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Abstract

Generic Face Image Quality Assessment (GFIQA) evalu-
ates the perceptual quality of facial images, which is crucial
in improving image restoration algorithms and selecting
high-quality face images for downstream tasks. We present
a novel transformer-based method for GFIQA, which is
aided by two unique mechanisms. First, a “Dual-Set
Degradation Representation Learning” (DSL) mechanism
uses facial images with both synthetic and real degrada-
tions to decouple degradation from content, ensuring gen-
eralizability to real-world scenarios. This self-supervised
method learns degradation features on a global scale, pro-
viding a robust alternative to conventional methods that use
local patch information in degradation learning. Second,
our transformer leverages facial landmarks to emphasize
visually salient parts of a face image in evaluating its per-
ceptual quality. We also introduce a balanced and diverse
Comprehensive Generic Face IQA (CGFIQA-40k) dataset
of 40K images carefully designed to overcome the biases, in
particular the imbalances in skin tone and gender represen-
tation, in existing datasets. Extensive analysis and evalua-
tion demonstrate the robustness of our method, marking a
significant improvement over prior methods.

1. Introduction
In the digital era, face images hold a central role in our vi-
sual experiences, necessitating a robust metric for assessing
their perceptual quality. This metric is crucial for not only
evaluating and improving the performance of face restora-
tion algorithms but also for assuring the quality of training
datasets for generative models [27, 57]. Designing an ef-
fective metric for face image quality assessment presents
significant challenges. The inherent complexity of human
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Figure 1. PLCC vs. SRCC Comparison on CGFIQA-40k and
GFIQA-20k [66] datasets. DSL-FIQA, denoted by red triangu-
lar points, outperforms other methods (ReIQA [59], StyleGAN-
IQA [66], MANIQA [73], TRIQ [70]) and can provide a superior
image quality assessment of facial images.

faces, characterized by nuanced visual features and expres-
sions, greatly impacts perceived quality [66]. Additionally,
obtaining subjective scores such as Mean Opinion Scores
(MOS) is difficult due to the limited availability of licensed
face images and the inherent ambiguity in subjective evalu-
ations. Compounding these challenges are facial occlusions
caused by masks and accessories, which add another layer
of complexity to the assessment process.

Decades of research on image quality assessment (IQA)
on general images [17, 32, 41, 73, 78], or general IQA
(GIQA), has demonstrated reliable performance across var-
ious generic IQA datasets [18, 22, 39, 53, 64, 74]. However,
when such methods are applied to faces, they often overlook
the distinct features and subtleties inherent to faces, making
them less effective for face images.

Another thread of research focuses on biometric face
quality assessment (BFIQA) [2, 5, 21, 38, 50, 56, 61, 72],
where the goal is to ensure the quality of a given face im-
age for robust biometric recognition. While recognizability
is achieved by including factors unique to faces like clarity,
pose, and lighting, it does not guarantee accurate assess-
ment of perceptual degradation.

A significant stride forward is made by [66], which
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clearly defines the problem of generic face IQA (GFIQA):
GFIQA focuses exclusively on the perceptual quality of
face images, as opposed to BFIQA. Their approach lever-
ages pre-trained generative models (StyleGAN2 [29]) to ex-
tract latent codes from input images, which are then used as
references for quality assessment. Although their method
shows promising prediction performance, its effectiveness
reduces when input images deviate significantly in shooting
angles [66] or quality [52] from the StyleGAN2 training
data, limiting its applicability and accuracy to real-world
scenarios.

In this paper, we tackle the challenge of GFIQA by
proposing a transformer-based method specifically de-
signed to address the limitations of the aforementioned
methods. Inspired by modern GIQA techniques [59], we
propose a degradation extraction module that obtains degra-
dation representations from input images as intermediate
features to aid the regression of quality scores, which is
pre-trained via self-supervised learning. However, the ex-
isting degradation representation learning scheme [59] of-
ten makes an oversimplified assumption that the degrada-
tion is uniform across different patches of an image while
being distinct from those of other images. This assumption
does not hold for real-world data, where diverse degrada-
tions within a single image exist due to variations in light-
ing, motion, camera focus and so on. These inconsistencies
may impair the effectiveness of degradation extraction and
subsequently hinder the accuracy of quality score predic-
tion.

To this end, we introduce a strategy termed “Dual-
Set Degradation Representation Learning” (DSL), which
breaks the limits of traditional patch-based learning and ex-
tracts degradation representations from a global perspective
in degradation learning. This approach is enabled by es-
tablishing correspondences between a controlled dataset of
face images with synthetic degradations and a comprehen-
sive in-the-wild dataset with realistic degradations, offering
a comprehensive framework for degradation learning. This
degradation representation is injected into the transformer
decoder [14] via cross-attention [55], enhancing the overall
sensitivity to various kinds of challenging real-world image
degradations.

Furthermore, inspired by [71], we utilize the strong cor-
relation between facial image quality and salient facial com-
ponents such as mouth and eyes. We incorporate landmark
detection to localize and feed them as input to our model.
This extra module allows our model to autonomously learn
to focus on these critical facial components and understand
their correlation with the perceptual quality of faces, which
helps predict a regional confidence map that aggregates lo-
cal quality evaluations across the entire face.

Existing datasets such as GFIQA-20k [66] and PIQ23 [8]
suffer from limited size or unbalanced distribution. To

bridge this gap, we introduce the Comprehensive Generic
Face IQA Dataset (CGFIQA-40k), which comprises 40K
images with more balanced diversity in gender and skin
tone. We also include face images with facial occlusions.
We believe this dataset will be a valuable resource to fuel
and inspire future research.

To summarize, our contributions are as follows:
• We design a transformer-based method specifically de-

signed for GFIQA, predicting perceptual scores for
face images.

• We propose “Dual-set Degradation Representation
Learning” (DSL), a self-supervised approach for learn-
ing degradation features globally. This method ef-
fectively captures global degradation representations
from both synthetically and naturally degraded images,
enhancing the learning process of degradation charac-
teristics.

• We enhance our model’s attention to salient facial
components by integrating facial landmark detection,
enabling a holistic quality evaluation that adaptively
aggregates local quality assessment across the face.

• We construct the Comprehensive Generic Face IQA
Dataset (CGFIQA-40k), a collection of 40K face im-
ages designed to offer comprehensive and balanced
representation in terms of gender and skin tone.

