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Abstract

We present a novel approach for contextual segmentation
of complex visual scenes, based on the use of bags of loca;
invariant feafures (visterms) anq probabilistic aspecll_:h]o Figure 1. Scene segmentation using local invariant regions (yel-
els. Our appr(_)f;lch uses context in two ways: _(1) by using theIow). Regions are classified either as man-made (blue) or nature
fact that specific learned aspects correlate with the seimant (not shown), and superimposed on a manual segmentation (white).
classes, which resolves some cases of visual polysemy, and
(2) by formalizing the notion that scene context is image- between scene parts- can be used to improve region clas-
specific -what an individual visterm represents depends onsification P, 7,6, 13]. Two regions, indistinguishable from
what the rest of the visterms in the same bag represent too-€ach other when analyzed independently, might be discrimi-
We demonstrate the validity of our approach on a man-madenated as belonging to the correct class with the help of con-
vs. natural visterm classification problem. Experiments on text knowledge. Broadly speaking, there exists a contin-
an image collection of complex scenes show that the ap-uum of contextual models for image segmentation. On one
proach improves region discrimination, producing satisfa  €nd, one would find explicit models like Markov Random
tory results, and outperforming a non-contextual method. Fields, where spatial constraints are defined via local sta-
Furthermore, through the later use of a Markov Random tistical dependencies between class region labeig,[and
Field model, we also show that co-occurrence and spatial between observations and labei$ [The other end would
contextual information can be conveniently integrated for correspond to context-free models, where regions are clas-

improved visterm classification. sified assuming statistical independence between therregio
labels, and using only local observation [
1. Introduction Lying between these two extremes, a type of representa-

tion of increasing use is the bag-of-visterms (BOV), i.e., a

Associating semantic class labels to image regions is ahistogram of discretized regional descriptors. On one hand
fundamental task in computer vision, useful in itself forim  unlike explicit contextual models, spatial neighborintare
age, video indexing and retrieval, and as an intermediatetions in this representation are discarded, and any orglerin
step for higher-level scene analysisd, 18,19]. While most between the descriptors disappears. On the other hand, un-
segmentation approaches segment image pixels or blocksike point-wise models, although the descriptors are Iskill
based on their luminance, color or texture, in this work we cal, the scene is represented collectively. This can explai
consider local image regions characterized by viewpoint in why, despite the loss of “strong” spatial contextual infor-
variant descriptorsi[0]. This region representation, robust mation, BOVs have been successfully used in a number of
with respect to partial occlusion, clutter, and changes in problems, including object matching ] and categoriza-
viewpoint and illumination, has shown its applicability in tion [20, 15], scene classificatior [}, 3] and retrieval [.§].
a number of vision tasks?[ 16, 8, 20, 3, 14, 15]. Although As a collection of discrete data, the BOV representa-
local invariant regions do not provide a full segmentatibn o tjon is suitable for probabilistic models where a different
an image, they often occupy a considerable part of the scengorm of context is implicitly captured through visterm co-
and thus can define a "sparse” segmentation (Ejig. occurrence. These models, originally designed for text col

In general, the constituent parts of a scene do not exist inlections (documents composed of terms), use a discrete hid-
isolation, and the visual context -the spatial dependsncie den aspectvariable to model the co-occurrence of terms



of the final segmentation.

The paper is organized as follows. Section 2 reviews
the closest related work. Section 3 introduces our model
for contextual scene segmentation. Section 4 reports our
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% : X results, including the MRF modeling. Section 5 concludes
- E a £ ) the paper.
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Figure 2. Regions (represented by visterms) can have different2. Related work

class labels depending of the images where they are found. Left: . . . .

various regions (4 different colors, same color means same vis- 1 here is an abundant literature on image segmentation.

term) that occur omatural parts of an image. Center Right: the The perspective on image segmentation that we consider

same visterms occur in man-made structures. All these regionsin this paper differs from the traditional notion of homo-

were correctly classified by our approach, switching the class la- geneous region partion of the image. We perform segmen-

bel for the same visterms depending on the context. tation of the image based on class labels defined over the

o ) . whole database, and we base our segementation on the clas-
within and across documents. Examples include Probabilis-gjication of local patches that do not cover the whole image.

