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Abstract

Comprehensive modeling of the surrounding 3D world
is key to the success of autonomous driving. However,
existing perception tasks like object detection, road struc-
ture segmentation, depth & elevation estimation, and open-
set object localization each only focus on a small facet
of the holistic 3D scene understanding task. This divide-
and-conquer strategy simplifies the algorithm development
procedure at the cost of losing an end-to-end unified so-
lution to the problem. In this work, we address this lim-
itation by studying camera-based 3D panoptic segmenta-
tion, aiming to achieve a unified occupancy representation
for camera-only 3D scene understanding. To achieve this,
we introduce a novel method called PanoOcc, which uti-
lizes voxel queries to aggregate spatiotemporal informa-
tion from multi-frame and multi-view images in a coarse-
to-fine scheme, integrating feature learning and scene rep-
resentation into a unified occupancy representation. We
have conducted extensive ablation studies to verify the ef-
fectiveness and efficiency of the proposed method. QOur
approach achieves new state-of-the-art results for camera-
based semantic segmentation and panoptic segmentation
on the nuScenes dataset. Furthermore, our method can
be easily extended to dense occupancy prediction and has
shown promising performance on the Occ3D benchmark.
The code will be released at https://github.com/
Robertwyqg/PanoOcc.

1. Introduction

Holistic 3D scene understanding is vital in autonomous
driving. The capability to perceive the environment, iden-
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Figure 1. Comparison of different tasks for 3D scene under-
standing. (a) LiDAR panoptic segmentation: Given sparse Li-
DAR points as input, the model outputs panoptic prediction on
sparse LiDAR points. (b) Camera Detection and Segmentation:
Given multi-view images, separate models are used to detect ob-
jects and perform BEV semantic segmentation. (c) Camera panop-
tic segmentation: Given multi-view images, a single model is
trained to output dense panoptic occupancy predictions.

tify and categorize objects, and contextualize their positions
in the 3D space of the scene is fundamental for developing
a safe and reliable autonomous driving system.

Recent advancements in camera-based Bird’s Eye View
(BEV) methods have shown great potential in enhancing
3D scene understanding. By integrating multi-view ob-
servations into a unified BEV space, these methods have
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achieved remarkable success in tasks such as 3D object de-
tection [58, 26, 33, 24], BEV semantic segmentation [43,
, 64], and vector map construction [32, 27]. However, ex-
isting perception tasks have certain limitations as they pri-
marily focus on specific aspects of the scene. Object de-
tection is primarily concerned with identifying foreground
objects, BEV semantic segmentation only predicts the se-
mantic map on the BEV plane, and vector map construction
emphasizes the static road structure of the scene. To address
these limitations, there is a need for a more comprehensive
and integrated paradigm for 3D scene understanding. In
this paper, we propose camera-based panoptic segmenta-
tion, which aims to encompass all the elements within the
scene in a unified representation for the 3D output space. As
shown in Figure I, unlike LiDAR-based panoptic segmen-
tation (a) that relies on LiDAR point clouds, our camera-
based panoptic segmentation leverages multi-view images
as input and outputs a dense panoptic occupancy prediction
throughout the entire scene. In contrast to recent camera-
based detection and segmentation methods (b), it seam-
lessly integrates object-level and voxel-level perception re-
sults into a unified panoptic occupancy representation.

However, directly utilizing Bird’s Eye View (BEV) fea-
tures for camera-based panoptic segmentation leads to poor
performance due to the omission of finer geometry details,
such as shape and height information, which are crucial for
decoding fine-grained 3D structures. This limitation moti-
vates us to explore a more effective 3D feature representa-
tion. Occupancy representation has gained popularity as it
effectively describes various elements in the scene, includ-
ing open-set objects (e.g., debris), irregular-shaped objects
(e.g., articulated trailers, vehicles with protruding struc-
tures), and special road structures (e.g., construction zones).
Therefore, a burst of recent methods [4, 19, 37, 4, 56, 25]
have focused on dense semantic occupancy prediction.
However, simply lifting 2D to 3D occupancy representation
has been considered inefficient in terms of memory cost.
This limitation has driven methods like TPVFormer [19] to
split the 3D representation into three 2D planes. Although
these methods attempt to mitigate the memory issue, they
still struggle to capture the complete 3D information and
may experience reduced performance. Moreover, these ex-
isting works primarily focus on the semantic understanding
of the scene and do not address instance-level discrimina-
tion.

In this work, we propose a novel method called
PanoOcc, which seamlessly integrates object detection and
semantic segmentation in a joint-learning framework, facil-
itating a more comprehensive comprehension of the 3D en-
vironment. Both detection and segmentation performance
can benefit from this joint-learning framework. Our ap-
proach employs voxel queries to learn a unified occupancy
representation. This occupancy is learned in a coarse-to-

fine scheme, solving the problem of memory cost and sig-
nificantly enhancing efficiency. We then take a step fur-
ther to explore the sparse nature of 3D space and propose
an occupancy sparsify module. This module progressively
prunes occupancy to a spatially sparse representation during
the coarse-to-fine upsampling, greatly boosting memory ef-
ficiency. Our contributions are summarized as follows:

e We introduce camera-based 3D panoptic segmentation
as a new paradigm for holistic 3D scene understanding,
which utilizes multi-view images to create a unified
occupancy representation for the 3D scene. This al-
lows us to jointly model object detection and semantic
segmentation, leading to a more cohesive and holistic
understanding of the scene.

* Our proposed framework, PanoOcc, adopts a coarse-
to-fine scheme to learn the unified occupancy represen-
tation from multi-frame and multi-view images. We
demonstrate that using 3D voxel queries with a coarse-
to-fine learning scheme is effective and efficient. This
scheme could be further made spatially sparse to boost
memory efficiency by an occupancy sparsify module.