2. Related Work

2.1. Quality Assessment of Face Images

Recent work on Face Image Quality Assessment (FIQA)
can be categorized into two major branches [71]: BFIQA
and GFIQA. BFIQA originates from biometric studies, fo-
cusing on the quality of face images for recognition sys-
tems. On the other hand, GFIQA encompasses a wider
scope, concentrating on the perceptual degradation of im-
age quality.
Biometric Face Image Quality Assessment (BFIQA):
BFIQA evaluates the quality of face images for biometric
applications such as face recognition, which often assess
images based on established standards [20, 60, 63]. Recent
progress in the field has been around learning-based strate-
gies, assessing quality via performance of a recognition sys-
tem [4, 5, 9, 43, 69]. Some studies have adopted manual
labeling, using a set of predefined characteristics as binary
constraints [81], while others have investigated subjective
aspects of image quality [2]. However, adopting BFIQA
methods does not give the best performance when the em-
phasis is on perceptual quality, which will be demonstrated
in the results section.
Generic Face Image Quality Assessment (GFIQA):
GFIQA is a recently defined task [66, 71], which priori-
tizes perceptual degradation in face images instead. Initia-
tives like Chahine et al. [8] highlight the relevance of so-
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Figure 2. Overview of our proposed model. The model contains a core GFIQA network, a degradation extraction network, and a landmark
detection network. In our approach, face images are cropped into several patches to fit the input size requirements of the pre-trained ViT
feature extractor (See Sec. 3.1). Each patch is then processed individually, and their Mean Opinion Scores (MOS) are averaged to determine
the final quality score. For clarity in the figure, the segmentation of the image into patches is not shown.

cial media-driven portrait photography, though their PIQ23
dataset remains restricted in size. Su et al. [66] bridges this
gap with the larger GFIQA-20k dataset, but it falls short in
diversity, lacking in long-tail samples and balanced repre-
sentation. Their generative prior-based method, while ef-
fective, struggles with non-standard images, showing limi-
tations of StyleGAN2-dependent models [28]. This demon-
strates the necessity for a more comprehensive dataset and
robust GFIQA solution.

2.2. General Image Quality Assessment

Traditional General Image Quality Assessment (GIQA) [10,
17] methods like BRISQUE [45], NIQE [46], and DI-
IVINE [47] are built upon traditional statistical models,
which work decently on datasets with constrained size but
have faced limitations with complex real-world images.
The advent of deep learning has given rise to groundbreak-
ing GIQA methods. RAPIQUE [70] and DB-CNN [76]
set new standards in adaptability and accuracy. A further
innovation was seen in transformer-based models, includ-
ing MUSIQ [33] and MANIQA [73], with significantly im-
proved prediction precision. The domain was expanded by
CONTRIQUE’s [41] self-supervised paradigm and Zhang
et al.’s [78] vision-language multitask learning. Saha et
al. [59] uniquely integrated low and high-level features in
an unsupervised manner, emphasizing perceptually relevant
quality features.

However, the applicability of these advancements to face
images is debatable, as they often overlook facial features

specifically critical for perceptual quality, suggesting a gap
ripe for exploration with face-centric quality assessment
models.

3. Proposed Method

3.1. Model Overview

Figure 2 illustrates our method: Given an input image I ∈
RH×W×3, our model estimates its perceptual quality score.
In the following, we briefly summarize its components.
Feature Extraction and Refinement: The image initially
undergoes feature extraction [73] via a pre-trained Vision
Transformer (ViT) [14], followed by a Channel Attention
Block [23] that emphasizes relevant inter-channel depen-
dencies. Subsequently, a Swin Transformer Block [40] re-
fines these features, capturing subtle image details.
Degradation Extraction: In parallel, a dedicated module
identifies and isolates perceptual degradations within the
image, providing a nuanced representation of image qual-
ity degradations.
Feature Integration and Quality Estimation: The degra-
dation features, once extracted, are integrated with the out-
puts from the Swin Transformer within a transformer de-
coder. This integration employs cross-attention, a technique
inspired by Stable Diffusion [55], to enhance the model’s
sensitivity to degradation. The combined features are then
directed into two MLP branches. The first branch predicts
the regional confidence, while the second estimates the re-
gional quality score. Finally, these outputs are combined
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Figure 3. Dual-Set Degradation Representation Learning (DSL) Illustrated. On the left, the process of contrastive optimization is
depicted, utilizing two unique image sets. Degradation representations are extracted, followed by soft proximity mapping (SPM) calcula-
tions and contrastive optimization, compelling the degradation encoder to focus on learning specific degradation features. The right side
emphasizes the bidirectional characteristic of our approach, highlighting the comprehensive strategy for identifying and understanding
image degradations through contrastive learning.

through a weighted sum to determine the overall quality
score of the image.
Landmark-Guided Mechanism: A landmark detection
network identifies facial key points, influencing the regional
confidence evaluation and ensuring that essential facial fea-
tures improve the final quality score.

During the training of the core GFIQA network, the
landmark and degradation modules remain fixed, leverag-
ing their pre-trained knowledge. Notably, we avoid resizing
input images to fit the fixed input dimensions of the pre-
trained ViT, which could distort quality predictions [33]. In-
stead, we crop the image, process each part independently,
and average the resulting MOS predictions for a consoli-
dated image quality score. This approach maintains the
original dimensions of the image and, consequently, the cor-
rectness of perceptual quality assessment.

In the following subsections, we highlight the main tech-
nical contribution of our model design: our degradation ex-
traction module and landmark-guided mechanism.

3.2. Self-Supervised Dual-Set Degradation Repre-
sentation Learning

Before presenting our proposed approach, we provide a
concise overview of the existing patch-based degradation
learning methods.

3.2.1 Patch-based Degradation Learning

Existing degradation extraction methods ([24, 59, 80]) as-
sume that patches from the same image share similar degra-
dation for contrastive learning. In this framework, patches
extracted from the same image are positive samples, while
those from different images are negative samples. The

patches are encoded into degradation representations (x,
x+, and x−) for the query, positive, and negative samples.
The contrastive loss function is designed to enhance the
similarity between x and x+ and dissimilarity between x
and x−, which is given by:

LPatch(x, x+, x−) = − log exp(x·x+/θ)∑N
n=1 exp(x·x−

n /θ)
, (1)

where N is the number of negative samples and θ is a tem-
perature hyper-parameter.

However, the assumption of uniform degradation across
the image does not always hold due to lighting, local mo-
tion, defocus, and other factors. For example, it is possible
to have a moving face with a static background in an im-
age, which means that only some patches suffer from mo-
tion blur. This oversimplified assumption often leads to sub-
optimal and inconsistent results for degradation learning.

3.2.2 Our Solution

To bridge this gap, we propose Dual-Set Degradation Rep-
resentation Learning (DSL), which considers entire face im-
ages. To make this challenging setting compatible with con-
trastive learning approaches, we carefully construct two sets
of images, S and R, each serving a unique purpose in the
degradation learning process, as shown in Figure 3.

Set S consists of a collection of images derived from a
single high-quality face image, with each image undergoing
different types of Synthetic degradation including but not
limited to blurring, noise, resizing, JPEG compression, and
extreme lighting conditions. This set acts as a controlled en-
vironment, enabling in-depth exploration of a wide variety
of degradations against constant content.



In contrast, Set R encompasses a compilation of images
from GFIQA datasets, each having different content under
Real-world degradation. This set reflects the unpredictabil-
ity and diversity of realistic degradations, which are hard to
model by synthetic data.

Formally, let S = {s1, . . . , sm} and R = {r1, . . . , rn},
where m and n represent the number of images in S and R,
respectively. Each image from the two sets is mapped to its
degradation representation by a function ψ defined by the
degradation extraction module with weights z:

ψ→
z (S) = {ψ(s1; z), . . . , ψ(sm; z)} (2)

ψ→
z (R) = {ψ(r1; z), . . . , ψ(rn; z)} (3)

Inspired by [54, 65], we introduce a mechanism termed
soft proximity mapping: For a given image si from S, we
map its representation ψ(si) to a linear combination of rep-
resentaions in ψ→

z (R) as follows:

ψ̂(si) =
∑n
j=1 sim(ψ(si), ψ(rj)) · ψ(rj) (4)

where ψ̂(si) denotes soft proximity mapping of ψ(si).
sim(·, ·) denotes the similarity between two representations.
We use L2 distance as our similarity metric in our imple-
mentation. z is omitted for brevity.