tic Latent Semantic Analysis (PLSAjJand Latent Dirich- |, this section we briefly consider some of the related work
let Allocation (LDA) [1]. We have recently shown that the {4t is most relevant to our approach.

integration of PLSA and BOVs defined on invariant local In [2], invariant local descriptors are used for an object

descriptors can be successfully used for global scene Clas'segmentation task. All region descriptors that belong éo th

sification [14]. Given an unlabeled image set, PLSA cap- gpiect class in the training set are modeled with a Gaussian
tures aspects that represent the class structure of tlee€oll  \jixture Model (GMM), and a second GMM is trained on

tion, and provides a low-dimensional representation sefu qn_ghject regions. In this non-contextual approach, new
for classification. Similar conclusions with an LDA related regions are independently classified depending on their rel

model were reached i ative likelihood with respect to the object and non-object
The main issue with classifying regions using visterms models. A similar approach introducing spatial contextual
is that they are not class-specific. As shown in Eigthe  information through neighborhood statistics of the GMM
same visterms commonly appear both in man-made and nagomponents collected on training images is propose]in |
ture views. This situation, although expected since wister \yhere the learned prior statistics are used for relaxatfon o
construction usually does not make use of class label infor-the original region classification.
mation, constitutes a problematic form of visual polysemy.  |n image segmentation, quantized local descriptors -
In this paper, we show that aspect models can also be usegeferred to agextons have also been used to build lo-
for region classification. We propose probabilistic models cal BOV representations of windowed image regiohd.[
that exploit two ways of using context. In the first place, The similarity between these regions is then defined based
we use the fact that specific learned aspects correlate withon this histogram representation, and segmentation is con-
the semantic classes, which implicitly helps in cases of pol ducted for each individual image using spectral clustering
ysemy []. In the second place, scene context is image-  Exploring spatial dependencies, Kumar and Herbert ap-
specific: the “meaning” of a particular visterm depends on ply a random field model to segment image areas that rep-
what the “meaning” of the other visterms in the same bag is. resent man-made scene structuréls [Their approach is

We show that this relation can be formally expressed in the pased on the extraction of features from a grid of block that
probabilistic model, so that even though visterms occur in fully cover the image.

both classes, the information about the other vistermsan th Using a similar gr|d |ay0ut, Voge| and Schiele recenﬂy
same bag can be used to improve discrimination (Bjig. presented a two-stage framework to perform scene re-
In this paper we propose two probabilistic aspect modelstrieval [18] and scene classification§]. This work in-
that learn this co-occurrence information for visterm €las volves an intermediate image block classification ste, tha
sification. We present results on a man-made vs. naturalcan be seen as scene segmentation.
region classification task, and show that the contextual in-  Probabilistic aspect models have been recently proposed
formation learned from co-occurrence improves the perfor- to capture visterm co-occurrence information with the use
mance compared to a non-contextual approach. In our view,0f a hidden variable (latent aspect). The work ## fpro-
the proposed approach constitutes an interesting way toposed a hierarchical Bayesian model that extended LDA for
model visual context that could be applicable to other prob- global categorization of natural scenes. This work showed
lems in computer vision. Furthermore, we show, through that important visterms for a class in an image can be found.
the use of a Markov Random Field model, that standard spa-However, the problem of region classification for scene seg-
tial context can be integrated, resulting in an improvement mentation was not addressed. The combination of local
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descriptors and PLSA for image segmentation has been il-nificantly large amount of training data might be necessary
lustrated in [5] and [L4]. However these works have two to avoid noisy estimates, especially when using large vo-
limitations. First, visterms were classified into aspents, cabulary sizes. A second one is that such estimation only
classes, unless we assume aslif] that there is a direct  reflects the individual visterm occurrences, and does not ac
correspondence between aspects and semantic classes. Thisunt for any kind of relationship between them. We pro-
seems however a quite unrealistic assumption in practice pose to exploit aspect models, [l] that capture visterm
since it implicitely assumes a one-to-one correspondenceco-occurrences to classify visterms. These models, throug
between aspects and class labels. 1l#],[an ad-hoc pro-  the identification of latent aspects, enable the classificat
cedure was used to relate aspects and classes, in which af the visterms of one image based on the occurrence of
class would be represented by the aspects resulting in thesther visterms in the same image. The histogram of vis-
best average precision on an image retrieval task. Secondlyterms in imagel, referred to as the bag-of-visterms (BOV),
evaluation was limited, e.g1}] does not conduct any ob- contains this information. Even if the BOV representation
jective evaluation of the segmentation performance. discards all spatial neighboring relations, we expect tie ¢
Unlike these previous approaches, we propose a formaloccurrence context (i.e. the other visterms) to help for the
way to integrate the latent aspect modeling in the class in-classification of individual visterms. To this end, we pro-
formation, and conduct a proper performance evaluation,pose two models.
validating our work with a comparison to a state-of-the-art
baseline method. In addition, we explore the integration of