» Experiments on the nuScenes dataset show that our
approach achieves state-of-the-art performance on
camera-based semantic segmentation and panoptic
segmentation. Furthermore, our approach can extend
to dense occupancy prediction and has shown promis-
ing performance on the Occ3D benchmark.

2. Related Work

Camera-based 3D Perception. Camera-based 3D per-
ception has received extensive attention in the autonomous
driving community due to its cost-effectiveness and rich vi-
sual attributes. Previous methods perform 3D object de-
tection and map segmentation tasks independently. Re-
cent BEV-based methods unify these tasks on the problem
of feature view transformation from image space to BEV
space. One line of works follows the lifting paradigm pro-
posed in LSS [43]; they explicitly predict a depth map and
lift multi-view image features onto the BEV plane [18, 24,
, 41]. Another line of works inherits the spirit of query-
ing from 3D to 2D in DETR3D [58]; they employ learnable
queries to extract information from image features by cross-
attention mechanism [26, 35, 20, 57]. While these methods
efficiently compress information onto the BEV plane, they
may sacrifice some of the integral scene structure inherent
in 3D space. To address this limitation, voxel representa-
tion is better suited for obtaining a holistic understanding
of 3D space, making it ideal for tasks such as 3D semantic
segmentation and panoptic segmentation.
3D Occupancy Prediction. Occupancy prediction can be
traced back to Occupancy Grid Mapping (OGM) [51], a



classic task in mobile robot navigation that aims to gen-
erate probabilistic maps from sequential noisy range mea-
surements. Recently, there has been considerable atten-
tion given to camera-based 3D occupancy prediction, which
aims to reconstruct the 3D scene structure from images. Ex-
isting tasks in this area can be categorized into two lines
based on the type of supervision: sparse prediction and
dense prediction. Sparse prediction methods obtain super-
vision from LiDAR points and are evaluated on LiDAR
benchmarks. TPVFormer [19] proposes a tri-perspective
view method for predicting 3D occupancy. Dense predic-
tion methods are closely related to Semantic Scene Comple-
tion (SSC) [1, 50, 8, 28]. MonoScene [4] first uses U-Net to
infer dense 3D occupancy with semantic labels from a sin-
gle monocular RGB image. VoxFormer [25] utilizes depth
estimation to select voxel queries in a two-stage framework.
Subsequently, a series of studies have focused on the task
of dense occupancy prediction and have introduced new
benchmarks. OpenOccupancy [56] provides a carefully de-
signed occupancy benchmark, while Occ3D [52] proposes
an occupancy prediction benchmark using the Waymo and
nuScenes datasets. Openocc [53] further provides occu-
pancy flow annotation on the nuScenes dataset.

LiDAR Panoptic Segmentation. LiDAR panoptic seg-
mentation [39] offers a comprehensive understanding of the
environment by unifying semantic segmentation and object
detection. However, traditional object detection methods
often lose height information, making it challenging to learn
fine-grained feature representations for accurate 3D seg-
mentation. Recent LiDAR panoptic methods [65, 45, 16]
have been developed based on well-designed semantic seg-
mentation networks [62, 6] to address this limitation. In-
stead of predicting sparse semantic segmentation on LiDAR
points, camera-based panoptic segmentation aims to output
dense voxel segmentation of the scene.

3D Scene Reconstruction and Representation. 3D scene
reconstruction and representation aim to infer the holistic
geometry structure and semantics of a scene. This challeng-
ing problem has received continuous attention in both the
traditional computer vision era and the recent deep learning
era [14]. Solutions can be categorized into explicit recon-
struction and implicit representation approaches. Explicit
reconstruction leverage the geometry cues from different
viewpoints in multi-views [46, 47]. While explicit recon-
struction methods excel at reconstructing static scenes, they
are struggled to capture dynamic scenes or scenes with com-
plex interactions between objects. Furthermore, they are
computationally expensive, requiring large amounts of time
to generate detailed and accurate 3D models. In contrast,
implicit representation methods are more computation effi-
cient and have the potential to model scenes at arbitrary res-
olutions. They learn a continuous function [36, 42, 38, 49]
that can represent complex 3D scenes with high fidelity, in-

cluding hidden or occluded regions that are difficult to cap-
ture using explicit reconstruction methods.

3. Methodology
3.1. Problem Setup

Camera-based 3D panoptic segmentation. Camera-based
3D panoptic segmentation aims to predict a dense panop-
tic voxel volume surrounding the ego-vehicle using multi-
view images as input. Specifically, we take current multi-
view images denoted as I, = {I},IZ,...,I?} and previ-
ous frames I;_1,...,I;_; as input. n denotes the camera
view index, while k& denotes the number of history frames.
The model outputs the current frame semantic voxel vol-
ume Y; € {wo,wy,...,wc }HT*W*Z and its correspond-
ing instance ID N; € {vg, v1, va, ..., vp }TXW*Z_ Here C
denotes the total number of semantic classes in the scene,
while wy represents the empty voxel grid. P are the total
number of instances in the current frame ¢; for each grid be-
longing to the foreground classes (thing), it would assign a
specific instance ID v;. vg is assigned to all voxel grids be-
longing to the stuff and empty. H, W, Z denotes the length,
width, and height of the voxel volume.

Camera-based 3D semantic occupancy prediction.
Camera-based 3D semantic occupancy prediction can be
considered a sub-problem of camera-based 3D panoptic
segmentation. The former focus only on predicting the
semantic voxel volume Y; € {wo,wy,...,wc }H*W*Z,
However, the emphasis is particularly placed on accurately
distinguishing the empty class (wp) from the other classes
to determine whether a voxel grid is empty or occupied.