This construction allows us to define positive and neg-
ative pairs for contrastive learning. Intuitively, a degrada-
tion representation ψ(si) should be attracted to its own soft
proximity mapping ψ̂(si), while any other representations
ψ(sj) where j ̸= i should be repelled from this soft proxim-
ity mapping because si and sj have different degradations
by the dedicated construction of Set S. Then, we adopt the
contrastive loss [49]:

LCon(S,R) = − 1
m

∑m
i=1 log

exp(sim(ψ(si),ψ̂(si))/θ)∑n
j ̸=i exp(sim(ψ(sj),ψ̂(si))/θ)

(5)

This loss function leverages the nature that within S, im-
ages share the same content but differ in degradations, con-
trasting with R, which varies in both aspects. By drawing
the extracted degradation representation closer to its cor-
responding soft proximity mapping and distancing it from
other soft proximity mappings, the degradation extraction
module is trained to learn a global degradation representa-
tion that is independent of the image content.

Furthermore, the self-supervised dual-set contrastive
learning strategy is essential for understanding various
degradations, particularly in real-world scenarios. This ap-
proach is vital as it involves accurately extracting degra-
dation representations from real-world images to approxi-
mate those in the synthetic set S. It is feasible to employ
contrastive learning solely on the synthetic set S to capture
degradation patterns: Positive pairs consist of images with

the same degradation, and negative pairs otherwise. How-
ever, this naive approach does not generalize well to real-
world images. In contrast, our dual-set design can bring to-
gether the benefits of both the synthetic set with controllable
degradations and the real-world set with realistic degrada-
tions, achieving better generalization.

Notice that the roles of S and R are symmetric:
Just as we utilize representations from S to seek corre-

sponding features within R, empirically, we found the re-
verse is also viable and informative. Thus, we define our
Degradation Extraction Loss LDE as a bidirectional loss:

LDE = LCon(S,R) + LCon(R,S) (6)

This bidirectional loss reinforces the mutual learning and
alignment between the synthetic and real-world sets, en-
suring a comprehensive understanding and representation
of realistic degradations. Moreover, it is worth mentioning
that the high-quality image in set S is resampled for ev-
ery iteration, where this image undergoes random synthetic
degradations of varying intensities. Concurrently, images in
set R are also resampled randomly in each iteration.

In summary, DSL gets rid of the uniformity assumption
of degradation in patches across the entire image for degra-
dation learning. Instead, it relies on the soft proximity map-
ping between two constructed sets of images to calculate the
contrastive loss, which allows for more precise degradation
representation (this mechanism is kind of similar in spirit
to [48]). Furthermore, since the entire image is considered,
DSL can capture a holistic view of the degradation unique
to each image, further boosting the performance.

3.3. Landmark-guided GFIQA

Face images are uniquely challenging in image processing.
This is because human eyes are especially sensitive to facial
artifacts, raising the importance of nuanced quality assess-
ment [71]. Thus, it is important to design an approach that
does not treat each pixel equally; it should acknowledge the
perceptual significance of salient facial features. Further-
more, as stated in Sec. 3.1, considering that our network
crops the face into various patches to compute the average
MOS score, it is crucial to provide landmark information to
give the spatial context on which part of the face each patch
covers, ensuring a holistic and perceptually consistent eval-
uation.

As shown in Figure 2, our approach begins with utiliz-
ing an existing landmark detection algorithm (i.e., 3DMM
model [15]) to identify key facial landmarks. Inspired by
Neural Radiance Fields (NeRF) [44], we apply positional
encoding to these unique landmark identifiers. By apply-
ing a series of sinusoidal functions to the raw identifiers,
positional encoding enhances the representational capacity
of the network, allowing the network to capture and learn



more intricate relationships and patterns associated with
each landmark identifier.

The encoded information is subsequently concatenated
with the features processed by the Transformer Decoder,
feeding into the regional confidence branch. The human
visual system is particularly sensitive to high-frequency de-
tails, which are often associated with facial landmarks such
as the eyes, nose, and mouth. Providing this landmark-
based information to the confidence head can help generate
a more precise confidence map, emphasizing regions that
humans naturally prioritize in their perception.

In our approach, we deliberately avoid relying on encod-
ing landmark coordinates (x, y) in an image as positions, as
it can introduce ambiguity during learning, especially when
faces are unaligned, or images are cropped into patches.
In such scenarios, specific coordinates may inconsistently
correspond to different facial features on different training
samples, therefore muddling the learning process. To avoid
this, our network employs a fixed encoding scheme for each
facial landmark, assigning a unique identifier to every crit-
ical feature regardless of its position in the image. This
methodology proves particularly advantageous for our ViT,
which takes fixed-size crops from the input image, poten-
tially capturing only portions of the face.

Given the diverse range of degradations encountered in
GFIQA, off-the-shelf landmark detectors often fail on im-
ages with challenging degradations. We observed that fine-
tuning existing landmark detectors like [12, 25, 30] on de-
graded images leads to more accurate landmark detection.

In summary, by adopting landmark-guided cues, our
method maintains a consistent awareness of crucial facial
features within each crop, which effectively encourages the
model to focus on salient facial features when aggregating
the regional quality scores.

3.4. Loss Functions

Degradation Encoder. The degradation encoder is trained

separately by optimizing Eq. (6). Once trained, it remains
fixed when training the core GFIQA network.

GFIQA Network. To measure the discrepancy between the
predicted MOS and the ground truth, we employ the Char-
bonnier loss [36] (Lchar), which is defined as:

Lchar(p, p̂) =
√
(p− p̂)2 + ϵ2 (7)

where p̂ is the predicted MOS, p is the ground truth MOS,
and ϵ is a small constant to ensure differentiability.

Unlike existing GIQA [33, 59, 73] or GFIQA [66] mod-
els that typically rely on L2 losses, we opt for the Char-
bonnier loss as it is less sensitive to outliers, which in the
context of GFIQA can arise from rare face quality degra-
dations, dataset annotation discrepancies, or occasional ex-
treme scores predicted by the model during training. By im-

Dataset Size Skin Tone (%) Gender (%)

Light Medium Dark Male Female
PIQ23 5116 74.5 9.0 16.5 94.0 6.0

GFIQA-20k 20000 81.6 6.7 11.7 64.2 35.8
CGFIQA-40k 39312 53.83 24.91 21.26 51.50 48.50

Table 1. Comparison of datasets in terms of size, skin tone,
and gender distribution. Skin tones are categorized as Light
(Fitzpatrick scale [16] I-II), Medium (Fitzpatrick scale III-IV), and
Dark (Fitzpatrick scale V-VI).

proving the robustness against outliers, our model is more
aligned with human perceptual judgments.