- : . 3.21 Aspect model 1
the more traditional spatial MRFs into our system and com- ®

pare the obtained segmentations. The first model associates a hidden variables Z =
{z1,...zn, } with each observation according to the graph-
3. Patch-based scene segmentation ical model of Fig.3, leading to the joint probability defined

. b
Our segmentation task can be formulated as the auto- y

matic extraction of patches (referred to as visterms in the Ple,d, z,0) = P(c)P(d|e) P(2]d) P(v]z). 2)

paper) from the image followed by the classification of each This model introduces several conditional independence as

visterm into a class, wherec stands either foman-made  sumptions. The first one, traditionally encountered in as-

structures omnatural regions. In the next subsections, we pects models, is that the occurrence of a visteris inde-

first focus on the classification models, and then summarizependent of the imagé it belongs to, given an aspect The

the visterm extraction process. second assumption is that the occurrence of aspects is inde-
Assume a discrete set of image patches (visterms), corpendent of the class the document belongs to. The parame-

responding to the quantization of local descriptors (s@e Se ters of this model are learned using the maximum likelihood

tion 3.3). We rely on likelihood ratio computation to clas- (ML) principle [5]. The optimization is conducted using the

sify each vistermy of a given imagel into a class.. The  Expectation-Maximization (EM) algorithm, allowing us to

ratio is defined by learn the aspect distributionB(v|z) and the mixture pa-
P(vle = man-mad rametersP(z|d).
LR(v) = (vle g Q) Notice that, given our model, the EM equations do not

P(v|e = natura) depend on the class label. Besides, the estimation of the

where the probabilities will be estimated using different class-conditional probabilitie®(d|c) does not require the

models of the data, as described in the next subsections. use of the EM algorithm. We will exploit these points to
train the aspect models on a large dataset (derd}echere

3.1. Empirical distribution only a small part of it has been manually labeled according

to the class (we denote this subsety;,). This allows for

the estimation of a precise aspect model, while alleviating

the need for tedious manual labeling. Regarding the class-

conditional probabilities, as the labeled set will be com-

posed of man-made-only or natural-only images, we simply

estimate them according to:

Given a set of training data, the term in Egan simply
be estimated using the empirical distribution of visterass,
done in P]. More precisely, given a set of manually seg-
mented image®into man-made and natural regions (e.g.
Fig.1 (c)), P(v|c) is estimated as the number of times the
vistermv appears in regions of classdivided by the num-

ber of occurrences af in the training set. 1/N. if dbelongs to class

P(dle) = { 0 otherwise, ®)

Empirical estimation of probabilities is simple but may whereN, denotes the number of images belonging to class
suffer from several drawbacks. A first one is that a sig- c in the labeled seD;,;,. Given this model, the likelihood

3.2. Aspect modeling



Tt that in practice all the dependencies between aspects-and la
@4. @4. @4. @ bels observed in the training data would be lost. To avoid

this, we propose to separate the contributions of the aspect

likelihood due to the class-aspect dependencies, from the

contributions due to the image-aspect dependencies. Thus,
we propose to approximafe(z;|d, ¢) as

