ℓ is preceded by a right-half 1-mismatch occurrence of
Pi. Moreover, if this is the case, the algorithm can compute the 1-mismatch sketch of T [1, ℓ − 2i − 1]
using sketches of T [1, ℓaj − 2i − 1] and (Pi[1, γi])

α.

ℓaj − 2i ℓ− 2i ℓaj ℓ

Pi[1, γi]

Pi[1, 2
i−1]

Pi[1, 2
i−1]

T

Si[1, ρij ]

Figure 2: Case 2 of Lemma 2.7. Position ℓ is close to one of the positions ℓaj , which implies that

T [ℓaj − 2i, ℓ− 2i − 1] is a power of Pi[1, γi].

Recall that the algorithm stores the 1-mismatch sketches of T [1, ℓaj − 1]. The algorithm can compute
the 1-mismatch sketches of T [1, ℓ − 1] using the 1-mismatch sketches of T [1, ℓaj − 1] and Si[1, ρij ] in

O(log3 m/ log logm) time via Lemma 2.4(iv) and Lemma 2.4(ii). Finally, the algorithm computes the
1-mismatch sketches of T [ℓaj − 2i, ℓ− 1] in O(log2 m/ log logm) time by applying Lemma 2.4(iii) for the

1-mismatch sketches of T [1, ℓaj − 2i − 1] and T [1, ℓ − 1]. The 1-mismatch sketches of (Pi[1, γi])
αPi are

computed from sketches of Pi[1, γi] and Pi using Lemma 2.4(iv) and Lemma 2.4(ii).

Case 3: ℓ ≥ ℓ1j +2i In this case T [ℓ−2i, ℓ−1] is a suffix of T [ℓ1j , ℓ−1], which is a power of the minimal

string period of Si[1, 2
j], that is, Si[1, ρij ]. As we know the 1-mismatch sketches of T [1, ℓ1j − 1], Si[1, ρij ],

and Si[1, δij ] (recall that δij is the remainder of −2i modulo ρij), the algorithm can use Lemma 2.4 to
compute the 1-mismatch sketches of T [1, ℓ− 1] (by extending T [1, ℓ1j − 1] with a power of Si[1, ρij ]) and

T [1, ℓ− 2i − 1] (by subtracting the sketches of a power of Si[1, ρij ] of exponent
⌈

2i/ρij
⌉

and adding the

sketches of Si[1, δij ]) in O(log3 m/ log logm) time; see Fig. 3. It can then use them to determine whether
T [ℓ− 2i, ℓ− 1] is a 1-mismatch occurrence of Pi.

ℓ1j

TSi[1, ρij ]

ℓ

2i

Si[1, δij ]

Figure 3: Case 3 of Lemma 2.7. Position ℓ is far enough from ℓ1j .

The algorithm uses the lemma both to compile the output and to update the levels. When the
algorithm encounters a position ℓ in the top level that is preceded by a right-half 1-mismatch occurrence
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of Pi and followed by an exact occurrence of Si, the algorithm outputs it together with the required
difference of symbols, which is computed from the 1-mismatch sketches of T [ℓ−2i+1, ℓ] using Lemma 2.3
to determine the mismatch position and then Lemma 2.6. Let us show how the algorithm updates the
levels. When a new symbol T [q] arrives and T [q] = Si[1], the algorithm adds q to the level 0. If we know
from the first process that q is preceded by a right-half 1-mismatch occurrence of Pi, then the algorithm
also tries to update the ℓa0 values and possibly retains the 1-mismatch sketches of T [1, q − 2i − 1] and
T [1, q− 1] output by the first process. The algorithm then updates each of the remaining levels in turn.
To update level j, it considers the leftmost position ℓj in this level. If the Rabin–Karp fingerprints imply
that it is an occurrence of Si[1, 2

j+1], the algorithm promotes it to the next level, and otherwise discards
it. In the former case the algorithm uses Lemma 2.7 to check whether ℓj is preceded by a right-half
1-mismatch occurrence of Pi. If it is, it computes the 1-mismatch sketches and updates the positions
ℓaj+1.

2.1.4 Complexity

For each i we run the two processes in parallel. The bottleneck of the first process is the 1-Mismatch

algorithm; it uses O(log4 m/ log logm) space and O(log3 m/ log logm) time per symbol. The time com-
plexity of the second process is bounded by O(logm) applications of the algorithm of Lemma 2.7
(one per level) and is O(log4 m/ log logm) per symbol. The space complexity of the second process
is O(log3 m/ log logm). Therefore, both the space and the time that our 1-Mismatch with Error

Correcting algorithm uses per symbol is O(log5 m/ log logm).