4. Comprehensive Generic Face IQA Dataset
Existing GFIQA models are evaluated on datasets such as
PIQ23 [8] and GFIQA-20k [66]. While PIQ23 contains a
variety of in-the-wild images with uncropped faces, its con-
strained dataset size limits its efficacy for training robust
models. Moreover, both datasets exhibit biases in gender
and skin tone representation. This disproportion can intro-
duce biases during model training, decreasing the perfor-
mance and reliability of models in face image quality as-
sessment tasks. Prior research [6, 11, 35, 62] has shown
that this imbalance in data distribution has a significant neg-
ative impact on model performance in various face-related
applications.

To tackle these challenges, we introduce a new dataset
named Comprehensive Generic Face Image Quality Assess-
ment (CGFIQA-40k), which includes approximately 40K
images, each with a resolution of 512x512. Each image
is annotated by 20 labelers, and each labeler spends about
30 seconds to give a score. From an initial pool of 40,000
images, we filtered out a small number of images with un-
usable content or incomplete labels, resulting in a total of
39,312 valid images. This dataset is specifically curated to
include an extensive collection of face images with diverse
distribution on skin tone, gender, and facial occlusions such
as masks and accessories.

A comparative overview of our dataset with existing
GFIQA datasets is provided in Table 1. We hope this dataset
will offer a more comprehensive benchmark for GFIQA,
pushing the generalization and robustness of state-of-the-art
methods.

5. Experimental Results
5.1. Experiment Settings

Our experiments utilize three datasets: GFIQA-20k [66],
PIQ23 [8], and our newly introduced CGFIQA-40k. The
GFIQA-20k dataset consists of 20,000 images, divided into
14,000 for training, 2,000 for validation, and 4,000 for test-
ing. PIQ23 contains 5,116 images, with 3,581 for training,



Method GFIQA-20k PIQ23 CGFIQA-40k
PLCC SRCC PLCC SRCC PLCC SRCC

ArcFace [13] 0.9508 0.9510 0.5913 0.6011 0.9722 0.9723
MegaFace [43] 0.9523 0.9531 0.5941 0.5355 0.9731 0.9733
CR-FIQA [5] 0.9593 0.9598 0.6013 0.6021 0.9734 0.9736

Koncept512 [22] 0.9518 0.9523 0.6013 0.6007 0.9713 0.9721
MUSIQ [33] 0.9503 0.9518 0.7141 0.7101 0.9750 0.9735
ReIQA [59] 0.9437 0.9446 0.5988 0.5961 0.9800 0.9802

CONTRIQUE [42] 0.9458 0.9466 0.5892 0.5930 0.9788 0.9799
UNIQUE [77] 0.9413 0.9528 0.5822 0.5710 0.9771 0.9641
MANIQA [73] 0.9614 0.9604 0.7202 0.7180 0.9805 0.9809

TReS [19] 0.9512 0.9552 0.5767 0.5760 0.9816 0.9817
HyperIQA [67] 0.9664 0.9674 0.7152 0.7203 0.9722 0.9733

LIQE [79] 0.9341 0.9571 0.4627 0.4522 0.9786 0.9623
MetaIQA [82] 0.9542 0.9532 0.6008 0.6016 0.9474 0.9463

TRIQ [75] 0.9631 0.9630 0.6118 0.6023 0.9813 0.9821
VCRNet [51] 0.9672 0.9679 0.6826 0.6774 0.9819 0.9821

GraphIQA [68] 0.9434 0.9436 0.4676 0.4709 0.9578 0.9552
IFQA [26] 0.9601 0.9603 0.2907 0.3081 0.9791 0.9803

StyleGAN-IQA [66] 0.9673 0.9684 0.7013 0.7131 0.9822 0.9821
DSL-FIQA 0.9745 0.9740 0.7370 0.7333 0.9873 0.9880

Table 2. Comparison of various image quality assessment
methods across three GFIQA datasets. Boldface indicates the
best results and underline the second-best. Our approach demon-
strates superior and robust performance across all three datasets.
Rows in gray denote BFIQA methods, those in pink for generic
IQA methods, and in light cyan for GFIQA methods.

Module Metric
Patch DSL-cat DSL-S DSL-R DSL Landmark PE LChar PLCC SRCC

- - - - - - - - 0.9682 0.9679
✓ - - - - - - - 0.9695 0.9687
- ✓ - - - - - - 0.9703 0.9701
- - ✓ - - - - - 0.9713 0.9711
- - - ✓ - - - - 0.9709 0.9707
- - - - ✓ - - - 0.9721 0.9719
- - - - ✓ ✓ - - 0.9731 0.9728
- - - - ✓ ✓ ✓ - 0.9735 0.9731
- - - - ✓ ✓ ✓ ✓ 0.9745 0.9740

Table 3. Ablation study on proposed techniques. We demon-
strate that the proposed modules can effectively improve GFIQA’s
performance. “PE” denotes the positional encoding operation.
“DSL-S” and “DSL-R” represent Dual-Set Degradation Represen-
tation Learning. In this framework, the degradation encoder is
trained using a one-sided loss approach, specifically LCon(S,R)
for “DSL-S” and LCon(R,S) for “DSL-R”. “DSL-cat” refers to
directly concatenating the degradation representations with im-
age features instead of cross-attention, while “DSL” indicates the
adoption of a dual-sided loss function as defined in Eq. (6).

512 for validation, and 1,023 for testing. Our CGFIQA-
40k dataset includes a more extensive collection of 39312
images, with a division of 27518 for training, 3931 for val-
idation, and 7863 for testing.

The evaluation metrics employed are the Pearson Linear
Correlation Coefficient (PLCC) and Spearman’s Rank Or-
der Correlation Coefficient (SRCC).

5.2. Performance Evaluation

We conducted an extensive evaluation of our method via ex-
periments, comparing it with representative models across
the datasets GFIQA-20k, PIQ23, and CGFIQA-40k. To
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Figure 4. t-SNE visualization of degradation representation ex-
tracted using patch-based and DSL-based methods. Unlike the
patch-based method, DSL results in well-demarcated clusters for
various types of degradation, thereby proving the effectiveness of
the learned representations.

Strategy Patch-based DSL
mAP 48.2 69.3

Table 4. Comparative retrieval accuracy using DSL and patch-
based methods under real-world degradations, quantified by
mAP scores.

maintain a fair comparison, all models were trained and val-
idated under the identical conditions specified in Sec. 5.1.

We compare with a wide range of generic IQA mod-
els, including Koncept512 [22], MUSIQ [33], ReIQA [59],
CONTRIQUE [42], UNIQUE [77], MANIQA [73],
TReS [19], HyperIQA [67], LIQE [79], MetaIQA [82],
TRIQ [75], VCRNet [51], and GraphIQA [68]. We
also compare with recent GFIQA methods, including
StyleGAN-IQA [66] and IFQA [26]. For completeness, we
include three representative BFIQA methods, ArcFace [13],
MegaFace [43], and CR-FIQA [5].

Table 2 clearly shows the robust performance of our
method, which outperforms existing models across all met-
rics on GFIQA-20k, PIQ23, and CGFIQA-40k. The consis-
tent results across diverse datasets validate our approach’s
strength and adaptability, establishing it as a robust generic
face image quality assessment solution.

