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Abstract

We present a novel approach for contextual segmentation
of complex visual scenes, based on the use of bags of local
invariant features (visterms) and probabilistic aspect mod-
els. Our approach uses context in two ways: (1) by using the
fact that specific learned aspects correlate with the semantic
classes, which resolves some cases of visual polysemy, and
(2) by formalizing the notion that scene context is image-
specific -what an individual visterm represents depends on
what the rest of the visterms in the same bag represent too-.
We demonstrate the validity of our approach on a man-made
vs. natural visterm classification problem. Experiments on
an image collection of complex scenes show that the ap-
proach improves region discrimination, producing satisfac-
tory results, and outperforming a non-contextual method.
Furthermore, through the later use of a Markov Random
Field model, we also show that co-occurrence and spatial
contextual information can be conveniently integrated for
improved visterm classification.

1. Introduction

Associating semantic class labels to image regions is a
fundamental task in computer vision, useful in itself for im-
age, video indexing and retrieval, and as an intermediate
step for higher-level scene analysis [6,8,18,19]. While most
segmentation approaches segment image pixels or blocks
based on their luminance, color or texture, in this work we
consider local image regions characterized by viewpoint in-
variant descriptors [10]. This region representation, robust
with respect to partial occlusion, clutter, and changes in
viewpoint and illumination, has shown its applicability in
a number of vision tasks [2, 16, 8, 20, 3, 14, 15]. Although
local invariant regions do not provide a full segmentation of
an image, they often occupy a considerable part of the scene
and thus can define a ”sparse” segmentation (Fig.1).

In general, the constituent parts of a scene do not exist in
isolation, and the visual context -the spatial dependencies

Figure 1. Scene segmentation using local invariant regions (yel-
low). Regions are classified either as man-made (blue) or nature
(not shown), and superimposed on a manual segmentation (white).

between scene parts- can be used to improve region clas-
sification [9,7,6,13]. Two regions, indistinguishable from
each other when analyzed independently, might be discrimi-
nated as belonging to the correct class with the help of con-
text knowledge. Broadly speaking, there exists a contin-
uum of contextual models for image segmentation. On one
end, one would find explicit models like Markov Random
Fields, where spatial constraints are defined via local sta-
tistical dependencies between class region labels [4,9], and
between observations and labels [6]. The other end would
correspond to context-free models, where regions are clas-
sified assuming statistical independence between the region
labels, and using only local observations [2].

Lying between these two extremes, a type of representa-
tion of increasing use is the bag-of-visterms (BOV), i.e., a
histogram of discretized regional descriptors. On one hand,
unlike explicit contextual models, spatial neighboring rela-
tions in this representation are discarded, and any ordering
between the descriptors disappears. On the other hand, un-
like point-wise models, although the descriptors are stilllo-
cal, the scene is represented collectively. This can explain
why, despite the loss of “strong” spatial contextual infor-
mation, BOVs have been successfully used in a number of
problems, including object matching [16] and categoriza-
tion [20,15], scene classification [14,3] and retrieval [18].

As a collection of discrete data, the BOV representa-
tion is suitable for probabilistic models where a different
form of context is implicitly captured through visterm co-
occurrence. These models, originally designed for text col-
lections (documents composed of terms), use a discrete hid-
den aspectvariable to model the co-occurrence of terms
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Figure 2. Regions (represented by visterms) can have different
class labels depending of the images where they are found. Left:
various regions (4 different colors, same color means same vis-
term) that occur onnatural parts of an image. Center Right: the
same visterms occur in man-made structures. All these regions
were correctly classified by our approach, switching the class la-
bel for the same visterms depending on the context.

within and across documents. Examples include Probabilis-
tic Latent Semantic Analysis (PLSA) [5] and Latent Dirich-
let Allocation (LDA) [1]. We have recently shown that the
integration of PLSA and BOVs defined on invariant local
descriptors can be successfully used for global scene clas-
sification [14]. Given an unlabeled image set, PLSA cap-
tures aspects that represent the class structure of the collec-
tion, and provides a low-dimensional representation useful
for classification. Similar conclusions with an LDA related
model were reached in [3].