3.2. Overall Architecture

In this section, we introduce the overall architecture of
PanoOcc. As shown in Figure 2, our method takes multi-
frame multi-view images as input and first extracts multi-
scale features using an image backbone. These features are
then processed by the Occupancy Encoder, which consists
of the View Encoder and Temporal Encoder, to generate
a coarse unified occupancy representation. The View En-
coder utilizes voxel queries to learn voxel features, preserv-
ing the actual 3D structure of the scene by explicitly encod-
ing height information. The Temporal Encoder aligns and
fuses previous voxel features with the current frame, cap-
turing temporal information and enhancing the representa-
tion. Next, the Occupancy Decoder employs a coarse-to-
fine scheme to recover fine-grained occupancy representa-
tion. The Coarse-to-fine Upsampling module restores the
high-resolution voxel representation, enabling precise se-
mantic classification. The Task Head predicts object detec-
tion and semantic segmentation using separate heads. To re-
fine the prediction of thing classes, the Refine Module lever-
ages 3D object detection results and assigns instance IDs to
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Figure 2. The overall framework of PanoOcc. We employ an image backbone network to extract multi-scale features for multi-view
images at multi-frames. Then we apply voxel queries to learn the voxel features via View Encoder. The Temporal Encoder aligns the previ-
ous voxel features into the current frame and fuses the features together. Voxel Upsample restores the high-resolution voxel representation
for fine-grained semantic classification. Task Head predicts object detection and semantic segmentation by two separate heads. Refine
Module further refines the thing class prediction with the help of 3D object detection and assigns the instance ID to the thing-occupied
grids. Finally, we can obtain 3D panoptic segmentation for the current frame.

the thing-occupied grids. By combining these modules, our
method produces 3D panoptic segmentation for the current
scene. In the following sections, we provide detailed de-
scriptions of each module.

3.3. Voxel Queries

We define a group of 3D-grid-shape learnable parame-
ters Q € RIXWXZXD aq voxel queries. H and W are
the spatial shape of the BEV plane, while Z represents the
height dimension. A single voxel query q € R” located
at (4, j, k) position of Q is responsible for the correspond-
ing 3D voxel grid cell region. Each grid cell in the voxel
corresponds to a real-world size of (sy,, Sy, 2 ) meters. To
incorporate positional information in the voxel queries, we
add learnable 3D positional embeddings to Q.

3.4. Occupancy Encoder

Given voxel queries Q and extracted image feats F as in-
put, the occupancy encoder outputs the fused voxel features
Q € REXWXZXD H 1V and Z represent the shape of the
output voxel features, and D is the embedding dimension.
View Encoder. View Encoder transforms the perspective
view features into 3D voxel features. However, applying
vanilla cross-attention for this view transformation can be
computationally expensive when dealing with voxel rep-
resentation. To address this issue, we draw inspiration
from the querying paradigm in recent BEV-based meth-
ods [26, 20, 57] and adopt efficient deformable atten-
tion [66] for voxel cross-attention and voxel self-attention.
The core difference lies in the choice of reference points to
generalize the BEV queries to voxel queries.

The voxel cross-attention is designed to facilitate the
interaction between multi-scale image features and voxel
queries. Specifically, for a voxel query q located at (i, 5, k),
the process of voxel cross-attention (VCA) can be formu-
lated as follows:

R
VCA(q,F) = ol > > DA(q,m(Ref]" ), F) (1)

nev m=1

where n indexes the camera view, m indexes the reference
points, and M is the total number of sampling points for
each voxel query. v is the set of image views for which the
projected 2D point of the voxel query can fall on. F,, is
the image features of the n-th camera view. m,(Ref}”; ;)
denotes the m-th projected reference point in n-th cam-
era view, projected by projection matrix 7, from the voxel
grid located at (4,7, k). DA represents deformable atten-
tion. The real position of a reference point located at voxel
grid (i, j, k) in the ego-vehicle frame is (z}",y", 23"). The

projection between m-th projected reference point Ref Z”j &

and its corresponding 2D reference point (uiix > visn ) on
the n-th view can be formulate as:
Ref?; , = («7",yj" 21" )
: : : T
d?ﬂ:n . [ulnﬂzn,vz,zn, 1] =Py [z]" 9", 2" 1] 3)

where P,, € R3*4 is the projection matrix of the n-th cam-

era. (u;." ;7" ) denotes the m-th 2D reference point on

n-th image view. d;;;" is the depth in the camera frame.
Voxel self-attention (VSA) facilitates the interaction be-

tween voxel queries. For a voxel query q located at (i, j, k),



it only interacts with the voxel queries at the reference
points nearby. The process of voxel self-attention can be
formulated as follows:

Mo
VSA(q,Q) = Y DA(q,Ref]’;,Q) (4

m=1

where m indexes the reference points, and M5 is the to-
tal number of reference points for each voxel query. DA
represents deformable attention. Contrary to the reference
points on the image plane in voxel cross-attention, Ref Z”j &
in voxel self-attention is defined on the BEV plane.

Ref; , = (=", y}", 21) (5)

where (27", y7", 21) denotes the m-th reference point for
query q. These sampling points share the same height zg,
but with different learnable offsets for (z}",y"). This en-
courages the voxel queries to interact in the BEV plane,
which contains more semantic information.

Temporal Encoder. Temporal information is crucial in
camera-based perception systems to understand the sur-
rounding environment. Recent breakthroughs in camera-
based perception systems, such as BEV-based detectors [41,

, 331, have shown that incorporating temporal informa-
tion can significantly improve the performance. We de-
signed a temporal encoder adapted to the 3D voxel queries
to further enhance the voxel representation.