2.2 Proof of Theorem 1.2: general value of k

Theorem 1.2 follows from Theorem 1.1 via a randomised reduction. The first variant of this reduction,
which was deterministic, was presented by Porat and Porat [22], who used it to reduce the k-Mismatch

problem to the 1-Mismatch problem. It was further made more space-efficient at a return of slightly
higher error probability by Clifford et al. [9]. The main idea of this reduction is to consider a number of
partitions of the pattern into O(k log2 m) subpatterns. By defining the partitions appropriately, we can
guarantee that at each alignment where the Hamming distance is small, each mismatch will correspond
to a 1-mismatch occurrence of some subpattern. This lets us apply the 1-Mismatch with Error

Correcting algorithm to find all such alignments and to restore the data for them. We give a full
description of the reduction below.

We start by filtering out the locations where the Hamming distance is large. To this end, we use a
randomised algorithm for the following 2-approximate k-mismatch problem. Let H be the true Hamming
distance at a particular alignment of the pattern and the text. The algorithm outputs “Yes” if H ≤ k,
either “Yes” or “No” if k < H ≤ 2k, and “No” if H > 2k.

Lemma 2.8 ([9]). Given a pattern P of length m and a streaming text arriving one symbol at a time,
there is a randomised O(k2 log6 m)-space algorithm which takes O(log5 m) worst-case time per arriving
symbol and solves the 2-approximate k-mismatch problem. The probability of error is at most 1/m2.

Next, we consider ℓ = ⌊logm⌋ partitions of the pattern into equispaced subpatterns. More precisely,
we select ℓ random primes from the interval [k log2 m, 34k log2 m]. For each prime pi the pattern P is
then partitioned into pi subpatterns Pi,j = P [j]P [pi + j]P [2pi + j] . . ., where j = 1, . . . , pi. Consider a
particular location q in the text and the set of all mismatches between P and T [q −m + 1, q]. Let us
call a mismatch isolated if it is the only mismatch between some subpattern Pi,j and the corresponding
subsequence of T [q −m+ 1, q], and let Mq be the set of all isolated mismatches at an alignment q.

Lemma 2.9 ([9]). If |Mq| ≤ 2k, the set Mq contains all mismatches between P and T [q−m+1, q] with
probability at least 1− 1/m2.

To finalise the reduction, we partition the text T into pi equispaced substreams Ti,j , where j =
1, . . . , pi, for each prime pi. We run the 1-Mismatch with Error Correcting algorithm for all
∑

i p
2
i = O(k2 log5 m) subpattern/substream pairs (Pi,j1 , Ti,j2). At each location where the algorithm

for the 2-approximate problem outputs “Yes”, we retrieve all isolated mismatches and the data using
the appropriate pi instances of the 1-Mismatch with Error Correcting problem for each i. This
completes the description of our solution to the k-Mismatch with Error Correcting problem.
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In total, we use O(k2 log10 m/ log logm) space. To analyse the time complexity, note that when a new
symbol of T arrives, we need to send it to O(logm) substreams only (one for each prime) and run the
next step for each of the O(k log2 m) instances of the 1-Mismatch with Error Correcting problem
on each of these substreams, which requires O(k log8 m/ log logm) time per symbol.

3 Applications — Weighted Pattern Matching

Below we present the proofs of Theorems 1.3 and 1.4 that give two series of streaming algorithms for
the Weighted Pattern Matching problem. We present the proofs in parallel. We conclude in
Section 3.5 with a proof of Proposition 1.5 that states an Ω(z) lower bound on the space complexities of
such algorithms.

3.1 Preliminaries

We first introduce a notion of a heavy string H (P ) of a weighted string P .

Definition 3.1. For a weighted string P , by H (P ) we denote a regular string obtained from P by
choosing at each position the symbol with the maximum probability (ties are handled arbitrarily).

The observation below, initially introduced in [20], shows a key property of this notation.

Observation 3.2. If a string S matches a weighted string P with probability at least 1/z, then the
number of mismatches between H (P ) and S is at most log z.

Proof. It follows from the fact that at each mismatch position the probability of P and S to match is at
most 1/2.

Observation 3.3. The total number of strings that match a weighted string P with probability at least
1/z is at most z.

Proof. The sum of the match probabilities over all such strings cannot exceed 1. The claim follows.

3.2 Case 1 — only pattern is weighted

We start by presenting two algorithms for the Weighted Pattern Matching problem for a weighted
pattern and a regular text.

3.2.1 Solution via k-Mismatch with Error Correcting

Alongside Observation 3.2, the main idea of our solution is to find all log z-occurrences of H (P ) in T ,
and then to filter out those corresponding to the alignments where the match probability is too small.