Figure 3. Aspect model 1 and aspect model 2 (dashed line).

we are looking for can be expressed as P(z1]d, ¢) < P(z1]d)P(z]c), ®)

Na Na . . . .
here P(z|c) is still obtained using Eds. The complete
Ple)=S"P =" P(v|z)P(z]c g VW =) 1S
(v]e) ; (v, z1fc) ; (wla)Pale),  (4) expression is given by
oy agege . NA

where the conditional probabilitieB(z;|c) can in turn be
estimated through marginalization over labeled documents P(vld,c) ; P(vlz) P(zle)P(x]d). ©)
The main difference with Ed.is the introduction of the
P(ale)= Y P(u,dlc)= Y P(uld)P(dlc). (5)  contextual termP(z|d), which means that visterms wil

d€Diap d€Dyap not only be classified based on their class-likely aspeats, b

. . - . also on the specific occurrence of these aspects in the given
These equations allow us to estimate the likelihood ratio as. P P g

defined by Edl. Note that this model extends PLSA by 'mage-

introducing the class variablé][ Inf .
nference on new images

3.22 Aspect model 2 With aspect model 1 (and also with empirical distribution),

visterm classification is done once for all at training time,

through the visterm co-occurrence analysis on the train-
ing images. Thus, for a new imagg,..,, the extracted

From Eq.4, we see that, despite the fact that the above
model captures co-occurrence of the visterms in the distri-

butions.P(v|2), the context provided by the specific image visterms are directly assigned to their corresponding most

d has no c_Jlrect impact on the likelihood. To explicitly in- likely label. For aspect model 2, however, the likelihood-
troduce this context knowledge, we propose to evaluate the

L ) . . -~ ratio LR(v, dnew) (EQ. 6) involves the aspect parameters
!ll;eellihood ratio of visterms conditioned on the observed im P(2|dyew) (Eq.9). Given our approximation (EG), these

parameters have to be inferred for each new image, in a
P(v|d, c = man-madg similar fashion as for PLSAT). P(z|dyew) IS estimated
LR(v,d) = Plold.c = natura) (6) by maximizing the likelihood of the BOV representation of
T dnew, fixing the learnedP(v|z;) parameters in the Maxi-
The evaluation of?(v|d, ¢) can be obtained by marginaliz- Mization step.
ing over the aspects,

3.3. Visterm extraction

Ny Na . . .
Three steps are involved in the construction of the BOV
P(vld,c) = P d,c) = P P(z|d 7 . . . . . .
(vld, ) ; (v, zld; c) ; (wlz)Pzld,c), (7) representation: (i) detection of interest points, (ii) gam

tation of local descriptors, (iii) local descriptor quanati
where we have exploited the conditional independencetion. Different point detectors have been proposed to ex-
of visterm occurrence given the aspect variable. Undertract regions of interest in images(, 12, 17]. We use
model 1 assumptions’(z;|d, ¢) reduces taP(z;|d), which the difference-of-Gaussians (DOG)(] as point detector,
clearly shows the limitation of this model to introduce both which identifies blob-like regions invariant to translatjo
context and class information. To overcome this, we as- scale, rotation, and constant illumination variations.lés
sume that the aspects depend on the class label as well (ofal descriptors, we use SIFT (Scale Invariant Feature Trans
dashed link in Fig.3). The parameters of this model are form) features [(], which define an orientation-invariant
the aspect multinomiaP(v|z) and the mixture multinomial ~ descriptor based on the image grayscale representation. Fi
P(z|d, c), which could be estimated from labeled data by nally, visterms are obtained by quantizing each local de-
EM as before. However, as our model is not fully genera- scriptor into an element of a finite vocabulary according
tive [1], only P(v|z) can be kept fixed, and we would have to a nearest neighbor rule. The vocabulary is obtained by
to estimateP(z|dyw, ¢) for each new imagé,,..,. Since applying the K-means algorithm to a set of local descriptors
the class is obviously unknown for new images, this meansextracted from the training images, and keeping the means
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Figure 4. (a) True Positive Rate vs. False Positive Rate for the
three methods. (bP(v | ¢) for man-made and natural structures,
estimated on the test set.