The main issue with classifying regions using visterms
is that they are not class-specific. As shown in Fig.2, the
same visterms commonly appear both in man-made and na-
ture views. This situation, although expected since visterm
construction usually does not make use of class label infor-
mation, constitutes a problematic form of visual polysemy.
In this paper, we show that aspect models can also be used
for region classification. We propose probabilistic models
that exploit two ways of using context. In the first place,
we use the fact that specific learned aspects correlate with
the semantic classes, which implicitly helps in cases of pol-
ysemy [5]. In the second place, scene context is image-
specific: the “meaning” of a particular visterm depends on
what the “meaning” of the other visterms in the same bag is.
We show that this relation can be formally expressed in the
probabilistic model, so that even though visterms occur in
both classes, the information about the other visterms in the
same bag can be used to improve discrimination (Fig.2).

In this paper we propose two probabilistic aspect models
that learn this co-occurrence information for visterm clas-
sification. We present results on a man-made vs. natural
region classification task, and show that the contextual in-
formation learned from co-occurrence improves the perfor-
mance compared to a non-contextual approach. In our view,
the proposed approach constitutes an interesting way to
model visual context that could be applicable to other prob-
lems in computer vision. Furthermore, we show, through
the use of a Markov Random Field model, that standard spa-
tial context can be integrated, resulting in an improvement

of the final segmentation.
The paper is organized as follows. Section 2 reviews

the closest related work. Section 3 introduces our model
for contextual scene segmentation. Section 4 reports our
results, including the MRF modeling. Section 5 concludes
the paper.

2. Related work

There is an abundant literature on image segmentation.
The perspective on image segmentation that we consider
in this paper differs from the traditional notion of homo-
geneous region partion of the image. We perform segmen-
tation of the image based on class labels defined over the
whole database, and we base our segementation on the clas-
sification of local patches that do not cover the whole image.
In this section we briefly consider some of the related work
that is most relevant to our approach.

In [2], invariant local descriptors are used for an object
segmentation task. All region descriptors that belong to the
object class in the training set are modeled with a Gaussian
Mixture Model (GMM), and a second GMM is trained on
non-object regions. In this non-contextual approach, new
regions are independently classified depending on their rel-
ative likelihood with respect to the object and non-object
models. A similar approach introducing spatial contextual
information through neighborhood statistics of the GMM
components collected on training images is proposed in [8],
where the learned prior statistics are used for relaxation of
the original region classification.

In image segmentation, quantized local descriptors -
referred to astextons- have also been used to build lo-
cal BOV representations of windowed image regions [11].
The similarity between these regions is then defined based
on this histogram representation, and segmentation is con-
ducted for each individual image using spectral clustering.

Exploring spatial dependencies, Kumar and Herbert ap-
ply a random field model to segment image areas that rep-
resent man-made scene structures [6]. Their approach is
based on the extraction of features from a grid of block that
fully cover the image.

Using a similar grid layout, Vogel and Schiele recently
presented a two-stage framework to perform scene re-
trieval [18] and scene classification [19]. This work in-
volves an intermediate image block classification step, that
can be seen as scene segmentation.

Probabilistic aspect models have been recently proposed
to capture visterm co-occurrence information with the use
of a hidden variable (latent aspect). The work in [3] pro-
posed a hierarchical Bayesian model that extended LDA for
global categorization of natural scenes. This work showed
that important visterms for a class in an image can be found.
However, the problem of region classification for scene seg-
mentation was not addressed. The combination of local



descriptors and PLSA for image segmentation has been il-
lustrated in [15] and [14]. However these works have two
limitations. First, visterms were classified into aspects,not
classes, unless we assume as in [15] that there is a direct
correspondence between aspects and semantic classes. This
seems however a quite unrealistic assumption in practice,
since it implicitely assumes a one-to-one correspondence
between aspects and class labels. In [14], an ad-hoc pro-
cedure was used to relate aspects and classes, in which a
class would be represented by the aspects resulting in the
best average precision on an image retrieval task. Secondly,
evaluation was limited, e.g. [15] does not conduct any ob-
jective evaluation of the segmentation performance.