Let D be the set of all (regular) strings that match the pattern with probability at least 1/z. If
a substring of the text T matches P with probability ≥ 1/z, it must belong to the set D. During
the preprocessing phase, we do not compute the set D itself, but would like to compute a set M of
mismatches between H (P ) and the strings in D. More formally:

M = {(i, a) : a = S[i] 6= H (P ) [i], S ∈ D}.

Observation 3.4. |M | ≤ z − 1.

Proof. From each mismatch (i, a) ∈ M one can produce a regular string that matches P with probability
≥ 1/z by taking H (P ) and replacing H (P ) [i] by a. Due to Observation 3.3 and the fact that H (P ) ∈ D,
there are at most z − 1 such strings in D.

Example 3.5. Consider the weighted pattern P corresponding to the weighted string X from Table 2.
We have H (P ) = ABAB. Let z = 8.

We have D = {ABAB, ABBB, CBAB} with the probabilities 1
6 ,

1
8 , and 1

8 , respectively. Thus M =
{(1, C), (3, B)} (the mismatches are underlined).
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i 1 2 3 4
probability of A 1

2 0 1
2

1
6

probability of B 1
8 1 3

8
2
3

probability of C 3
8 0 1

8
1
6

Table 2: A weighted string X of length 4 over Σ = {A, B, C}.

To perform the preprocessing step in a streaming fashion with small space usage, we compute a
slightly larger set M ′ that consists of z − 1 pairs (i, a) for i ∈ {1, . . . ,m} and a ∈ Σ with the greatest

value of p(i, a) = Pr[P [i]=a]
Pr[P [i]=H(P )[i]] (if there are less than z − 1 such pairs in total, the set M ′ contains all

such pairs).

Observation 3.6. M ⊆ M ′.

Proof. Assume to the contrary that (i, a) ∈ M \M ′. This implies that |M ′| = ⌊z⌋ − 1. Using the same
argument as in the proof of Observation 3.4, from every pair in M ′ ∪ (i, a) one can obtain a different
string from D. This would yield |D| > z − 1, which contradicts Observation 3.3.

Example 3.7. For the weighted pattern from Example 3.5, one might have

M ′ = {(1, C, 34 ), (3, B, 34 ), (1, B, 14 ), (3, C, 14 ), (4, A, 14 ), (4, C, 14 ), (2, A, 0)}.

The elements of M ′ are ordered by p(i, a).

Each element of M ′ is stored as a triple (i,H (P ) [i]− a, p(i, a)) in a priority queue ordered by p(i, a).
To construct the set M ′, for i = 1, . . . ,m we insert all (i, a) with a 6= H (P ) [i] into the priority queue.
We keep the size of M ′ not greater than z − 1 by removing the elements with the smallest p(i, a) if
needed. In the end we compute a balanced binary search tree that indexes all the mismatches from M ′

with pairs (i,H (P ) [i] − a). We also compute and store the probability π that H (P ) matches P . The
time needed for the preprocessing step is O(z log z) and the total space consumption is O(z).

During the main phase, we run a k-Mismatch with Error Correcting algorithm for k = log z,
H (P ), and T . From Observation 3.2 it follows that the algorithm will report all alignments where P
and T match with probability at least 1/z, but it might report some other alignments, and we need to
filter them out. Recall that every occurrence found by the k-Mismatch with Error Correcting

algorithm applied for H (P ) and T with k = log z is reported together with the at most k mismatch
positions and the corresponding letter differences. Therefore, we can use the balanced binary search tree
that stores the set M ′ to compute the match probability by updating π with the probabilities of the at
most k = log z mismatches. If any of the mismatches is not present in M ′, then by Observation 3.6 the
candidate does not belong to the set D and its match probability is certainly below the 1/z threshold.
Thus the time needed to retrieve the match probability (provided that it is at least 1/z) is O(log2 z).
With this we arrive at the first algorithm of Theorem 1.3:

Proposition 3.8. If only the pattern is weighted, there is a streaming algorithm that solves the Weighted

Pattern Matching problem in O(z) + Slog z space and O(log2 z) + Tlog z time per arrival. At each ar-
rival, the algorithm can err with probability Plog z.

Let us note that, in the considered case of z < m, Tlog z = Ω(log2 z) both for the algorithm of
Theorem 1.2 and the algorithm of Clifford et at. [12].

3.2.2 Solution via Multiple Pattern Matching

As in the previous subsection, let D be the set of all (regular) strings that match the pattern with
probability at least 1/z. Let us recall that if a substring of the text T matches P with probability
≥ 1/z, it must belong to the set D. To identify such substrings, we will use the streaming Multiple

Pattern Matching algorithm for the set D and the text T . The current best algorithm is by Golan
and Porat [16], which for a dictionary D of m-length strings takes O(|D| logm) space and O(1) time per
symbol. The algorithm is randomised and has error probability 1/poly(n).