800 1000

as visterms. We use the Euclidean distance in the cluster
ing and quantization processes. Using the vocabulgry
we attribute to each local descriptor the label of the clos-
est cluster, its corresponding visterm. The final step of the
BOV representation is the histograming of the visterms in
each image. We obtain the BOV representation from the
obtained visterms according to:

h(d)

where rid, v;) denotes the number of occurrences of vis-
termu; in imaged.

4. Experiments and discussion

We validate our proposed models on the segmentation
of scenes into natural vs. man-made structures. This Sec
tion first presents our experimental setup. It is followed
by a detailed, objective performance evaluation illusilat
with segmentation results on a few test images. Finally, we
study the integration of a regularization strategy to ferth
improve the segmentation performance.

4.1. Experimental setup

Datasets: Three image subsets from t@mrel Stock Photo
Library were used in the experiments. The first g&tcon-

Emp. distr.
67.5

Aspect mod. 1
68.5

Aspect mod. 2
72.4

HTRR

Table 1. Half Total Recognition Rate (in percent).

of positive descriptors), False Positive Rate (FPR, number
of false positives over the total number of negative descrip
tors) and True Negative Rate (TNR=1-FPR), where man-
made structure is the positive class. The FPR, TPR and
TNR values vary with the threshold applied to each model’'s
likelihood ratio (Eq.1).

Parameter setting: Following results reported in1f],
where similar latent aspect modeling experiments are con-

ducted, all our results are reported with a vocabulary size o
1000 visterms, and 60 aspects in aspect model 1 and 2.

4.2. Results

Fig. 4a displays the Receiver Operating Curve (ROC,
TPR vs. FPR) of the two aspect models and the empirical
distribution (baseline). As can be seen, the aspect model
1 performs slightly better than the empirical distribution
method (although not significaly), while aspect model 2
outperforms the two other methods significantly, according
to the paired T-test with 85% confidence level.

To further validate our approach, Tablereports the
Half-Total-Recognition Rate (HTRR) measured by 10-fold
cross-validation. For each of the folds, 90% of the test
data D;.s; is used to estimate the likelihood threshold

Trrr leading to Equal Error Rate (EER, obtained when
TPR=TNR) on this data. This threshold is then applied on
the remaining 10% (unseen images)Iaf.,;, from which

the HTRR (HTRR=(TPR+TNR)/2) is computed. This table
shows that the ranking observed on the ROC curve is clearly
maintained, and that aspect model 2 results in a 7.5% per-
formance relative increase w.r.t. the baseline approach.

As mentioned in SectioB.2, aspect model 1 and the em-

pirical distribution method assign specific visterms to the
man-made or natural class independently of the individual

tains 6600 photos depicting mountains, forests, buildings documents in which those visterms occur. This sets a com-
and cities. From this set, 6000 have no associated labelmon limit on the maximum performance of both systems,
while the remaining subsdb,,; is composed of 600 im-  which is referred here as thdeal case

ages, whose content mainly belonged to one of the two This limitis given by attributing to each visterm the class
classes, which were hand-labeled with a single class labelabel corresponding to the class in which that visterm agcur

leading to approximately 300 images of each cld3swas
used to construct the vocabulary and learn the aspect mod
els, whileD;,;, was used to estimate the visterm likelihoods
for each class. A third seb,.,;, containing 485 images

the most in thdest data On our data, thisgdeal casepro-
vides an HTRR 0of71.0%, showing that the visterm class
attribution from empirical distribution and aspect model 1
is already close to the best achievable performance. Indeed

of man-made structures in natural landscapes, which werethe class conditional probabilities shown in Figufe in-

hand-segmented with polygonal shapes (Hig.was used

to test the methods.