Unlike these previous approaches, we propose a formal
way to integrate the latent aspect modeling in the class in-
formation, and conduct a proper performance evaluation,
validating our work with a comparison to a state-of-the-art
baseline method. In addition, we explore the integration of
the more traditional spatial MRFs into our system and com-
pare the obtained segmentations.

3. Patch-based scene segmentation

Our segmentation task can be formulated as the auto-
matic extraction of patches (referred to as visterms in the
paper) from the image followed by the classification of each
visterm into a classc, wherec stands either forman-made
structures ornatural regions. In the next subsections, we
first focus on the classification models, and then summarize
the visterm extraction process.

Assume a discrete set of image patches (visterms), cor-
responding to the quantization of local descriptors (see Sec-
tion 3.3). We rely on likelihood ratio computation to clas-
sify each vistermv of a given imaged into a classc. The
ratio is defined by

LR(v) =
P (v|c = man-made)

P (v|c = natural)
, (1)

where the probabilities will be estimated using different
models of the data, as described in the next subsections.

3.1. Empirical distribution

Given a set of training data, the term in Eq.1 can simply
be estimated using the empirical distribution of visterms,as
done in [2]. More precisely, given a set of manually seg-
mented imagesDinto man-made and natural regions (e.g.
Fig.1 (c)), P (v|c) is estimated as the number of times the
vistermv appears in regions of classc, divided by the num-
ber of occurrences ofv in the training set.

3.2. Aspect modeling

Empirical estimation of probabilities is simple but may
suffer from several drawbacks. A first one is that a sig-

nificantly large amount of training data might be necessary
to avoid noisy estimates, especially when using large vo-
cabulary sizes. A second one is that such estimation only
reflects the individual visterm occurrences, and does not ac-
count for any kind of relationship between them. We pro-
pose to exploit aspect models [5, 1] that capture visterm
co-occurrences to classify visterms. These models, through
the identification of latent aspects, enable the classification
of the visterms of one image based on the occurrence of
other visterms in the same image. The histogram of vis-
terms in imaged, referred to as the bag-of-visterms (BOV),
contains this information. Even if the BOV representation
discards all spatial neighboring relations, we expect the co-
occurrence context (i.e. the other visterms) to help for the
classification of individual visterms. To this end, we pro-
pose two models.

3.2.1 Aspect model 1

The first model associates a hidden variablez ∈ Z =
{z1, . . . zNA

} with each observation according to the graph-
ical model of Fig.3, leading to the joint probability defined
by

P (c, d, z, v) = P (c)P (d|c)P (z|d)P (v|z). (2)

This model introduces several conditional independence as-
sumptions. The first one, traditionally encountered in as-
pects models, is that the occurrence of a vistermv is inde-
pendent of the imaged it belongs to, given an aspectz. The
second assumption is that the occurrence of aspects is inde-
pendent of the class the document belongs to. The parame-
ters of this model are learned using the maximum likelihood
(ML) principle [5]. The optimization is conducted using the
Expectation-Maximization (EM) algorithm, allowing us to
learn the aspect distributionsP (v|z) and the mixture pa-
rametersP (z|d).

Notice that, given our model, the EM equations do not
depend on the class label. Besides, the estimation of the
class-conditional probabilitiesP (d|c) does not require the
use of the EM algorithm. We will exploit these points to
train the aspect models on a large dataset (denotedD) where
only a small part of it has been manually labeled according
to the class (we denote this subset byDlab). This allows for
the estimation of a precise aspect model, while alleviating
the need for tedious manual labeling. Regarding the class-
conditional probabilities, as the labeled set will be com-
posed of man-made-only or natural-only images, we simply
estimate them according to:

P (d|c) =

{
1/Nc if d belongs to classc

0 otherwise,
(3)

whereNc denotes the number of images belonging to class
c in the labeled setDlab. Given this model, the likelihood
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Figure 3. Aspect model 1 and aspect model 2 (dashed line).

we are looking for can be expressed as

P (v|c) =

NA∑

l=1

P (v, zl|c) =

NA∑

l=1

P (v|zl)P (zl|c), (4)

where the conditional probabilitiesP (zl|c) can in turn be
estimated through marginalization over labeled documents,

P (zl|c) =
∑

d∈Dlab

P (zl, d|c) =
∑

d∈Dlab

P (zl|d)P (d|c). (5)

These equations allow us to estimate the likelihood ratio as
defined by Eq.1. Note that this model extends PLSA by
introducing the class variable [5].