We arrive at the first algorithm of Theorem 1.4:
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Proposition 3.9. If only the pattern is weighted, there is a streaming algorithm that solves the Weighted

Pattern Matching problem in O(z logm) space and O(1) time per arrival. At each arrival, the algo-
rithm can err with probability 1/poly(n).

3.3 Case 2 — only text is weighted

In this section we show two (1 − ε)-approximate solutions to the Weighted Pattern Matching

problem for a regular pattern P and a weighted text T . We assume that ε < 1/2. If ε > 1/2, we can use
the 1/2-approximation algorithm that has the same asymptotic complexity and better approximation
factor. We start by giving a definition of maximal matching suffixes that will play a crucial role in both
algorithms.

Definition 3.10. A maximal matching suffix of a weighted string T is a (regular) string S such that S
matches T [|T | − |S| + 1, |T |] with probability at least 1/(2z) and either |S| = |T | or any string aS, for
a ∈ Σ, matches T [|T | − |S|, |T |] with probability smaller than 1/(2z).

Remark 3.11. The reason for selecting the cut-off value of 1/(2z) will become clear later (in Lemma 3.16,
where we need the cut-off to be at most (1− ε)/z).

We will use the observation below; intuitively, it follows from the fact that the sum of probabilities
of maximal matching suffixes of a string does not exceed 1.

Observation 3.12 ([1]). A weighted string has at most 2z maximal weighted suffixes.

Example 3.13. For the weighted text T corresponding to the weighted string X from Table 2 and z = 8,
the set of maximal matching suffixes is:

{ABAB (16 ), ABBB (18 ), CBAB (18 ), CBBB ( 3
32 ), BCB ( 1

12 ), BAA ( 1
12 ), BAC ( 1

12 ), BBA ( 1
16 ), BBC ( 1

16 )}.

Mismatches with H (T ) are underlined and matching probabilities of each suffix are listed.

Importantly, if P matches T [q−m+ 1, q] with probability ≥ 1/z, then there is a maximal matching
suffix S of T [1, q] that ends with P . Moreover, the match probability between P and T [q − m + 1, q]
is equal to the match probability between the m-length suffix of S and T [q − m + 1, q]. To be able to
compute the latter, we introduce a new problem which we refer to as the Sliding Window Product

problem. In this problem we are given a stream of numbers from [0, 1] and an integer m. Each time a
new number arrives, we must update and output the product of numbers in the m-length suffix of the
stream. We will develop a (1− ε)-approximation solution to the Sliding Window Product problem.

We summarize our two solutions as Algorithm 1. The only difference between them is how we find
the maximal matching suffixes that end with P . In the following subsections we explain each step in
detail.

Algorithm 1 Weighted Pattern Matching — only text is weighted

for each new text symbol T [q + 1] do
Update the set of maximal matching suffixes
for each maximal matching suffix S do

Run the next step of Sliding Window Product

end for

if there is a maximal matching suffix S that ends with P then

Use the output of Sliding Window Product for S to compute a (1− ε)-approximation p of
the match probability between P and T

If p ≥ (1− ε)/z, report an occurrence
end if

end for
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3.3.1 Computing maximal matching suffixes

We maintain each maximal matching suffix S of T [1, q] as a stream. The stream represents letters si,
i ≤ q, that correspond to S[i + |S| − q] and probabilities xi that are equal to the match probability
between si and T [i]. The letters si for 1 ≤ i ≤ q − |S| can be arbitrary (they will be implied by the
previous steps of the algorithm) and probabilities xi for 1 ≤ i ≤ q − |S| correspond to the matching
probability of these letters and T [i]. Each of the streams will be stored using only O(log1/(1−ε) z) space
(in particular, we do not store all si and xi explicitly).

We call a position i in the stream a mismatch position if si 6= H (T ) [i]. Let r be the rightmost
mismatch position in the stream such that

∏

i≥r xi < 1/(2z). If such a position does not exist, we put
r = 0. By Observation 3.2, there are at most log z+1 mismatch positions to the right of r. We index the
stream by these mismatch positions and the differences between si and H (T ) [i] in these positions. We
also store the product of the probabilities located to the right of each of these at most log z+1 mismatch
positions.

When a new text symbol T [q + 1] arrives, we first create |Σ| copies of each stream. We then add
Pr[T [q + 1] = b] for each b ∈ Σ to the b-th copy of each stream and update the mismatches, the indices,
and the related information in O(log z) time using the stored products of probabilities. At this moment
the value r in some streams might increase. Furthermore, there might appear “duplicate” streams with
equal indices. Duplicate streams correspond to a single maximal matching suffix and possibly its suffixes
(which are not maximal matching suffixes of T [1, q+1]). We sort the streams by building a trie on their
indices and delete the duplicates, leaving for each stream index one stream with the smallest position r.
This takes O(z log z) space and time in total.