5.3. Ablation Study

To validate the effectiveness of individual components of
our approach, we conducted an ablation study based on the
GFIQA-20k dataset.
Effectiveness of Degradation Extraction. The innovation
of our method lies in the Dual-set Degradation Representa-
tion Learning (DSL), enhancing GFIQA precision by cap-
turing global degradation in degradation learning. To ver-
ify its impact, we show the comparison in Table 3. Includ-
ing DSL improved the performance of the GFIQA (Row 1



(a) Input (b) w/o landmark (c) w landmark

Figure 5. Comparison of using landmark mechanism to guide
the GFIQA network. We present the regional confidence maps
and the corresponding input. With landmark guidance, the confi-
dence maps focus more on key facial landmarks, providing a more
discriminative assessment. In contrast, without landmark guid-
ance, the confidence maps tend to cover the entire face, often lack-
ing specificity and even assigning higher confidence to irrelevant
areas (e.g., background).

and Row 6), highlighting its critical role in boosting GFIQA
accuracy. We also substituted the DSL learning technique
for the existing patch-based degradation learning in Table 3
(Row 2 and Row 6), and the results indicate that the pro-
posed DSL can improve GFIQA performance more than the
patch-based strategy (Sec. 3.2.1). We also validated the sig-
nificance of cross-attention for integrating degradation in-
formation (Row 3 and Row 6). The results indicated that
employing cross-attention for this integration yielded supe-
rior outcomes.

Comparison between DSL and patch-based methods. To
further evaluate the advantage of our DSL over patch-based
degradation extraction methods, we conducted two addi-
tional experiments. Both methods were trained on the same
dataset for fair and direct comparison. The testing data used
was completely independent of the training set, guarantee-
ing the validity of our assessment.

The first experiment involved synthetic data. We
randomly selected 1,000 face images from the FFHQ
dataset [28], subjecting each to six types of synthetic degra-
dations. We then employed DSL and patch-based feature
extraction, subsequently visualizing these features using
t-SNE. The results, illustrated in Figure 4, demonstrated
that DSL could effectively separate the images based on
their specific degradations, while the patch-based method
showed considerable overlap.

Furthermore, we extended our exploration to real-world
conditions, using images from the GFIQA-20k dataset.
This second experiment was designed to verify if the dis-
tinct degradation representations learned by DSL could
enhance image degradation retrieval accuracy under real-
world degradations. To this end, we synthesized six types of
degradations on 100 images from the FFHQ dataset. These
synthetically degraded images were used as queries to probe
the GFIQA-20k test set, selecting the top 5 images with the
smallest distance. We then verify whether the five images
fall under the same degradation category by human inspec-
tion. We quantified our method’s precision by calculating
the mean average precision (mAP) for these retrieval tasks,
as shown in Table 4. The results confirmed DSL’s enhanced
accuracy in identifying images with similar degradation at-
tributes.

In conclusion, these experiments emphasized the effec-
tiveness of DSL in crafting distinct degradation represen-
tations and its practical superiority in real-world scenarios,
bolstering its value in improving GFIQA outcomes.
Effectiveness of Landmark-guided GFIQA. Integrating
facial landmarks into GFIQA significantly improves qual-
ity assessment accuracy, addressing the complexity of facial
features often ignored in traditional methods, which is vali-
dated in Table 3 (Row 6 and 7). To understand how the land-
mark guidance works, Figure 5 visualizes the regional con-
fidences predicted with and without landmarks guidance.
When landmarks are not used, the model indiscriminately
overemphasizes the entire face and even background areas.
In contrast, the model with landmark guidance focuses on
crucial facial regions, which are more aligned with human
perception. In addition, Table 3 (Row 7 and 8) substanti-
ate the benefit of applying positional encoding to the land-
mark identifiers, showing that positional encoding can in-
deed enhance the model capacity to capture more complex
relationships inherent in facial features, thereby improving
the overall prediction accuracy.
Effectiveness of Charbonnier Loss. The introduction
of Charbonnier loss improves the accuracy of GFIQA as
shown in Table 3 (Row 8 and 9).

6. Conclusion
In this paper, we tackle the inherent complexities in GFIQA
with a transformer-based method. Our Dual-Set Degra-
dation Representation Learning improves degradation ex-
traction, and the additional guidance from facial land-
marks further improves the assessment accuracy. Further-
more, we curate the CGFIQA-40k Dataset, rectifying im-
balances in skin tones and gender ratios prevalent in previ-
ous datasets. Extensive experimental results show that the
proposed method performs favorably against state-of-the-
art methods across several GFIQA datasets.



Supplemental Materials

A. Social Impact and Ethical Considerations
This paper contributes to the advancement of Face IQA
technology, which has widespread applications in digital
media and social networking platforms. By ensuring a bal-
anced representation of gender and skin tones in the dataset,
this paper addresses critical issues of fairness and bias in AI,
promoting more equitable facial analysis technologies.

However, if the facial image quality assessment (IQA)
method fails, it could lead to the selection of incorrect fa-
cial quality images for training, subsequently affecting the
accuracy of facial-related algorithms trained on these im-
ages. This situation might result in biases or errors in facial
recognition, emotion analysis, or other applications based
on facial images.

To address this issue, an effective approach is to double-
check the images filtered through the Face IQA method
to ensure their quality meets the expected standards. This
can be achieved through manual review or by employ-
ing additional verification mechanisms. Such a double-
checking mechanism helps reduce the risk of erroneously
selected images, ensuring the quality of training data,
thereby enhancing the reliability and effectiveness of algo-
rithms trained on these data.

B. Comprehensive Generic Face IQA Dataset
B.1. Data Collection

To create a diverse and comprehensive dataset, we initially
collected face images from the CelebA dataset. We utilized
skin tone [3] and gender [1] detectors to analyze these im-
ages, ensuring a balanced representation of both gender and
skin tones. This careful sampling approach was comple-
mented by the addition of 1,028 images from Flickr, specif-
ically chosen to enhance the diversity in terms of skin tones
and occlusion. The combined dataset consists of about
40,000 images. Each image was aligned using Dlib’s face
landmark detection [31, 34, 58] according to FFHQ dataset
[28] and subsequently rescaled to a uniform resolution of
512× 512 pixels, ensuring consistency across the dataset.

B.2. Annotation Procedure

To ensure accurate and consistent subjective quality assess-
ment of facial images, we provided annotators with a user-
friendly and intuitive interface. This interface was designed
to display one facial image at a time, accompanied by an
input field for annotators to enter their Mean Opinion Score
(MOS) for the image. To assist annotators in making accu-
rate judgments, we included example images for each qual-
ity level alongside the interface. These examples served as
references, aiding annotators in better discerning and as-
sessing the quality of each image. Additionally, our system

supports arbitrary zoom-in and out features for each image,
allowing annotators to better assess the details. An illus-
tration of the user interface used in our study is shown in
Figure S.1.

For the subjective scoring process, we adopted the stan-
dard 5-interval Absolute Category Rating (ACR) scale,
comprising levels: Bad, Poor, Fair, Good, and Excellent.
This scale was linearly mapped to a range of [0, 1.0], corre-
sponding to the ACR scale as follows: Bad at 0-20%, Poor
at 20-40%, Fair at 40-60%, Good at 60-80%, and Excellent
at 80-100%.

To elevate the precision and uniformity of the evalua-
tions, we crafted detailed guidelines alongside a collection
of definitive gold-standard principles. These encompassed
several facets of image analysis, such as the visibility of
eyelashes, articulated through specific classification tiers:

• Excellent: No visible artifacts, whether viewed as
thumbnails or in original size.