3.2.2 Aspect model 2

From Eq.4, we see that, despite the fact that the above
model captures co-occurrence of the visterms in the distri-
butionsP (v|z), the context provided by the specific image
d has no direct impact on the likelihood. To explicitly in-
troduce this context knowledge, we propose to evaluate the
likelihood ratio of visterms conditioned on the observed im-
aged,

LR(v, d) =
P (v|d, c = man-made)

P (v|d, c = natural)
. (6)

The evaluation ofP (v|d, c) can be obtained by marginaliz-
ing over the aspects,

P (v|d, c) =

NA∑

l=1

P (v, zl|d, c) =

NA∑

l=1

P (v|zl)P (zl|d, c), (7)

where we have exploited the conditional independence
of visterm occurrence given the aspect variable. Under
model 1 assumptions,P (zl|d, c) reduces toP (zl|d), which
clearly shows the limitation of this model to introduce both
context and class information. To overcome this, we as-
sume that the aspects depend on the class label as well (cf
dashed link in Fig.3). The parameters of this model are
the aspect multinomialP (v|z) and the mixture multinomial
P (z|d, c), which could be estimated from labeled data by
EM as before. However, as our model is not fully genera-
tive [1], only P (v|z) can be kept fixed, and we would have
to estimateP (z|dnew, c) for each new imagednew. Since
the class is obviously unknown for new images, this means

that in practice all the dependencies between aspects and la-
bels observed in the training data would be lost. To avoid
this, we propose to separate the contributions of the aspect
likelihood due to the class-aspect dependencies, from the
contributions due to the image-aspect dependencies. Thus,
we propose to approximateP (zl|d, c) as

P (zl|d, c) ∝ P (zl|d)P (zl|c), (8)

whereP (zl|c) is still obtained using Eq.5. The complete
expression is given by

P (v|d, c) ∝

NA∑

l=1

P (v|zl)P (zl|c)P (zl|d). (9)

The main difference with Eq.4 is the introduction of the
contextual termP (zl|d), which means that visterms will
not only be classified based on their class-likely aspects, but
also on the specific occurrence of these aspects in the given
image.

Inference on new images

With aspect model 1 (and also with empirical distribution),
visterm classification is done once for all at training time,
through the visterm co-occurrence analysis on the train-
ing images. Thus, for a new imagednew, the extracted
visterms are directly assigned to their corresponding most
likely label. For aspect model 2, however, the likelihood-
ratio LR(v, dnew) (Eq. 6) involves the aspect parameters
P (z|dnew) (Eq.9). Given our approximation (Eq.8), these
parameters have to be inferred for each new image, in a
similar fashion as for PLSA [5]. P (zl|dnew) is estimated
by maximizing the likelihood of the BOV representation of
dnew, fixing the learnedP (v|zl) parameters in the Maxi-
mization step.

3.3. Visterm extraction

Three steps are involved in the construction of the BOV
representation: (i) detection of interest points, (ii) compu-
tation of local descriptors, (iii) local descriptor quantiza-
tion. Different point detectors have been proposed to ex-
tract regions of interest in images [10, 12, 17]. We use
the difference-of-Gaussians (DOG) [10] as point detector,
which identifies blob-like regions invariant to translation,
scale, rotation, and constant illumination variations. Aslo-
cal descriptors, we use SIFT (Scale Invariant Feature Trans-
form) features [10], which define an orientation-invariant
descriptor based on the image grayscale representation. Fi-
nally, visterms are obtained by quantizing each local de-
scriptor into an element of a finite vocabularyV, according
to a nearest neighbor rule. The vocabulary is obtained by
applying the K-means algorithm to a set of local descriptors
extracted from the training images, and keeping the means
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Figure 4. (a) True Positive Rate vs. False Positive Rate for the
three methods. (b)P (v | c) for man-made and natural structures,
estimated on the test set.