Performance evaluation: The global performance of the
algorithm was assessed using the True Positive Rate (TPR
number of positive visterms retrieved over the total number

dicate that there is a substantial amount of polysemy. The
class conditional probabilities are obtained by dividihg t
number of visterm occurrences in one class by the num-
ber of that visterm occurrences in both classes. Polysemy
is indicated by the simultaneously quite high probabditie



emp. distribution
correct:227

aspect model 1
correct:229

aspect model 2
correct:244

correct:279 correct:279

correct:280

correct:229

correct:123

correct:182 correct:176

Figure 5. Image segmentation example¥'aizr. Results pro-

with respect to the two other methods in two ways. On one
hand, in the first three examples, aspect model 2 increases
the precision of the man-made segmentation, producing a
slight decrease in the corresponding recall (some points in
the man-made areas are lost). On the other hand, the fourth
example shows aspect model 2 producing a higher recall of
man-made visterms while maintaining a stable precision. In
the fifth example, the occurrence of a strong context causes
the whole image to be taken as natural scene. In the sixth
example, however, the overestimation of the man-made re-
lated aspects leads to visterms that are dominantly cledsifi
as man-made. Nevertheless, overall, as indicated indFig.
and Tablel, the introduction of context by co-occurrence is
beneficial.

4.3. Markov Random Field (MRF) regularization

The contextual modeling with latent aspects that we
presentin this paper can be conveniently integrated wath tr
ditional spatial regularization schemes. To investighis, t
we present the embedding of our contextual model within
the MRF framework 4], though other schemes could be
similarly employed 7, g].

Problem formulation. Let us denote by the set of sites

s, and by Q the set of cliques of two elements associated
with a second-order neighborhood systénuefined over

S. The segmentation can be classically formulated using
the Maximum A Posteriori (MAP) criterion as the estima-
tion of the label field” = {c,, s € S} which is most likely

to have produced the observation fiéld= {v,,s € S}.

In our case, the set of sites is given by the set of inter-
est points, the observationg take their value in the set

vided by: first column, empirical distribution; second column, as- of visterms), and the labels:;, belong to the class set
pect model 1; third column, aspect model 2. The total number of {man — made,natural}. Assuming that the observa-

correctly classified regions (man-made + natural) is given. tions are conditionally independent given the label fiekl (i
in both classes (e.g. for instance note that all visterms ap-F(VIC) = [T, P(vs[cs)), and that the label field is an
pear at least 15% in theatural class). Thus, in order to MRF over the grap(sS, G), then due to the equivalence
have a chance of performing better thanitheal case vis- between MRF and Gibbs distributio®(z) = .%Q_U(x))'
terms must be labeled differently depending on the specificth® MAP formulation is equivalent to minimizing an energy
image that is being segmented. This is the case with thefunction []

aspect model 2 which, due to its ability to address the poly-
semy and synonymy ambiguities, is able to outperform the

!
ideal case More precisely, aspect model 2 switches vis- viev) = S;Vl(cs) + {Mz}:egvl (ct;r)
term class labels according to the contextual information ’
gathered through the identification of image-specific faten U1(C)
aspects. Indeed, in our data, successful class label switch +Z Va(vs, cs), (11)
ing occurs at least once for 727 out of the 1000 visterms of pyyd

our vocabulary.

The impact of the contextual model can also be observed
on individual images. Fig5 displays examples of man-
made structure segmentationZgtgz. As we can observe  whereU; is the regularization term which accounts for the
in those images, aspect model 2 improves the segmentatioprior spatial properties (homogeneity) of the label field,

Us2(C,V)



whose local potentials are defined by:

Vi(man-made= 5, and Vi (natura) = 0,

_J Ba o #co,
(et er) = { 0 otherwise,
Bq is the cost of having neighbors with different labels,
while 3, is a potential that will favor the man-made class
label (if 8, < 0) or the natural one ( iB, > 0). andU,

/

Vi (12)

is the data-driven term for which the local potential are de- ‘

fined by:

Va(vs, ¢cs) = —log(p(vscs)). (13)