Example 3.14. Let us consider an extension of the weighted string from Table 2 by a single position
that is shown in Table 3.

i 1 2 3 4 5

probability of A 1
2 0 1

2
1
6

2
3

probability of B 1
8 1 3

8
2
3

1
3

probability of C 3
8 0 1

8
1
6 0

Table 3: A weighted string X ′ of length 5 over Σ = {A, B, C}.

Table 4 shows how the first five maximal matching suffixes from Example 3.13 are extended with
position 5. Letters in gray are not part of a maximal matching suffix, but they are still present in the
stream. The matching probability of the matching suffix is given for reference (in brackets); this value is
not stored.

Amongst the streams with stream index (5, B), the first one has r = 0, the second has r = 1, and the
third has r = 3 (and, notably, it does not correspond to a maximal matching suffix). Thus, the first one
of these streams is retained.

Finally, for each of the streams we store a data structure for the approximate solution of Sliding

Window Product. It takes O(log1/(1−ε) z) space per stream, so storing and updating all of them upon
a letter arrival takes O(z log1/(1−ε) z) space and time.

3.3.2 Approximate solution to Sliding Window Product

Recall that in the Sliding Window Product problem we are given a stream of numbers from [0, 1]
and an integer m. Each time a new number arrives, we must update and output the product of numbers
in the m-length suffix of the stream. We give a (1 − ε)-approximation algorithm for the problem. The
algorithm may output either a number or “No”. If it outputs a number y, then the product of the
numbers in the m-length suffix of the stream is between y and y/(1− ε). Otherwise, the product is less
than (1− ε)/z.

Lemma 3.15. For a stream of numbers {xi}∞i=1, where xi ∈ [0, 1], arriving one at a time, and a window
width m, there is a deterministic (1 − ε)-approximation algorithm that takes O(log1/(1−ε) z) space and
O(1) time per arrival and solves the Sliding Window Product problem.
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before extension after extension
stream index

1 2 3 4 1 2 3 4 5

A 1
2 B1 A1

2 B2
3 (16 )

A 1
2 B1 A1

2 B 2
3 A 2

3 (19 ) ∅
A 1
2 B1 A1

2 B 2
3 B 1

3 (19 ) (5, B)

A 1
2 B1 B3

8 B2
3 (18 )

A 1
2 B1 B3

8 B 2
3 A 2

3 ( 1
12 ) (3, B)

A 1
2 B1 B3

8 B 2
3 B 1

3 ( 1
12 ) (3, B), (5, B)

C 3
8 B1 A1

2 B2
3 (18 )

C 3
8 B1 A1

2 B 2
3 A 2

3 ( 1
12 ) (1, C)

C 3
8 B1 A1

2 B 2
3 B 1

3 (19 ) (5, B), duplicate

C 3
8 B1 B3

8 B2
3 ( 3

32 )
C 3
8 B1 B3

8 B 2
3 A 2

3 ( 1
16 ) (1, C), (3, B)

C 3
8 B1 B3

8 B 2
3 B 1

3 ( 1
12 ) (3, B), (5, B), duplicate

A 1
2 B1 C1

2 B2
3 ( 1

12 )
A 1
2 B1 C1

8 B 2
3 A 2

3 ( 1
16 ) (3, C)

A 1
2 B1 C1

8 B 2
3 B 1

3 (29 ) (5, B), duplicate

Table 4: Extensions of maximal matching suffixes from Example 3.13 by position 5 with letter probabil-
ities A: 2

3 , B:
1
3 , C: 0.

Proof. At time q the algorithm maintains a queue that consists of at most M(z) = 2
⌈

log1−ε((1− ε)/z)
⌉

intervals [i1, i2 − 1], [i2, i3 − 1], . . . , [ik(q), ik(q)+1 − 1] where ik(q)+1 = q+1, such that 1 ≤ i1 < i2 < . . . <
ik(q) < ik(q)+1, which obeys the following invariant.

(i) All intervals [ij, ij+1− 1] for j ≥ 2 are subintervals of [q−m+1, q], and [i1, i2− 1] has a non-empty
intersection with [q −m+ 1, q];

(ii) If xij < 1− ε, then ij+1 = ij + 1;

(iii) Otherwise, xij · xij+1 · . . . · xij+1−1 ≥ 1− ε and either j = k(q) or xij · xij+1 · . . . · xij+1
< 1− ε.

The algorithm stores the product of numbers in each interval and the total product of numbers in
all intervals. When xq+1 arrives, it updates the family of intervals in the following way. Let π be the
product of numbers in the interval [ik(q), q]. If π · xq+1 ≥ 1 − ε, then the algorithm extends the interval
[ik(q), q] by the element xq+1. Otherwise, it creates a new interval [q+1, q+1]. If the number of intervals
becomes larger than M(z) or if i2 ≤ q−m, the algorithm deletes the leftmost interval [i1, i2−1]. Finally,
it updates the total product of numbers in the intervals. Let us now explain how the algorithm exploits
the intervals.