• Good: Artifacts discernible solely at original size.
• Fair: Minor artifacts noticeable in thumbnail views.

Reference images from the GFIQA-20k dataset were instru-
mental in guiding the annotators.

Additionally, our guidance provides a structure for us-
ing midpoint scores when an image does not clearly fit into
a single category. For instance, if an image falls between
the “Poor” and “Fair” categories, a midpoint score of 40 is
recommended.

We curated a collection of 35 images carefully selected
by experts, where each of the five quality intervals is repre-
sented by seven images. Three images from each level were
used as golden samples, which were provided to guide each
annotator along with the rating guidelines. Additionally, we
conducted a pre-annotation training using the remaining 20
images, with four images from each quality level (It is un-
known to the annotators that they were evenly distributed).
Annotators were required to achieve an accuracy of at least
80% in this test to complete their training. To clarify, an
annotator’s assessment was considered correct if their as-
signed Mean Opinion Score (MOS) was within a margin
of ±15 points from the ground truth MOS score. If this
criterion was not met, they were asked to revisit the guide-
lines and 15 example images and then retake the test until
they reached the accuracy threshold. Importantly, annota-
tors were not informed of the correct answers to the test
questions throughout the process.

In total, we engaged 20 annotators for this study. On
average, each annotator spent approximately 30 seconds as-
sessing the quality of each image. This arrangement en-
sured both the ratings’ efficiency, quality, and consistency.
These detailed guidelines and scoring mechanisms ensured
that participants could accurately and consistently assess
image quality, thereby enhancing our dataset’s overall qual-
ity and reliability.



Reference

Bad (0-20) Poor (20-40) Fair (40-60)

Good (60-80) Excellent (80-100)

Sample

Enter your score: _____

Figure S.1. User Interface of the Subjective Generic Face IQA Study. Participants assess each image’s visual quality by entering the
scores in a toolbox.

Figure S.2. Examples of occluded images in CGFIQA-40K
dataset.

B.3. Dataset Overview

In this section, we delve into the CGFIQA-40k dataset,
which is comprised of 40,000 face images, each meticu-
lously annotated with a Mean Opinion Score (MOS). This

dataset represents a comprehensive collection, covering a
broad spectrum of image quality with MOS values ranging
from 0 to 1.

The CGFIQA-40k dataset is specifically curated to fo-
cus on facial images, showcasing various visual qualities,
including several images with occlusions. As illustrated in
Figure S.2, these occluded images are integral to the dataset,
contributing to its diversity and providing edge cases for ro-
bust model training. We have included image samples from
different categories - Excellent, Good, Fair, Poor, and Bad
to demonstrate the overall diversity. From each category,
as shown in Figure S.3, six images have been carefully se-
lected to represent the range of qualities within that cate-
gory. These images and their respective MOS values are
displayed in the accompanying figures, illustrating the per-
ceptual quality differences across categories.

Furthermore, we present a histogram of the MOS distri-
bution in Figure S.4 for the entire dataset. This histogram
provides a clear overview of the quality distribution of the
images, highlighting the frequency and range of different
quality levels within the dataset.
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Figure S.3. Sampled face images from the CGFIQA-40k dataset. These images showcase the diversity of visual quality across five
categories: Excellent ((0.8,1]), Good ((0.6,0.8]), Fair ((0.4,0.6]), Poor ((0.2,0.4]), and Bad ([0,0.2]). Each category is represented by six
randomly selected images, annotated with their corresponding Mean Opinion Scores (MOS).

C. Implementation Details
C.1. Evaluation Criteria

In our evaluation, we use two well-established metrics to
assess the performance of our model: Spearman’s Rank-
Order Correlation Coefficient (SRCC) and Pearson’s Linear
Correlation Coefficient (PLCC).

PLCC measures the linear correlation between actual
and predicted quality scores, indicating how closely the pre-
dictions align with real values on a linear scale. It is sensi-
tive to numerical differences between scores.

SRCC, in contrast, evaluates the monotonic relationship
between two datasets. It focuses on rank order rather than
numerical values, offering robustness against outliers and
skewed distributions. Both metrics range from -1 to 1,
where 1 signifies perfect correlation, -1 indicates perfect in-
verse correlation, and 0 means no linear correlation. Higher
absolute values indicate better performance, with positive
values showing consistency with the ground truth.

For the PLCC, given si and ŝi as the actual and predicted
quality scores for the i-th image, and µsi and µŝi as their
means, with N as the number of test images, it is defined
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Figure S.4. Distribution of the CGFIQA-40K dataset in terms
of MOS scores.

as:

PLCC =

∑N
i=1(si − µsi)(ŝi − µŝi)√∑N

i=1(si − µsi)
2

√∑N
i=1(ŝi − µŝi)

2

, (S.1)

For SRCC, where di is the rank difference of the i-th test
image in the ground truth and predicted scores, it is given
by:

SRCC = 1−
6
∑N
i=1 d

2
i

N(N2 − 1)
, (S.2)

Both PLCC and SRCC provide insights into the model’s
performance, with higher values indicating better accuracy
and consistency with the ground truth.

C.2. Training Details

Degradation Encoder. The Degradation Encoder is tai-
lored to extract and encode degradation features inherent
in the input face images. Our architecture employs a CNN
comprising six 3 × 3 convolution blocks. Each block in-
corporates batch normalization and is succeeded by a leaky
ReLU activation. After feature extraction, these features
are processed through a two-layer MLP to produce the final
degradation representation vector. We use the Adam opti-
mizer with a learning rate of 3 × 10−5 across 300 epochs
for training. Our training data is divided into two distinct
sets. The first set, labeled as Set S, consists of m im-
ages, as mentioned in Section 3.2 of the main paper. These
are derived from 5000 high-quality images from the FFHQ
dataset [28], resized to 512 × 512. The images in this
set are subjected to 15 different synthesized degradations,
while one image remains undegraded, resulting in a total of
16 images (i.e., m = 16). The synthesized degradations

encompass a variety of conditions such as low-light, high-
light, blur, defocus, 2x downsample, Gaussian noise, Gaus-
sian blur with kernel sizes from 3 to 31, JPEG compression
quality ranging from 1 to 30, motion blur, sun flare, ISO
noise, shadow, and zoom blur. The low-light and high-light
degradations are implemented using the torchvision library,
whereas the other degradations are applied using albumen-
tations [7]. The second set, designated as Set R, includes
n images, amounting to 256 as specified in Section 3.2.2 of
the main paper. This set is dynamically curated by select-
ing from the GFIQA-20k dataset, ensuring that each subset
of 256 images contains at least one high-quality face image
with a Mean Opinion Score (MOS) greater than 0.9. The
temperature parameter θ is 1.0. Notably, both sets undergo
resampling in each iteration to ensure a diverse training ex-
perience. This module comprises a total of 1.27 × 106 pa-
rameters. The training process was conducted on a single
NVIDIA A100 GPU, equipped with 80GB of memory, us-
ing the PyTorch framework. The entire training was com-
pleted in roughly 12 hours.