Temporal encoder incorporates the history voxel queries
information (Q:_g, ..., Q¢—1) to the current voxel queries
Q:. As shown in Figure 2, the temporal encoder consists
of two specific operations: temporal align and temporal
fuse. Different from previous temporal alignment meth-
ods [26, 4 1], which align history features on the BEV plane,
our approach employs voxel alignment in 3D space. This
allows us to correct for the inaccuracies caused by the as-
sumptions made in previous BEV-based methods. They
assumed that road height remains unchanged throughout
the scene, which is not always valid in real-world driv-
ing scenarios, particularly when encountering uphill and
downhill terrain. Voxel alignment is crucial for fine-grained
voxel representations to perceive the environment accu-
rately. Specifically, the process of voxel alignment is for-
mulated as follows:

Gip =Tk Gy (6)

Q¢—r—¢ = GridSample(Q; 1, G;—) @)

where G; € RTXWxZ ig the voxel grid at current frame
t, Gi_p € RHXWXZ represents the current frame grid
at frame ¢t — k. T;_;_j is the transformation matrix for
transforming the points at frame ¢ to previous frame ¢ — k.
Then the queries at frame ¢ — k are aligned to current
frame ¢ by interpolation sampling, denoted as Q;_x_;.

After the alignment, the previous aligned voxel queries
[Qt—k—t, .., Qt—1-¢] are concated with the current voxel
queries Q;. We employ a block of residual 3D convolution
to fuse the queries and output fused voxel queries Q.

3.5. Occupancy Decoder

Given the coarse voxel feature Qy, it should be con-
verted to a fine-grained feature to meet the need for panoptic
occupancy prediction.

Coarse-to-fine Upsampling. This module upsamples the
fused voxel query Q; € RIXWxZXD (o the high res-
olution occupancy features O € RE'*W'xZ'xD" py 31
deconvolutions. Such a coarse-to-fine manner not only
avoids directly applying expensive 3D convolutions to high-
resolution occupancy features, but also leads to no perfor-
mance loss. We have a quantitative discussion in the exper-
iment section.

Occupancy Sparsify. Although the coarse-to-fine man-
ner guarantees the high efficiency of our method, there is
a considerable computational waste on the spatially dense
feature Qf and O. This is because our physical world
is essentially sparse in spatial dimensions, which means a
large portion of space is not occupied. Dense operations
(i.e., dense convolution) violate such essential sparsity. In-
spired by the success of sparse architecture in LiDAR-based
perception [60, 31, 11], we optionally turn to the Sparse
Convolution [13] for occupancy sparsify. In particular, we
first learn an occupancy mask for Q; to indicate if posi-
tions on Qy are occupied. Then we prune Qy to a sparse
feature Qgparse € RY*P by discarding those empty po-
sitions according to the learned occupancy mask, where
N <« HWZ and N is determined by a predefined keep-
ing ratio Ry..,. After the pruning, all the following dense
convolutions are replaced by corresponding sparse convolu-
tions. Since sparse deconvolution will dilate the sparse fea-
tures to empty positions and reduce the sparsity, we conduct
similar pruning operations after each upsampling to main-
tain the spatial sparsity. Finally, we obtain a high-resolution
and sparse occupancy feature O parse € RN'xD ', where
N’ < H'W'Z'. Figure 3 illustrates the occupancy sparsify
process.

3.6. Multi-task Training

Based on the unified occupancy representation, our
model has a strong capacity to handle different tasks.
Specifically, our model is trained end-to-end for joint de-
tection and segmentation, achieving the purpose of panoptic
perception.

Voxel Selection. Considering the detection task cares more
about foreground classes (thing), whereas the segmentation
task must take into account all classes (stuff and thing). Be-
cause of the conflicting learning objectives, distinct features
are required. Hence, we learn a binary voxel mask M to
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Figure 3. Illustration of occupancy sparsify. It serves as an op-
tional technique to boost efficiency. We use BEV representation
for simple illustration, while it is actually a 3D process. The light
yellow region will be pruned according to occupancy masks.
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pick out the foreground voxel features for the detection part.
The 2D BEV features are obtained by average pooling on
the height dimension: B = Pooly,4(M - O).

Detection Head. Following [26], we adopt a query-based
deformable-DETR head as the detection head. The detec-
tion head is applied on the 2D BEV features B.
Segmentation Head. We employ a lightweight multilayer
perceptron (MLP) head for semantic segmentation, based
on occupancy feature O or the sparse counterpart O gpqrse-
This allows us to query the voxel grid status at arbitrary
positions.

Losses. The total loss £ has two parts:

L= ‘CDet + ‘CSeg €]

The voxel segmentation head is supervised by Lg.4, a dense
loss consisting of focal loss [30] (all voxels) and Lovasz
loss [2] (voxels containing LiDAR points) for voxel predic-
tion. For Voxel Selection, we predict a binary voxel mask to
select the foreground classes (thing) voxel features for the
object detection head, and the voxel mask is supervised by
focal loss [30]. The total loss Lg.4 is formulated as:

ESeg = )‘l‘cfocal + )\2£lovasz + A?vcthing (9)

The detection head is supervised by L p.:, a sparse loss con-
sisting of focal loss [30] for classification and L1 loss for
bounding box regression:

LDet = >\4£cls + A5£reg (10)

Refine Module. In this module, we refine the predicted
foreground (thing) voxels using the detection results. We
start by sorting all box predictions based on their confidence
scores. Then, we select a set of high-confidence bounding
boxes denoted as G = {b;|s; > T}, where b; represents
a 3D bounding box, s; is the confidence score, and 7 is a
threshold (default: 7 = 0.8). For the voxels within each
bounding box b;, we assign the class prediction ¢; to all of

them. This improves segmentation consistency and slightly
enhances the mean Intersection over Union (mlIoU) by 0.1-
0.2 points. To perform panoptic voxel segmentation, we as-
sign instance IDs sequentially based on confidence scores.
If the current instance overlaps with previous instances be-
yond a certain threshold, we ignore it to avoid duplication.
Finally, we assign instance ID O to all voxels corresponding
to the stuff class.