as visterms. We use the Euclidean distance in the cluster-
ing and quantization processes. Using the vocabularyV,
we attribute to each local descriptor the label of the clos-
est cluster, its corresponding visterm. The final step of the
BOV representation is the histograming of the visterms in
each image. We obtain the BOV representation from the
obtained visterms according to:

h(d) = (hi(d))i=1..NV
, with hi(d) = n(d, vi) (10)

where n(d, vi) denotes the number of occurrences of vis-
termvi in imaged.

4. Experiments and discussion

We validate our proposed models on the segmentation
of scenes into natural vs. man-made structures. This Sec-
tion first presents our experimental setup. It is followed
by a detailed, objective performance evaluation illustrated
with segmentation results on a few test images. Finally, we
study the integration of a regularization strategy to further
improve the segmentation performance.

4.1. Experimental setup

Datasets: Three image subsets from theCorel Stock Photo
Library were used in the experiments. The first set,D, con-
tains 6600 photos depicting mountains, forests, buildings,
and cities. From this set, 6000 have no associated label,
while the remaining subsetDlab is composed of 600 im-
ages, whose content mainly belonged to one of the two
classes, which were hand-labeled with a single class label
leading to approximately 300 images of each class.D was
used to construct the vocabulary and learn the aspect mod-
els, whileDlab was used to estimate the visterm likelihoods
for each class. A third setDtest, containing 485 images
of man-made structures in natural landscapes, which were
hand-segmented with polygonal shapes (Fig.1), was used
to test the methods.
Performance evaluation: The global performance of the
algorithm was assessed using the True Positive Rate (TPR,
number of positive visterms retrieved over the total number

Emp. distr. Aspect mod. 1 Aspect mod. 2
HTRR 67.5 68.5 72.4

Table 1. Half Total Recognition Rate (in percent).

of positive descriptors), False Positive Rate (FPR, number
of false positives over the total number of negative descrip-
tors) and True Negative Rate (TNR=1-FPR), where man-
made structure is the positive class. The FPR, TPR and
TNR values vary with the threshold applied to each model’s
likelihood ratio (Eq.1).
Parameter setting: Following results reported in [14],
where similar latent aspect modeling experiments are con-
ducted, all our results are reported with a vocabulary size of
1000 visterms, and 60 aspects in aspect model 1 and 2.

4.2. Results

Fig. 4a displays the Receiver Operating Curve (ROC,
TPR vs. FPR) of the two aspect models and the empirical
distribution (baseline). As can be seen, the aspect model
1 performs slightly better than the empirical distribution
method (although not significaly), while aspect model 2
outperforms the two other methods significantly, according
to the paired T-test with a95% confidence level.

To further validate our approach, Table1 reports the
Half-Total-Recognition Rate (HTRR) measured by 10-fold
cross-validation. For each of the folds, 90% of the test
data Dtest is used to estimate the likelihood threshold
TEER leading to Equal Error Rate (EER, obtained when
TPR=TNR) on this data. This threshold is then applied on
the remaining 10% (unseen images) ofDtest, from which
the HTRR (HTRR=(TPR+TNR)/2) is computed. This table
shows that the ranking observed on the ROC curve is clearly
maintained, and that aspect model 2 results in a 7.5% per-
formance relative increase w.r.t. the baseline approach.

As mentioned in Section3.2, aspect model 1 and the em-
pirical distribution method assign specific visterms to the
man-made or natural class independently of the individual
documents in which those visterms occur. This sets a com-
mon limit on the maximum performance of both systems,
which is referred here as theideal case.