Landmark Detection Network. We used a commercial
implementation of [12] which outputs 1313 landmarks by
fitting the 3DMM model [15] on the initially detected 68
landmarks. We have observed that the original face land-
mark detection algorithm does not perform well on low-
quality images. However, when fine-tuned specifically for
low-quality images, it significantly improves performance,
as shown in Figure S.5. These low-quality images are syn-
thesized based on the image degradation model [26] on the
current landmark detection dataset.

GFIQA Network. The GFIQA Network, informed by the
features extracted by the Degradation Encoder, endeavors
to predict the Mean Opinion Score (MOS) for input face
images. Our network architecture combines a hybrid CNN-
Transformer backbone, comprising a VGG-19 model pre-
trained on ImageNet [37], and a Vision Transformer (ViT)
backbone [14], also pre-trained on ImageNet. This setup is
further enhanced with two Swin Transformer blocks [40],
a channel attention layer [23], a transformer decoder, and
two MLP regression layers. The ViT backbone, tailored
for an input size of 384 × 384, processes the image by di-
viding it into multiple 16 × 16 pixel patches, ensuring de-
tailed and comprehensive image analysis. During training,
we employ a batch size of 16, and all input images undergo
random cropping from 512×512 to 384×384. Additionally,
data augmentation in the form of random horizontal flipping
is applied to enhance the model’s generalization capability.
The learning rate is set at 10−5 across 100 epochs, and we
use the Adam optimizer. The ϵ in Lchar is 10−3. The mod-
ule consists of 2.51× 108 parameters in total. The network
was trained on an Nvidia A100 GPU, which has 80GB of
memory, using the PyTorch framework. The entire training
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Figure S.5. Evaluating the Impact of Fine-Tuning on Land-
mark Detection in Poor-Quality Images. The fine-tuned land-
mark detection algorithm can handle low-quality inputs (first col-
umn), as demonstrated in the third column of results. In contrast,
the unfine-tuned algorithm has large errors, as evidenced in the
second column (highlighted by the red crosses). The detected
landmarks have been overlaid on the high-quality version of the
input for better visualization. The basic 68 landmarks are repre-
sented by green dots, while the expanded set of 1313 landmarks is
denoted by small red dots.

process was completed within 20 hours.

Clarification. To clarify, in our system, both the degra-
dation extraction network and the landmark detection net-
work process the entire image (512× 512 pixels) to predict
landmarks and extract degradation representations. How-
ever, for the GFIQA network, we adapt to the input size
requirements of the pre-trained Vision Transformer (ViT),
which is 384 × 384 pixels in our implementation. To ac-
commodate this, we crop the facial image into several over-
lapping 384 × 384 patches, each serving as an individual
input for the ViT. This ensures that the total coverage area
of all patches encompasses the original input image.

Dataset/Model PLCC SRCC
GFIQA-20k/StyleGAN-IQA 0.3323 0.3421

CGFIQA-40k/StyleGAN-IQA 0.3541 0.3643
GFIQA-20k/Ours 0.3947 0.4165

CGFIQA-40k/Ours 0.4229 0.4653

Table S.1. Performance Comparison of Zero-shot GFIQA on
PIQ23 [8] Dataset. This table compares the effectiveness of mod-
els trained on CGFIQA-40k and GFIQA-20k datasets. The results
highlight the superior performance of models using CGFIQA-40k,
underscoring its larger scale and balanced diversity in gender and
skin tones.

In the main paper, particularly in Fig. 2, we simplified
the explanation by omitting the step of cropping the facial
image into multiple patches. Moreover, the images outlined
in red in the GFIQA Network section are intended to illus-
trate how the ViT divides the input image (384 × 384) into
several patches for feature extraction between patches.

D. More Experimental Results
D.1. Cross-Dataset Validation

To explore the quality attributes of facial data, we conducted
an experiment using our newly proposed CGFIQA-40k
dataset and the existing GFIQA-20k [66] dataset to train
models. In this experiment, we employed the StyleGAN-
IQA model [66] and our method for training. The effec-
tiveness of these models was then verified on the PIQ23
dataset [8], a benchmark for unseen face image quality as-
sessment.

As shown in Table S.1, we observed that models trained
on our datasets, particularly the CGFIQA-40k, demon-
strated superior performance on the PIQ23 dataset1, an un-
seen face image quality dataset. This enhanced perfor-
mance can be attributed to several key factors. Firstly, the
CGFIQA-40k dataset is extensive in scale, encompassing
a wide range of image qualities and scenarios. Secondly,
and crucially, it offers a more balanced representation in
terms of gender and skin tone compared to the GFIQA-20k
dataset. This balanced representation ensures a more com-
prehensive and unbiased training process, leading to models
that are better equipped to handle a diverse array of facial
images in real-world applications. The results clearly high-
light the advantages of our dataset, underscoring its poten-
tial in advancing the field of facial image quality assess-
ment.

D.2. More Ablation Studies

Effectiveness of DSL. In our experiments, we compared
two approaches to validate the effectiveness of our dual-set
design in contrastive learning. The first approach, which we

1We test on device-exposure subset in PIQ23 dataset.



Strategy Naive Patch-based DSL
mAP 39.21 52.30 72.1

Table S.2. Comparative degradation retrieval accuracy using
DSL, patch-based, naive methods under real-world degrada-
tions, quantified by mAP scores.

GFIQA-20k w/o CA w CA
PLCC/SRCC 0.9738/0.9733 0.9745/0.9740

Table S.3. Impact of Channel Attention on Model Perfor-
mance.

refer to as the “Naive method”, involves training a model
exclusively on the synthetic set (Set S). In this method,
positive pairs are formed from images with identical syn-
thetic degradations, while negative pairs are composed of
images with different degradations. This approach, how-
ever, showed limitations in generalizing to real-world im-
ages due to its sole reliance on synthetic degradations.

In contrast, our dual-set model integrates both synthetic
(Set S) and real-world (Set R) degradations. This model is
trained to recognize and adapt to a broader range of degra-
dation patterns, encompassing both controlled synthetic and
naturally occurring real-world degradations. As a result, it
demonstrated superior generalization capabilities, particu-
larly in diverse real-world scenarios. The comparative per-
formance of these two approaches is detailed in Table S.2,
highlighting the significant advantage of our dual-set ap-
proach in achieving more effective generalization in extract-
ing degradation representation.
Effectiveness of Channel Attention. By integrating a
channel attention block, our method achieves a more pre-
cise feature focus, enhancing face quality assessment. This
improvement leverages the well-documented advantages of
attention mechanisms within the domain of image analysis,
effectively emphasizing crucial channels. The comparative
results, demonstrating the impact of incorporating channel
attention into our approach, are detailed in Table S.3.
Effectiveness of Landmark Guidance. We examine the
impact of landmark guidance by conducting an experiment
in which we omit the landmark detection component from
DSL-FIQA. We then assess the performance on the GFIQA-
20k [66] and CGFIQA-40k datasets, with the results de-
tailed in Table S.4. This evaluation demonstrates that in-
corporating landmark guidance improves the effectiveness
of our method.