4. Experiment
4.1. Datasets

nuScenes dataset [3] contains 1000 scenes in total, split
into 700 in the training set, 150 in the validation set, and
150 in the test set. Each sequence is captured at 20Hz fre-
quency with 20 seconds duration. Each sample contains
RGB images from 6 cameras with 360° horizontal FOV and
point cloud data from 32 beam LiDAR sensor. For the task
of object detection, the key samples are annotated at 2Hz
with ground truth labels for 10 foreground object classes
(thing). For the task of semantic segmentation and panoptic
segmentation, every point in the key samples is annotated
using 6 more background classes (stuff) in addition to the
10 foreground classes (thing).

Occ3D-nuScenes [52] contains 700 training scenes and 150
validation scenes. The occupancy scope is defined as —40m
to 40m for X and Y-axis, and —1m to 5.4m for the Z-axis
in the ego coordinate. The voxel size is 0.4m x 0.4m X
0.4m for the occupancy label. The semantic labels contain
17 categories (including ‘others’). Besides, it also provides
visibility masks for LiIDAR and camera modality.
Evaluation metrics. nuScenes dataset uses mean Average
Precision (mAP) and nuScenes Detection Score (NDS) met-
rics for the detection task, mean Intersection over Union
(mloU), and Panoptic Quality (PQ) metrics [21] for the
semantic and panoptic segmentation. PQT is a modified
panoptic quality [44], which maintains the PQ metric for
thing classes, but modifies the metric for stuff classes. The
Occ3D-nuScenes benchmark calculates the mean Intersec-
tion over Union (mloU) for 17 semantic categories within
the camera’s visible region.

4.2. Experimental Settings

Implementation Details. On the nuScenes dataset [3],
we set the point cloud range for the x and y axes
to [-51.2m,51.2m], and [-5m,3m| for the z axis.
The voxel grid size used for loss supervision is
(0.256m,0.256m, 0.125m). The initial resolution of the
voxel queries is 50x50x16 for H, W, Z. We use an embed-
ding dimension D of 256, and learnable 3D position en-
coding is added to the voxel queries. The upsampled voxel
features have dimensions of 200x200x32 for H', W', Z’,
and a feature dimension D’ of 64. The backbone used in
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BEVFormer-Base [20] | Camera | R101-DCN | 56.2 |54.0 22.8 76.7 74.0 45.8 53.1 44.5 24.7 54.7 65.5 88.5 58.1 50.5 52.8 71.0 63.0
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PanoOcc-Large-T Camera | Internlmage-XL | 74.5 |75.3 51.1 96.9 87.5 56.6 85.6 68.0 43.0 74.1 87.1 95.1 71.0 68.7 70.3 82.3 79.3

Table 1. LiDAR semantic segmentation results on nuScenes validation set. Our PanoOcc-Large-T achieves comparable performance
with state-of-the-art LIDAR-based methods. T denotes the usage of temporal information.
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Method Modality| Backbone |™°U| ® ™ m E " = Em
MonoScene [4] Camera [R101-DCN| 6.06 | 1.75 7.23 426 493 9.38 5.67 398 3.01 590 445 7.17 1491 632 7.92 743 1.01 7.65
BEVDet [18] Camera |[R101-DCN|11.73|2.09 1529 0.0 4.18 1297 1.35 0.0 043 0.13 6.59 6.66 52.72 19.04 26.45 21.78 14.51 15.26
BEVFormer [26] | Camera |R101-DCN|26.88| 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.0 28.06 20.04 17.69
CTF-Occ [52] Camera |[R101-DCN|28.53| 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.0
BEVFormer* [26]| Camera |[R101-DCN|{39.24(10.13 47.91 24.9 47.57 54.52 20.23 28.85 28.02 25.73 33.03 38.56 81.98 40.65 50.93 53.02 43.86 37.15
BEVDet7 [18] Camera | Swin-B [42.02|12.15 49.63 25.1 52.02 54.46 27.87 27.99 28.94 27.23 36.43 42.22 82.31 43.29 54.62 57.9 48.61 43.55
PanoOcc ‘ Camera ‘RIOI—DCN‘42.13‘11.67 50.48 29.64 49.44 55.52 23.29 33.26 30.55 30.99 34.43 42.57 83.31 44.23 54.4 56.04 45.94 40.4

Table 2. 3D Occupancy prediction performance on the Occ3D-nuScenes dataset. T denotes the performance is reported by its official
code implementation. * means the performance is achieved by our implementation using the camera mask during training.

our approach includes ResNet50 [ 1 5], ResNet101-DCN [9],
and Internlmage [55], with output multi-scale features from
FPN [29] at sizes of 1/8,1/16,1/32 and 1/64. The cam-
era view encoder includes 3 layers, with each layer con-
sisting of voxel self-attention, voxel cross-attention, norm
layer, and feed-forward layer, with both M; and M, set
to 4. The temporal encoder fuses 4 frames (including the
current frame) with a time interval of 0.5s. The voxel up-
sample module employs 3 layers of 3D deconvolutions to
upscale 4x for H and W, and 2x for Z, with detailed pa-
rameters in the supplementary materials. The segmentation
head has two MLP layers with a hidden dimension of 128
and uses softplus [63] as the activation function. The num-
ber of object queries for the detection head is set to 900, and
the loss weights used in our approach are A;1=10.0, A\2=10.0,
A3=5.0, A4=2.0,and A\5=0.25.

Training. For the PanoOcc-Base setting, we adopted
ResNet101-DCN [9] as the image backbone and trained the
model on 8 NVIDIA A100 GPUs with a batch size of 1 per
GPU. During training, we utilized the AdamW [34] opti-
mizer for 24 epochs, with an initial learning rate of 2 x 104

and the cosine annealing schedule. Additionally, we em-
ployed several data augmentation techniques, including im-
age scaling, color distortion, and Gridmask [5]. The input
image size is cropped to 640 x 1600. For the PanoOcc-Large
setting, we utilized InternImage-XL [55] as the image back-
bone, while the remaining training settings were the same as
PanoOcc-Base. For the PanoOcc-Small setting, we chose to
use ResNet50 [15] as the image backbone, and the input im-
age size was resized to 320 x 800. During training, we did
not utilize image scaling augmentation.