This limit is given by attributing to each visterm the class
label corresponding to the class in which that visterm occurs
the most in thetest data. On our data, thisideal casepro-
vides an HTRR of71.0%, showing that the visterm class
attribution from empirical distribution and aspect model 1
is already close to the best achievable performance. Indeed,
the class conditional probabilities shown in Figure4b in-
dicate that there is a substantial amount of polysemy. The
class conditional probabilities are obtained by dividing the
number of visterm occurrences in one class by the num-
ber of that visterm occurrences in both classes. Polysemy
is indicated by the simultaneously quite high probabilities



emp. distribution aspect model 1 aspect model 2
correct:227 correct:229 correct:244

correct:279 correct:279 correct:299

correct:282 correct:280 correct:294

correct:230 correct:229 correct:236

correct:100 correct:107 correct:123

correct:184 correct:182 correct:176

Figure 5. Image segmentation examples atTEER. Results pro-
vided by: first column, empirical distribution; second column, as-
pect model 1; third column, aspect model 2. The total number of
correctly classified regions (man-made + natural) is given.

in both classes (e.g. for instance note that all visterms ap-
pear at least 15% in thenatural class). Thus, in order to
have a chance of performing better than theideal case, vis-
terms must be labeled differently depending on the specific
image that is being segmented. This is the case with the
aspect model 2 which, due to its ability to address the poly-
semy and synonymy ambiguities, is able to outperform the
ideal case. More precisely, aspect model 2 switches vis-
term class labels according to the contextual information
gathered through the identification of image-specific latent
aspects. Indeed, in our data, successful class label switch-
ing occurs at least once for 727 out of the 1000 visterms of
our vocabulary.

The impact of the contextual model can also be observed
on individual images. Fig.5 displays examples of man-
made structure segmentation atTEER. As we can observe
in those images, aspect model 2 improves the segmentation

with respect to the two other methods in two ways. On one
hand, in the first three examples, aspect model 2 increases
the precision of the man-made segmentation, producing a
slight decrease in the corresponding recall (some points in
the man-made areas are lost). On the other hand, the fourth
example shows aspect model 2 producing a higher recall of
man-made visterms while maintaining a stable precision. In
the fifth example, the occurrence of a strong context causes
the whole image to be taken as natural scene. In the sixth
example, however, the overestimation of the man-made re-
lated aspects leads to visterms that are dominantly classified
as man-made. Nevertheless, overall, as indicated in Fig.4
and Table1, the introduction of context by co-occurrence is
beneficial.

4.3. Markov Random Field (MRF) regularization

The contextual modeling with latent aspects that we
present in this paper can be conveniently integrated with tra-
ditional spatial regularization schemes. To investigate this,
we present the embedding of our contextual model within
the MRF framework [4], though other schemes could be
similarly employed [7,8].

Problem formulation. Let us denote byS the set of sites
s, and byQ the set of cliques of two elements associated
with a second-order neighborhood systemG defined over
S. The segmentation can be classically formulated using
the Maximum A Posteriori (MAP) criterion as the estima-
tion of the label fieldC = {cs, s ∈ S} which is most likely
to have produced the observation fieldV = {vs, s ∈ S}.
In our case, the set of sites is given by the set of inter-
est points, the observationsvs take their value in the set
of vistermsV, and the labelscs belong to the class set
{man − made, natural}. Assuming that the observa-
tions are conditionally independent given the label field (i.e.
P (V |C) =

∏

s P (vs|cs)), and that the label field is an
MRF over the graph(S,G), then due to the equivalence
between MRF and Gibbs distribution (P (x) = 1

Z
e−U(x)),

the MAP formulation is equivalent to minimizing an energy
function [4]

U(C, V ) =
∑

s∈S

V1(cs) +
∑

{t,r}∈Q

V ′
1(ct, cr)

︸ ︷︷ ︸

U1(C)

+
∑

s∈S

V2(vs, cs)

︸ ︷︷ ︸

U2(C,V )

, (11)

whereU1 is the regularization term which accounts for the
prior spatial properties (homogeneity) of the label field,



whose local potentials are defined by:

V1(man-made) = βp and V1(natural) = 0,

V ′
1(ct, cr) =

{
βd if ct 6= cr,
0 otherwise,

(12)

βd is the cost of having neighbors with different labels,
while βp is a potential that will favor the man-made class
label (if βp < 0) or the natural one ( ifβp > 0). andU2

is the data-driven term for which the local potential are de-
fined by:

V2(vs, cs) = − log(p(vs|cs)). (13)

To implement the above regularization scheme, we need to
specify a neighborhood system. Several alternatives could
be employed, exploiting for instance the scale of the invari-
ant detector (e.g. see [8]). Here we used a simpler scheme:
two pointst andr are defined to be neighbors ifr is one of
theNN nearest neighbors oft, and vice-versa. For this set
of experiments we defined the neighborhood to be consti-
tuted by the five nearest neighbors. Finally, in the experi-
ments, the minization of the energy function of Eq.11 was
conducted using simulated annealing [9].
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Figure 6. Half Total Recognition Rate for differentβd values.

Results. We investigate the impact of the regularization on
the segmentation. The level of regularization is defined by
βd (a larger value implies a larger effect). The regularization
is conducted by starting at the Equal Error Rate point, as de-
fined in the 10-fold cross-validation experiments described
in preceding Section. More precisely, for each of the folds,
the thresholdTEER is used to set the prior on the labels by
settingβp = − log(TEER). Thus, in the experiments, when
βd = 0 (i.e. no spatial regularization is enforced), we obtain
the same results as in Table1. In Figure6 we see that the
best segmentation performance corresponds to an HTRR of
73.1% and aβd of 0.35 with the empirical modeling, and
an HTTR of 76.3% for aβd of 0.2 and aspect model 2. This
latter value ofβd is chosen for all the MRF illustrations re-
ported in Figure7 and8.

The inclusion of the MRF relaxation boosted the perfor-
mance of both aspect model 2 and empirical distribution.
The MRF regularization improvement is higher for the em-
pirical distribution model than for aspect model 2, but as-
pect model 2 still outperforms the empirical distribution

all detected points aspect model 2 MRF

Figure 7. Effect of the MRF regularization on the man-made struc-
ture segmentation. The first two rows illustrate the benefit of the
MRF regularization where wrongly classified isolated points are
removed. The last row shows the deletion of all man-made classi-
fied regions when natural regions dominate the scene.

image man-made natural

Figure 8. Illustration of the final segmentation with aspect model
2 and MRF regularization. This display avoids image clutter.

when the best performance of each model are compared.
This difference in improvement was to be expected, as as-
pect model 2 is already capturing some of the contextual
information that the spatial regularization can provide (no-
tice also that the maximum is achieved for a smaller value
of βd in aspect model 2).

Besides obtaining an increase of the HTRR value, we can
visually notice a better spatial coherence of the segmenta-
tion, as can be seen in Figure7 and8. The MRF relaxation
process reduces the occurrence of isolated points, and tends
to increase the density of points within segmented regions.
We show on the last row of Figure7 that as can be expected
when using prior modeling, on certain occasions the MRF
step can over-regularize the segmentation, causing the attri-
bution of only one label to the whole image.



5. Conclusion and future work

In this paper, we proposed computational models to per-
form contextual segmentation of images. These models en-
able us to exploit a different form of visual context, based
on the co-occurrence analysis of visterms in the whole im-
age rather than on the more traditional spatial relationships.
Visterm co-occurrence is summarized into aspects mod-
els, whose relevance is estimated for any new image, and
used to evaluate class-dependent visterm likelihoods. These
models have been tested and validated on a man-made vs.
natural scene image segmentation task. One model has
clearly shown to help in disambiguating polysemic visterms
based on the context they appear in. Producing satisfactory
segmentation results, it outperforms a state-of-the-art like-
lihood ratio method. Moreover, we investigated the use of
Markov Random Field models to introduce spatial coher-
ence in the final segmentation and show that the two types
of context models can be integrated successfully. This addi-
tional information enables to overcome some visterm clas-
sification errors from the likelihood ratio and aspect models
methods, increasing the final segmentation performance.

While the results presented here are encouraging, this
task is complex, and there is a need for further improve-
ments. Logical extensions would be the introduction of
other sources of contextual information like color or scale
and other forms of integration of spatial contextual infor-
mation.
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