Assume that q ≥ m. Note that the product of numbers in each two consecutive intervals is at most
1− ε. Therefore, if q −m+ 1 < i1, then the product of the last m numbers is smaller than

(1 − ε)⌊ 1
2
M(z)⌋ = (1− ε)⌈log1−ε((1−ε)/z)⌉ ≤ (1 − ε)log1−ε((1−ε)/z) = 1−ε

z

and the algorithm outputs “No”. Otherwise from the invariant it follows that q−m+1 ∈ [i1, i2 − 1]. In
this case we output the total product of the numbers in the intervals. If [i1, i2 − 1] is a singleton interval
(i.e. i1 = i2 − 1), then [i1, ik(q)+1 − 1] = [q −m+ 1, q], and the output equals xq−m+1 · xq−m+2 · . . . · xq

exactly. If [i1, i2 − 1] is not a singleton interval, then the product of numbers in it is at least 1 − ε.
Therefore, the output will be a (1− ε)-approximation of xq−m+1 ·xq−m+2 · . . . ·xq. The space complexity
follows from the fact that M(z) = O(log1/(1−ε) z).

Lemma 3.16. Consider the stream {xi}qi=1 related to maximal matching suffix S of T [1, q] and let
q ≥ m. If the algorithm for Sliding Window Product returns “No” or a number that is smaller than
(1 − ε)/z, then either |S| < m or the probability π that S[|S| − m + 1, |S|] matches T [q − m + 1, q] is
below 1/z. Otherwise, |S| ≥ m and the result y of the algorithm satisfies y ≤ π ≤ y/(1− ε).

Proof. Let us denote π′ = xq−m+1 · . . . ·xq. If the Sliding Window Product algorithm returns “No”,
then π′ < (1 − ε)/z. Then, indeed, either |S| < m or π = π′ < (1− ε)/z.
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Assume that the Sliding Window Product algorithm returns a number y. Then y ≤ π′ ≤ y/(1−ε).
If y < (1 − ε)/z, then π′ < 1/z. Again this means that either |S| < m or π = π′ < 1/z.

Finally, consider the case that y ≥ (1 − ε)/z. Since π′ ≥ (1 − ε)/z ≥ 1/(2z), we have |S| ≥ m. This
concludes that π = π′ and y ≤ π ≤ y/(1− ε), as required.

3.3.3 Finding a maximal matching suffix that ends with P

We give two different methods for this task. The first method is based on a k-Mismatch algorithm.
Recall that if P matches T at some alignment q with probability at least 1/z, then H (T ) [q −m+ 1, q]
is a log z-mismatch occurrence of P (see Observation 3.2). We use the k-Mismatch algorithm with
k = log z for P and H (T ) to find all such alignments. When we identify a log z-mismatch occurrence of
P in H (T ), we find a stream that corresponds to a maximal matching suffix that ends with P , if any
(using the indexing trie). Suppose we have found a maximal matching suffix S that ends with P . We
then use the algorithm of Lemma 3.15 to compute a (1− ε)-approximation of the product of the last m
probabilities in the stream associated with S. By Lemma 3.16, we can output it as an answer.

By Observation 3.12, the number of maximal matching suffixes of T [1, q] never exceeds 2z. Therefore,
the total number of streams is O(z). Updating the streams, including removing the duplicates, takes
O(z log z) space and time per position. For each of the streams we run the Sliding Window Product

algorithm, which takes O(z log1/(1−ε) z) space and time per position (Lemma 3.15). For k = log z, the
k-Mismatch algorithm takes Slog z space and Tlog z time per arriving symbol. Finally, to find the right
stream we need just O(log z) additional time per position. In total, this is O(z log1/(1−ε) z)+Slog z space
and O(z log1/(1−ε) z)+Tlog z time per position. Our algorithm can output an incorrect answer only when
the k-Mismatch algorithm errs, which happens with probability Plog z. We arrive at the second claim
of Theorem 1.3:

Proposition 3.17. If only the text is weighted, there is a (1−ε)-approximation streaming algorithm that
solves Weighted Pattern Matching in O(z log1/(1−ε) z) + Slog z space and O(z log1/(1−ε) z) + Tlog z

time per arrival. At each arrival, the algorithm can err with probability z · Plog z.