To implement the above regularization scheme, we need tg

specify a neighborhood system. Several alternatives coul
be employed, exploiting for instance the scale of the invari
ant detector (e.g. seé€]). Here we used a simpler scheme:
two pointst andr are defined to be neighborsrifis one of
the N nearest neighbors of and vice-versa. For this set

of experiments we defined the neighborhood to be consti-

tuted by the five nearest neighbors. Finally, in the experi-
ments, the minization of the energy function of BE4q.was
conducted using simulated annealing [

——aspect model 2|
—empirical

01 02 03 04 05 06 07
Beta

Figure 6. Half Total Recognition Rate for differefi values.

Results. We investigate the impact of the regularization on

MRF

aspect model 2

Figure 7. Effect of the MRF regularization on the man-made struc-

ture segmentation. The first two rows illustrate the benefit of the

MRF regularization where wrongly classified isolated points are

removed. The last row shows the deletion of all man-made classi-
fied regions when natural regions dominate the scene.

man-made

natural

the segmentation. The level of regularization is defined by Figure 8. lllustration of the final segmentation with aspect model

fa (alarger value implies a larger effect). The regularizatio 2 and MRF regularization. This display avoids image clutter.
is conducted by starting at the Equal Error Rate point, as de-

fined in the 10-fold cross-validation experiments desdribe

in preceding Section. More precisely, for each of the folds, When the best performance of each model are compared.
the threshold’ -z is used to set the prior on the labels by This difference in improvement was to be expected, as as-
setting3, = — log(Tzxr). Thus, in the experiments, when ~Pect model 2 is already capturing some of the contextual

Ba = 0 (i.e. no spatial regularization is enforced), we obtain
the same results as in Talle In Figure6 we see that the

information that the spatial regularization can provide-(n
tice also that the maximum is achieved for a smaller value

best segmentation performance corresponds to an HTRR off a in aspect model 2).

73.1% and af, of 0.35 with the empirical modeling, and
an HTTR of 76.3% for &, of 0.2 and aspect model 2. This
latter value ofg, is chosen for all the MRF illustrations re-
ported in Figure/ and8.

The inclusion of the MRF relaxation boosted the perfor-
mance of both aspect model 2 and empirical distribution.
The MRF regularization improvement is higher for the em-
pirical distribution model than for aspect model 2, but as-
pect model 2 still outperforms the empirical distribution

Besides obtaining an increase of the HTRR value, we can
visually notice a better spatial coherence of the segmenta-
tion, as can be seen in Figureand8. The MRF relaxation
process reduces the occurrence of isolated points, and tend
to increase the density of points within segmented regions.
We show on the last row of Figurgthat as can be expected
when using prior modeling, on certain occasions the MRF
step can over-regularize the segmentation, causing ttie att
bution of only one label to the whole image.



5. Conclusion and future wor k

In this paper, we proposed computational models to per-

(6]

form contextual segmentation of images. These models en-

able us to exploit a different form of visual context, based
on the co-occurrence analysis of visterms in the whole im-
age rather than on the more traditional spatial relatigrsshi
Visterm co-occurrence is summarized into aspects mod-
els, whose relevance is estimated for any new image, and
used to evaluate class-dependent visterm likelihoodss&he

(7]

(8]

models have been tested and validated on a man-made vs.
natural scene image segmentation task. One model has
clearly shown to help in disambiguating polysemic visterms [9]
based on the context they appear in. Producing satisfactory

segmentation results, it outperforms a state-of-theieat |

lihood ratio method. Moreover, we investigated the use of [10]

Markov Random Field models to introduce spatial coher-

ence in the final segmentation and show that the two types
of context models can be integrated successfully. This-addi [11]

tional information enables to overcome some visterm clas-
sification errors from the likelihood ratio and aspect medel
methods, increasing the final segmentation performance.

[12]

While the results presented here are encouraging, this

task is complex, and there is a need for further improve-

ments. Logical extensions would be the introduction of [13]

other sources of contextual information like color or scale
and other forms of integration of spatial contextual infor-

mation.
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