Supervision. For the detection head, we use object-level
annotations as the supervision. We employ sparse LiDAR
point-level semantic labels for the segmentation head to su-
pervise voxel prediction. When multiple semantic labels are
present within a voxel grid, we prioritize the category label
with the highest count of LiDAR points.

Evaluation. Our approach can evaluate LiDAR semantic
segmentation by assigning voxel semantic predictions to Li-
DAR points. We further extend it with object detection re-
sults, enabling panoptic voxel prediction and evaluation on
the LiDAR panoptic segmentation benchmark [12]. As PQ



is only computed on sparse points and cannot comprehen-
sively reflect the understanding of foreground objects, we
still choose to use mAP, NDS, and mloU to measure the
effectiveness of our approach in the experiments.

4.3. Main Results

3D Semantic Segmentation. We assign the voxel predic-
tions on sparse LiDAR points for the semantic segmen-
tation evaluation. As shown in Table 1, we evaluate the
semantic segmentation performance on the nuScenes val-
idation set. PanoOcc-Base uses the ResNet101-DCN [9]
initialized from FCOS3D [54] checkpoint. PanoOcc-small
adopts the ResNet-50 [15] pretrained on ImageNet [10].
For a fair comparison, the setting of PanoOcc-Base is the
same as TPVFormer-Base [19]. Without bells and whistles,
our PanoOcc-Base achieves an outstanding 70.7 mloU, sur-
passing the previous state-of-the-art TPVFormer-Base [19]
by 1.8 points. Furthermore, by incorporating temporal in-
formation, PanoOcc-Base-T achieves an even higher mloU
score of 71.6. To further validate our approach, we ex-
perimented with a larger image backbone [55]. As a re-
sult, PanoOcc-Large-T achieved an impressive 74.5 mloU,
comparable to the performance of current state-of-the-art
LiDAR-based methods.

3D Occupancy Prediction. In Table 2, we present the eval-
uation results for 3D occupancy prediction on the Occ3D-
nuScenes validation set. All methods utilize camera in-
put and are trained for 24 epochs. The performance of
MonoScene [4], BEVDet [18], BEVFormer [26], and CTF-
Occ [52] is reported in the work of Tian et al [52]. The
use of a camera visible mask during training has proven
to be an effective technique. We re-implemented BEV-
Former [26] with the inclusion of the camera mask during
training. Similarly, BEVDet [18] also adopts this trick and
reports improved performance on its official code reposi-
tory. Our PanoOccalso use camera visibile mask during
training and achieves a new state-of-art performance. We
adopt the R101-DCN backbone and use 4 frames for tem-
poral fusion.

3D Panoptic Segmentation. As PanoOcc is the first work
to introduce camera-based panoptic segmentation, we can
only compare it with previous LiDAR-based panoptic seg-
mentation methods. The results in Table 3 show that our
PanoOcc achieves 62.1 PQ, demonstrating comparable per-
formance to some LiDAR-based methods such as Effi-
cientLPS [48] and PolarNet [62]. However, our approach
still has a performance gap compared to state-of-the-art
LIDAR-based methods, which can be attributed to our in-
ferior detection performance (48.4 mAP v.s. 63.8 mAP).

Input
Modality

EfficientLPS [48] LiDAR [62.0 65.6 739 834| /
Panoptic-PolarNet [65] | LiDAR [63.4 67.2 753 83.9| /
Panoptic-PHNet [22] | LiDAR |74.7 77.7 84.2 88.2| /
LidarMulitiNet [61] | LiDAR |81.8 / 90.8 89.7| 63.8

| Camera [62.1 66.2 75.1 82.1|48.4

Method PQ PQ' RQ SQ |mAP

PanoOcc-Large-T

Table 3. LiDAR panoptic segmentation results on nuScenes
validation set. Our PanoOcc based on the camera input has ap-
proached LiDAR-based methods’ performance.

‘Query Resolution | mloU mAP NDS

(a) 100x100x4 0.617 0.276 0.327
(b) 50x50x16 0.661 0.271 0.324
(c) 50x50x8 0.631 0.267 0.316
(d) 50x50x4 0.608 0.259 0.308
(e) 25x25x16 0.591 0.244 0.294

Table 4. Ablation study for different initial query resolutions.
Height information is important to achieve fine-grained 3D scene
understanding.

4.4. Ablation

We conduct ablation experiments on the design choices
of PanoOcc on the nuScenes validation set. By default, we
use the setting of PanoOcc-small.

Initial Voxel Resolution. Table 4 compares the results of
different initial resolutions used for voxel queries in our ex-
periments. In experiments (b), (c), and (d), we maintained
fixed dimensions of H and W while varying the resolu-
tion of Z. Our findings clearly demonstrate that encoding
height information is a crucial factor in achieving superior
performance in both segmentation(+5.3 mloU) and detec-
tion tasks(+1.2 mAP and +1.6 NDS), with a more signifi-
cant impact observed in segmentation tasks. Furthermore,
we observed that (a) and (b) have the same number of query
parameters and perform similarly in detection tasks. How-
ever, there is a significant gap in the segmentation tasks be-
tween these two. Specifically, the mloU gain from (d) to
(a) is much less compared to that from (d) to (b). The ex-
periment (e) results suggest that when the dimensions of
H and W are too small, there will be a significant reduc-
tion in the performance of both detection and segmentation
tasks. Overall, our findings emphasize the importance of
encoding height information to achieve fine-grained scene
understanding.