The second method is based on a straightforward application of the streaming Pattern Matching

algorithm of Breslauer and Galil [6] for the pattern P and each of the maximal matching suffixes streams.
The streaming Pattern Matching algorithm of Breslauer and Galil [6] uses O(logm) space and takes
O(1) time per arrival. Once we have found a maximal matching suffix that ends with P , we apply the
algorithm of Lemma 3.15 to compute a (1− ε)-approximation of the product of the last m probabilities
in the stream associated with S and output it as an answer. In total, the second approach requires
O(z log1/(1−ε) z + z logm) space and O(z log1/(1−ε) z) time per position. The error probability of the
Pattern Matching algorithm and, therefore, of our approach is 1/poly(n) per position. We arrive at
the second claim of Theorem 1.4:

Proposition 3.18. If only the text is weighted, there is a (1 − ε)-approximation streaming algorithm
that solves Weighted Pattern Matching in O(z(log1/(1−ε) z + logm)) space and O(z log1/(1−ε) z)
time per arrival. At each arrival, the algorithm can err with probability 1/poly(n).

3.4 Case 3 — both the text and the pattern are weighted

We conclude by showing two solutions for the case when both the pattern and the text are weighted. Our
solutions combine the ideas of the two previous sections. Recall that at each alignment the algorithm
must output “Yes” if there is a regular string that matches the text and the pattern with probability
above 1/z. The algorithm may also output “Yes” if there is a string that matches the pattern with
probability at least 1/z and the text with probability between (1 − ε)/z and 1/z. Otherwise it outputs
“No”.

In the algorithm we maintain a set of at most 2z streams for the maximal matching suffixes of the
text T . For each of the streams we run the Sliding Window Product algorithm (Lemma 3.15). Let
us recall that the set D contains at most z regular strings that match P with probability ≥ 1/z. There is
a regular string that matches the pattern and the text with probability ≥ 1/z if and only if the following
two conditions hold:

(i) One of the maximal matching suffixes ends with a string in D;
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(ii) The product of the last m probabilities in the suffix’s stream is ≥ 1/z.

We check the condition (ii) approximately using the Sliding Window Product algorithm. For the
condition (i), we again discuss two methods.

The first method uses a k-Mismatch algorithm. If P matches T at some alignment q, then H (T ) [q−
m + 1, q] must be a log z-occurrence of one of the strings we generated for the pattern. We use the
k-Mismatch algorithm with k = log z for each of the generated strings and H (T ) to find all such
occurrences. At each alignment q we consider log z-occurrences of the generated strings and build a trie
of their indices, where the indices are defined as in Section 3.3. If a maximal matching suffix ends with
one of these strings, its index must be in the trie. We can perform a search for each index in the trie in
O(z log z) time in total. The time required to update the suffix streams is O(z log z) as there are O(z)
of them [1]. For each of the streams we run the Sliding Window Product algorithm, which takes
O(z log1/(1−ε) z) space and time. For k = log z the k-Mismatch algorithm takes Slog z space and Tlog z

time per symbol. Building the trie of indices takes O(z log z) time. Searching for the indices in the trie
takes O(z log z) time. In total, this is O(z log1/(1−ε) z) + z · Slog z space and O(z log1/(1−ε) z) + z · Tlog z

time. The algorithm can output an incorrect answer only when one of the k-Mismatch algorithms errs,
which happens with probability z/poly(m) = 1/poly(m). We arrive at the following proposition. It is
not included in Theorem 1.3 since the complexities resulting for the currently best values of Slog z and
Tlog z are worse than if the second method is used.

Proposition 3.19. When both the pattern and the text are weighted, there is a (1 − ε)-approximation
streaming algorithm that solves the Weighted Pattern Matching problem in O(z log1/(1−ε) z) +
zSlog z space and O(z log1/(1−ε) z) + zTlog z time per arrival. At each arrival, the algorithm can err with
probability z · Plog z.

The second method is to run the Multiple Pattern Matching algorithm for multiple streams [16].
This algorithm takes a dictionary and a set of streaming texts as an input. When a new symbol of a text
arrives, the algorithm must determine whether the current text ends with a string from the dictionary.
We run this algorithm for the dictionary D and each of the maximal matching suffixes streams. The
algorithm uses O(z logm) shared memory, O(logm log z) space per stream, and O(logm) time per each
arriving character of a stream. In our case the total space is thus O(z logm log z) and, since the maximal
matching suffix streams are handled in a dynamic way, the algorithm takes O(z logm log z) time per
each arriving character of the text. The error probability is 1/poly(n). We therefore arrive at the third
claim of Theorem 1.4:

Proposition 3.20. When both the pattern and the text are weighted, there is a (1 − ε)-approximation
streaming algorithm that solves the Weighted Pattern Matching problem in O(z(log1/(1−ε) z +
log z logm)) space and O(z(log1/(1−ε) z + log z logm)) time per arrival. At each arrival, the algorithm
can err with probability 1/poly(n).