E. Discussion
In our Dual-Set Contrastive Learning (DSL) framework, we
utilize the real-world image set (R) to establish soft prox-
imity mapping through the synthetic image set (S). Theo-

PLCC/SRCC StyleGAN-IQA MANIQA DSL-FIQA w/o landmark DSL-FIQA
GFIQA-20k 0.9673/0.9684 0.9614/0.9604 0.9725/0.9720 0.9745/0.9740

CGFIQA-40k 0.9822/0.9821 0.9805/0.9809 0.9855/0.9852 0.9873/0.9880

Table S.4. Impact of Landmark Guidance on Model Perfor-
mance.

retically, it is possible for two or more images in set R to
have identical degradation representations.

However, it is important to note that the likelihood of this
occurrence is extremely low due to the complex and vari-
able nature of image degradation in real-world scenarios.
In practice, even degradations that appear visually similar
can have distinct characteristics influenced by various fac-
tors such as environmental conditions, lighting, and camera
settings. Therefore, while the theoretical possibility of iden-
tical degradation representations in two images exists, it is
practically negligible.

Additionally, we examine the t-SNE results presented in
Figure 4 of the main paper. Initially, we observe that Gaus-
sian noise, which is random and impacts the entire image,
fundamentally contrasts with blurs and compressions that
specifically affect image structure. This distinction likely
causes Gaussian noise to appear separate from other degra-
dations in t-SNE visualizations. Furthermore, JPEG com-
pression and low resolution both lead to a loss of image
detail, with the former eliminating high-frequency informa-
tion and the latter decreasing the pixel count. This common-
ality in their impact on image clarity might result in similar
patterns within the t-SNE visualizations.
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Torii, Tomas Pajdla, and Josef Sivic. Neighbourhood con-
sensus networks. NeurlPS, 2018. 5

[55] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2, 3

[56] Jacob Rose and Thirimachos Bourlai. Deep learning based
estimation of facial attributes on challenging mobile phone
face datasets. In IEEE/ACM international conference on ad-
vances in social networks analysis and mining, 2019. 1

[57] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In CVPR, 2023. 1

[58] Christos Sagonas, Epameinondas Antonakos, Georgios Tz-
imiropoulos, Stefanos Zafeiriou, and Maja Pantic. 300 faces
in-the-wild challenge: Database and results. Image and vi-
sion computing, 47:3–18, 2016. 9

[59] Avinab Saha, Sandeep Mishra, and Alan C Bovik. Re-iqa:
Unsupervised learning for image quality assessment in the
wild. In CVPR, 2023. 1, 2, 3, 4, 6, 7

[60] Torsten Schlett, Christian Rathgeb, Olaf Henniger, Javier

Galbally, Julian Fierrez, and Christoph Busch. Face image
quality assessment: A literature survey. ACM Computing
Surveys, 2021. 2

[61] Torsten Schlett, Christian Rathgeb, Olaf Henniger, Javier
Galbally, Julian Fierrez, and Christoph Busch. Face image
quality assessment: A literature survey. ACM Computing
Surveys (CSUR), 2022. 1

[62] Andrew D Selbst, Danah Boyd, Sorelle A Friedler, Suresh
Venkatasubramanian, and Janet Vertesi. Fairness and ab-
straction in sociotechnical systems. In Conference on fair-
ness, accountability, and transparency, 2019. 6

[63] Harin Sellahewa and Sabah A Jassim. Image-quality-based
adaptive face recognition. TIM, 2010. 2

[64] Hamid R Sheikh, Muhammad F Sabir, and Alan C Bovik.
A statistical evaluation of recent full reference image quality
assessment algorithms. TIP, 2006. 1

[65] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. NeurlPS, 2017. 5

[66] Shaolin Su, Hanhe Lin, Vlad Hosu, Oliver Wiedemann, Jin-
qiu Sun, Yu Zhu, Hantao Liu, Yanning Zhang, and Dietmar
Saupe. Going the extra mile in face image quality assess-
ment: A novel database and model. TMM, 2023. 1, 2, 3, 6,
7, 13, 14

[67] Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge,
Jinqiu Sun, and Yanning Zhang. Blindly assess image qual-
ity in the wild guided by a self-adaptive hyper network. In
CVPR, 2020. 7

[68] Simen Sun, Tao Yu, Jiahua Xu, Wei Zhou, and Zhibo
Chen. Graphiqa: Learning distortion graph representations
for blind image quality assessment. TMM, 2022. 7

[69] Philipp Terhorst, Jan Niklas Kolf, Naser Damer, Florian
Kirchbuchner, and Arjan Kuijper. Ser-fiq: Unsupervised esti-
mation of face image quality based on stochastic embedding
robustness. In CVPR, 2020. 2

[70] Zhengzhong Tu, Xiangxu Yu, Yilin Wang, Neil Birkbeck,
Balu Adsumilli, and Alan C Bovik. Rapique: Rapid and
accurate video quality prediction of user generated content.
IEEE Open Journal of Signal Processing, 2021. 1, 3

[71] Tao Wang, Kaihao Zhang, Xuanxi Chen, Wenhan Luo,
Jiankang Deng, Tong Lu, Xiaochun Cao, Wei Liu, Hong-
dong Li, and Stefanos Zafeiriou. A survey of deep face
restoration: Denoise, super-resolution, deblur, artifact re-
moval. arXiv preprint arXiv:2211.02831, 2022. 2, 5

[72] Fei Yang, Xiaohu Shao, Lijun Zhang, Pingling Deng, Xi-
angdong Zhou, and Yu Shi. Dfqa: Deep face image quality
assessment. In ICIG, 2019. 1

[73] Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan
Gong, Mingdeng Cao, Jiahao Wang, and Yujiu Yang.
Maniqa: Multi-dimension attention network for no-reference
image quality assessment. In CVPR, 2022. 1, 3, 6, 7

[74] Zhenqiang Ying, Haoran Niu, Praful Gupta, Dhruv Mahajan,
Deepti Ghadiyaram, and Alan Bovik. From patches to pic-
tures (paq-2-piq): Mapping the perceptual space of picture
quality. In CVPR, 2020. 1

[75] Junyong You and Jari Korhonen. Transformer for image
quality assessment. In ICIP, 2021. 7

[76] Weixia Zhang, Kede Ma, Jia Yan, Dexiang Deng, and Zhou
Wang. Blind image quality assessment using a deep bilinear
convolutional neural network. TCSVT, 2018. 3



[77] Weixia Zhang, Kede Ma, Guangtao Zhai, and Xiaokang
Yang. Uncertainty-aware blind image quality assessment in
the laboratory and wild. TIP, 2021. 7

[78] Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang,
and Kede Ma. Blind image quality assessment via vision-
language correspondence: A multitask learning perspective.
In CVPR, 2023. 1, 3

[79] Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang,
and Kede Ma. Blind image quality assessment via vision-
language correspondence: A multitask learning perspective.
In CVPR, 2023. 7

[80] Kai Zhao, Kun Yuan, Ming Sun, Mading Li, and Xing Wen.
Quality-aware pre-trained models for blind image quality as-
sessment. In CVPR, 2023. 4

[81] Xuan Zhao, Yali Li, and Shengjin Wang. Face quality as-
sessment via semi-supervised learning. In ICPR, 2019. 2

[82] Hancheng Zhu, Leida Li, Jinjian Wu, Weisheng Dong, and
Guangming Shi. Metaiqa: Deep meta-learning for no-
reference image quality assessment. In CVPR, 2020. 7