Effectiveness of 3D Voxel Queries. Table 5 presents an ab-
lation study where we investigate different query forms for
queries. One common concern regarding 3D voxel queries
is their computational complexity, which limits their usage
at high resolutions. However, our results demonstrate that
even at relatively small resolutions, voxel queries can still



Method ‘ Query form ‘ Resolution ‘mIoU

200x200 56.2

BEVFormer-Base™ [26]| 2D BEV
200x(200+16+16) | 68.8

TPVFormer-Base [19] | 2D Tri-plane

PanoOcc-Base | 3D Voxel |  50x50x16 | 70.7

Table 5. Ablation study for the query form design.” represents
the performance is implemented by [19]. Base denotes the image
backbone is ResNet101-DCN [9].

learn powerful representations, surpassing the performance
of both 2D BEV queries and 2D Tri-plane queries. It is
worth noting that our comparison of query forms was con-
ducted using the same parameter capacity, with each form
consisting of approximately 40,000 queries.

Efficiency of Coarse-to-Fine Design. Table 6 illustrates
the advantages of our coarse-to-fine scheme, which utilizes
a low-resolution 3D voxel grid. This approach not only
helps in increasing performance and inference speed but
also effectively reduces memory consumption. By compar-
ing it with the direct use of high-resolution voxel queries
(200x200x8), we observe that our coarse-to-fine design
achieves comparable or even superior performance while
consuming nearly half the memory. This demonstrates the
efficiency and effectiveness of our approach.

Voxel Voxel
Resolution | Upsampling Memory Latency Param FPS ‘ mloU
200x200x8 37G/9.5G 255ms 117.7M 4.1 | 679
50x50x16 v 18G/57G 149ms 487M 9.2 | 68.3

Table 6. Ablation study for the coarse-to-fine design. We show
the train/inference memory consumption, respectively. The exper-
iments were conducted on the A100 GPU.

Design of Camera View Encoder. Table 7 presents the ab-
lation study conducted on the design choices in the camera
view encoder. Specifically, we experimented with different
combinations of attention modules in (b), (¢), and (d). The
results demonstrated that incorporating voxel self-attention
(VSA) enhanced the interaction between queries, leading to
improved performance. Considering both performance and
parameters, we choose 3 layers as default.

Design of Temporal Encoder. Table 8 presents extensive
ablation studies on the design of the temporal encoder, in-
cluding different time intervals, number of frames, fusion
methods, and encoder network architectures. Compared to
(a) and (b) designs, both detection and segmentation tasks
show a significant improvement (+2.5 mloU, +2.4 mAP,
and +7.1 NDS), which suggests the importance of tempo-
ral information. In (b)(c)(d), we compared the influence
of different time intervals and found that longer intervals
do not improve the fine-grained segmentation performance.
In (e) and (f), we also compared different ways to fuse
the historical features and found that directly concatenat-

‘Layers‘Attention module [mloU mAP NDS

(a) 1 VSA +VCA [0.648 0.251 0.294
(b)| 3 VCA 0.644 0.264 0.312
©] 3 VSA + VCA [0.653 0.267 0.314
| 3 VSAx2 + VCA [0.661 0.271 0.324
e)| 6 VSAX2 + VCA |0.662 0.267 0.319

Table 7. Ablation study for camera view encoder. VSA denotes
voxel self-attention, while VCA means voxel cross-attention.

‘Ternp.‘Intv.‘Frames‘Fuse‘ Arch. ‘mIoU mAP NDS

(a) / 1 / |C3Dx1]0.656 0.269 0.319
)| v |0.5s 4 Cat. |C3Dx10.681 0.293 0.390
©] v Is 4 Cat. |C3Dx1]0.657 0.294 0.385
@) v 2s 4 Cat. |C3Dx1]0.660 0.294 0.375
e v Is 4 Cat. |C3Dx3]0.658 0.290 0.379
®| v |05 4 |TSA| DA |0.648 0.271 0.323

Table 8. Ablation study for temporal encoder. Temp. stands
for temporal fusion, while v'denotes using temporal fusion. Intv.
denotes time interval. Arch. refers to the architecture used in tem-
poral encoder. C3D represents 3D convolution. X3 means using 3
blocks of the architecture. Cat. means concatenating features from
different frames, and TSA represents the temporal self-attention
structure in [26]. DA means deformable attention [66].

‘ Det. Seg. Vox.Sel. | mloU mAP NDS
(a) v / 0.252 0.310
(b) v 0.652 / /
(©) v v 0.656 0266 0.319
(d) v v v 0.661 0.271 0.324

Table 9. Effect of joint detection and segmentation. Det. means
detection head. Seg. denotes segmentation head. Vox. Sel. repre-
sents voxel selection.

ing the features performs better than using temporal self-
attention [20].

Effect of Joint Detection and Segmentation. Table 9
verifies the positive effect of joint detection and segmen-
tation. In comparison to single-task models, the jointly-
trained model performs better in both segmentation and de-
tection tasks. Voxel selection further enhances the interac-
tion between detection and segmentation learning, improv-
ing performance in both tasks. The unified voxel represen-
tation also enables efficient training by sharing the learning
process of voxel features.

The Supervision for Voxel Representation. Table 11 ab-
lates the effects of different resolutions for segmentation
loss supervision. The experiment results indicate that reso-
lution at 400x400x64 has the best performance.