3.5 Space lower bound — Proof of Proposition 1.5

The Yao minimax principle [27] implies that the expected space complexity of the optimal deterministic
algorithm for an arbitrarily chosen input distribution π is a lower bound on the space complexity of
the optimal Monte Carlo randomized algorithm. Therefore, it suffices to show that for some input
distribution π any deterministic (1− ε)-approximate streaming algorithm for the Weighted Pattern

Matching problem requires Ω(z) space on average (the lower bound for the exact algorithm follows).

Case 1: Only pattern is weighted Let us consider the following communication problem. Alice
is given a weighted pattern P of length m drawn from some distribution and the prefix T [1,m] of the
regular text T of length 2m − 1. Bob is given the suffix T [m + 1, 2m − 1]. Alice and Bob are given a
threshold 1/z and Bob must distinguish all alignments of P and T where the match probability is at
most (1 − ε)/z and at least 1/z. The communication complexity of the problem is defined to be the
expectation of the minimum number of bits that Alice must send to Bob so that he can achieve his
mission.

The lower bound on the communication complexity of this problem is a lower bound on the space
complexity of any streaming algorithm for the Weighted Pattern Matching by a standard reduction.
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Namely, Alice can run the algorithm on the pattern and her half of the text and then send the memory
of the algorithm to Bob. The space complexity of the algorithm will be equal to the communication
complexity of the problem.

We select a string S of length m over an alphabet {0, 1} uniformly at random and build a weighted
pattern over an alphabet {A, B, C}. For 1 ≤ i ≤ m, if S[i] = 0, then P [i] = A with probability 1 − 1

m , B
with probability 2

3m , and C with probability 1
3m . If S[i] = 1, then P [i] = A with probability 1− 1

m , B with
probability 1

3m , and C with probability 2
3m . The text is defined to be Am−1BAm−1 and 1/z = 2

3m (1 −
1
m )m−1 = Θ( 1

m ). We choose ε to be an arbitrary constant in [0, 1
2 ]. If Bob can distinguish all alignments

of P and T where the match probability is at most (1−ε)/z or at least 1/z, he can also restore S. Indeed, if
the match probability between P and T [i, i+m−1] is equal to 2

3m (1− 1
m )m−1 = 1/z, then S[m+1−i] = 0,

and if the match probability between P and T [i, i+m− 1] is equal to 1
3m (1− 1

m )m−1 ≤ (1− ε)/z, then
S[m + 1 − i] = 1. Therefore, from information theoretic ideas, the communication complexity of the
problem must be Ω(m) = Ω(z).

Case 2: Only text is weighted For the case when only the text is weighted, we use the same
reduction but define P and T differently. Let S be a random string in {0, 1}m as above. P is defined
to be BAm−1 and T is defined over {A, B, C} as follows. For 1 ≤ i ≤ m, if S[i] = 0, then T [i] = A with
probability 1 − 1

m , T [i] = B with probability 2
3m , and T [i] = C with probability 1

3m . If S[i] = 1, then
T [i] = A with probability 1 − 1

m , T [i] = B with probability 1
3m , and T [i] = C with probability 2

3m . For
m+1 ≤ i ≤ 2m− 1, T [i] = A with probability 1− 1

m and T [i] = B with probability 1
m . Again, if Bob can

distinguish all alignments of P and T where the match probability is at most (1 − ε)/z or at least 1/z,
he can also restore S. Therefore, any streaming algorithm for this variant must use Ω(z) space as well.

Case 3: Both the text and the pattern are weighted As a corollary we immediately obtain that
any exact or (1− ε)-approximate streaming algorithm for the weighted pattern, weighted text case must
use Ω(z) space.

Remark 3.21. We gave the proof for z = Θ(m). However, we can modify the examples so that it holds
for z ≤ m: it suffices to prepend the pattern and the text with Ak, for sufficiently large k, which for a
weighted sequence means adding k positions with probability of A equal to 1.

4 Conclusions

In this work we present the first efficient solutions to the problems of k-Mismatch with Error Cor-

recting and Weighted Pattern Matching in the streaming model. In parallel to our work, a
yet more efficient algorithm for k-Mismatch with Error Correcting was developed [12] that near-
matches time and space lower bounds. We provide lower bounds for streaming solutions to Weighted

Pattern Matching that show that the space complexity of our solutions is nearly optimal. It is
an interesting open problem if the two variants of Weighted Pattern Matching where the text is
weighted can be solved exactly using O(z1−ε) · logO(1)m time per arrival, for any ε > 0.
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[11] Raphaël Clifford, Markus Jalsenius, Ely Porat, and Benjamin Sach. Space lower bounds for online
pattern matching. Theor. Comput. Sci., 483:58–74, 2013. doi:10.1016/j.tcs.2012.06.012.
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