Loss Terms and Weights. Table 12 presents the compar-
ison of various combinations of loss terms and weights. It
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Figure 4. Qualitative results on nuScenes validation set. Our PanoOcc takes multi-view images as input and produces voxel predictions,
which are visualized at a resolution of 200x200x32. We evaluate 3D segmentic segmentation and panoptic segmentation on LiDAR points.
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Figure 5. Qualitative results on Occ3D-nuScenes validation set. Our PanoOcc takes multi-view images as input and produces dense
occupancy predictions, which are visualized at the resolution of 200x200x16.

indicates that the L£;,,4s, plays a crucial role in the seg- 4.5. Discussion

mentation learning process, as its removal led to a signifi-

cant drop in performance (from 65.6 to 59.6 mloU). We also Voxel vs. Tri-plane. Traditionally, it has been believed

experimented with various weight combinations and found that using 3D voxel grids alone is an inefficient solution

that Ay = 10, Ay = 10, A3 = 5 performs best. due to the memory cost. This has led methods like TPV-
Former [19] to split the 3D representation into three 2D
planes. However, we have demonstrated for the first time

10



. Q (9]
§ ° g 5 g 2 ~ 3 8
= 2L . o = b @ = = = =t =
£ 3 i & & & 5B % s 5 : £ E 3
= 72} ° br=i 2 t
mloU | & 3 B 5 3 g g g g g g B 2 S £ 2
65.6 72.3 35.8 91.4 84.4 472 52.6 57.7 31.5 55.6 80.6 94.0 64.3 63.2 66.5 71.7 73.9
68.1 70.7 37.9 92.3 85.0 50.7 64.3 59.4 353 63.8 81.6 94.2 66.4 64.8 68.0 79.1 75.6
Q5D |6l @11 (091 61 (5 (L7 (171 GED @2D) (01 (021 @11 (16 (15D (14D (

Table 10. Effect of temporal enhancement on different categories. The findings indicated that incorporating temporal information
improved segmentation performance for most categories. We use the setting of PanoOcc-Small in the ablation.

Supervision| Voxel feats | Loss Resolution [mloU mAP NDS

LiDAR |200x200x32| 400x400x64 |0.661 0.271 0.324
LiDAR |200x200x32| 200x200x32 |0.644 0.267 0.316
LiDAR |100x100x16| 100x100x16 |0.609 0.264 0.317

Table 11. Supervision for voxel representation. We utilize sparse
LiDAR point labels as the supervision for voxel representation.

Efocal Elovasz Lthing‘ A1 A2 AS ‘mIOU

v 10.0 / / 10.596
v 10.0 10.0 / |0.656
/10.0 5.0 |0.643

10.0 10.0 5.0 | 0.661
10.0 10.0 10.0| 0.652
5.0 10.0 5.0 |0.656
15.0 10.0 5.0 | 0.650
10.0 15.0 5.0 | 0.654

mAP

0.259
0.266
0.260

0.271
0.265

NDS

0.315
0.319
0.311

0.324
0.317
0.266 0.315
0.265 0.314
0.263 0.312

SENENENAY
AN NN RN
NN NN

Table 12. Ablation for loss terms and weights. We ablates dif-
ferent loss combinations and its weight.

Method Memory Latency FPS | mloU
TPVFormer-Base® | 33.5G/7.1G  268ms 3.7 68.9
PanoOcc-Base 24G / 6.0G 203ms 4.8 71.7

Table 13. Model efficiency comparison. * denotes the perfor-
mance using its official code and released checkpoints. We report
the train/inference memory consumption in the experiment.

| Convolution | Latency Memory FPS | mIoU

126ms 15G 9.3 | 0.654
112 ms 9G 9.7 | 0.639

(a)
(b)

Sparse

Dense ‘

Table 14. Exploration of sparse architecture design. The ex-
periment is conducted under the PanoOcc-small setting without
temporal fusion.

that using the coarse-to-fine voxel representation can solve
the memory increasing problem. In Table 13, we compare
the performance and efficiency of our method with the pre-
vious state-of-the-art approach, TPVFormer [ 9], under the
same experimental setup. Despite having an additional de-
tection branch and the capability to output detection results,
our model still exhibits lower memory consumption and
faster inference speed.

11

Occupancy Sparsify. In contrast to 2D space, 3D space
exhibits high sparsity, indicating that the majority of voxels
are empty. In Table 14, we investigate the effectiveness of
the occupancy sparsify strategy. Here we have 3 layers of
sparse deconvolution for upsampling in total. In coarse-to-
fine order, the keeping ratio after each upsampling is 0.2,
0.5, and 0.5, respectively. It suggests that finally we only
keep 5% voxels.

Temporal Enhancement. In Table 10, we compared the
impact of temporal information on different categories. The
findings revealed that the semantic segmentation perfor-
mance improved for almost all categories except for the bar-
rier category. The motorcycle and trailer categories demon-
strated a significant improvement, with a boost of 11.7
mloU and 8.2 mloU, respectively. These two categories are
typically affected by occlusion, and thus, the utilization of
temporal information can enhance the model’s ability to ac-
curately detect and segment occluded objects.

4.6. Visualization

Figure 4 showcases qualitative results achieved by
PanoOcc on the nuScenes validation set. The voxel pre-
dictions are visualized at a resolution of 200x200x32 and
assign to LiDAR points. These visualizations highlight the
accuracy and reliability of our predictions for 3D seman-
tic segmentation and panoptic segmentation. Figure 5 il-
lustrates the dense occupancy prediction on the Occ3D-
nuScenes validation set, where voxel predictions are visu-
alized at the resolution of 200x200x16.

5. Conclusion

In this paper, we propose camera-based 3D panoptic
segmentation, aiming for a comprehensive understanding of
the scene by a unified occupancy representation. To facili-
tate occupancy representation learning, we propose a novel
framework called PanoOcc that utilizes voxel queries to in-
corporate information from multi-frame and multi-view im-
ages in a coarse-to-fine scheme. Extensive experiments on
the nuScenes dataset and Occ3D-nuScenes demonstrate the
effectiveness of PanoOcc and its potential to advance holis-
tic 3D scene understanding. We envision 3D occupancy
representation as a promising new paradigm for future 3D
scene perception.
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