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Relative Positioning from Geometric Invariants

R. Mohr, L. Morin
LiFia-IMAG
46 Avenue Félix Viallet
38031 Grenoble FRANCE

Abstract

In this paper, we give geometric constructive solutions
to the 3D wvision problems like positioning a point in
the space from two views. Using reference poinis in
the scene, no calibration is needed. The method in-
volves only simple geometric computation. From our
experiments we concluded that positioning 3D points
relatively to references points is easy and provides more
reliable results than absolute posilioning as done usu-
ally.

1 Introduction

In a recent paper, Koendering and van Doorn [2]
demonstrated that taking points in a sequence of im-
ages as reference points allowed to derive very easily
qualitative 3D information of the scene. Their ap-
proach was however only restricted to affine geometry,
a good approximation of the image formation process
when the view angle is very small. Here we are going
to extend their results using projective geometry. This
will then allow us to extract quantitative 3D informa-
tions from two images.

One point of an image is associated with a corre-
sponding line of sight in the 3D space. This corre-
spondence between image point and line is computed
through the calibration of the camera (see [6] [1] for
some recent contributions). Using known reference
points in the space, the parameter of the camera are
estimated.

In the approach described here we are using reference
points from the scene for locating other points in the
space. So our approach can be compared with the
standard one by the schema depicted in figure 1.

Projective geometry [5] is our central mathemat-
ical tool, since projective geometry deals with the
properties that are invariant under homography and
therefore under central projection. When the ca-
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Figure 1: Traditional calibration versus geometrical
approach

mera parameters are settled —which is not the case in
our framework— the problem addressed here becomes
much easier and the retrieved positions are referred to
an absolute reference frame, whereas our method leads
to relative positioning.

Next section introduces briefly the geometric tool
needed to establish our main results: the cross-ratio.
Besides, it defines “projective coordinates”, a way to
reference a point in a plane with projective invariant
values.

Section 3 shows how to use these tools to solve the
main problems we address here but considering only
the case where at least four of the reference points
are coplanar. For the more general case the reader
is referred to [4].

Some experimental results are presented in section 4.
They illustrate the robustness of the method. The last
section explores the case of a camera motion which is
not perfectly known, and we show that our method
provides more robust position estimation than the
standard positioning using the camera frame.



2 Projective geometry

2.1 Preliminary definitions

We provide here a short introduction to projective ge-
ometry definitions and vocabulary. The reader is re-
ferred to [5] for a gentle introduction or to {3} for vision
oriented considerations on projective geometry. This
subsection is helpful but not essential for the compre-
hension of the remainder.

We consider IR"*! —{(0, ..., 0)} with the equivalence
relation:
~)$n+1) ~ (I’l,..

(z1,-. . Zny1) & 3X # 0 such that

(=4, Zhy1) = Az, Tagr)

The quotient space obtained by this equivalence re-
lation is the projective space IP". Thus the n+1-tuples
of coordinates (), ...,zn+1) and (z},...,z,,,) Tepre-
sent the same point in the projective space.

Any linear transformation in homogeneous coordi-
nates is an homography. The matrix associated with a
given homography is defined up to a non zero scale fac-
tor, that is \y = Az. Notice that a projection from the
3D space IP3 onto the image plane IP? is therefore rep-
resented by a 4 x 3 matrix in homogeneous coordinates
which leads us to a 11-dimensional space for these pro-
jections: exactly the same dimension as the space of
all possible projections for uncalibrated camera.

The usual affine space IR" is mapped into IP™ by the
correspondence W:

v (1)

Notice that only the points (y1,...,¥n,0) are not
reached by ¥. These points are considered as points
at infinity. They may be perceived as the limit of

-yyn)A)N(yl/Ai“':y"/Aal)

s (21, T0) = (21,...,20, 1)

(yla .. (2)

while A — 0.

2.2 The basic invariant

The cross-ratio is the basic invariant in projective ge-
ometry: all other projective invariants can be derived
from it.

e Cross-ratio of four points:

Let A, B, C, D be four collinear points, we can
define what we call their cross-ratio as:

[A,B,C,D] = 3

&l <)
&=

}
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where AB is the algebraic measure of AB.

Fundamental theorem: Any homography pre-
serves the cross-ratio.

Thus central projection, linear scalings, skewings,
rotations, translations. . . preserve the cross-ratio.

Cross-ratio of four lines

The cross-ratio of a pencil of four lines Iy, I3, I3,
ly going through O is defined as the cross-ratio
[A, B,C, D] of the points of intersection of the four
lines with any line ! not passing through O.

2.3 Projective coordinates

In the affine space of size n, n + 1 points provides a
reference frame if no subset of k + 2 points lies in a
k-dimensional subspace. The first of these points is
usually taken as the origin of a vectorial basis. In pro-
jective geometry it is well known that a reference frame
for IP™ has n + 2 points, no k + 2 of them lying in k-
dimensional subspace. For the particular case of the
projective plane, four points provide a reference frame
if no three of them are coplanar.

We define how points can be designated through “co-
ordinates” with respect to given reference points us-
ing cross-ratio. Obviously from the previous section
these “coordinates” are invariant under any homogra-
phy, and therefore under central projection and scaling
along the image plane axes.

e Projective coordinates on a line

Let A, B, C be three given points of a line I, and
P be a point of I. P and A, B, C define a cross-
ratio A = [A, B, C, P]. Inversely, given a scalar A
there exists a unique point P such that the cross-
ratio equals to A. (z1, z2) such that z;/z; = X are
what we call projective coordinates of the point P
in the coordinates system defined by (4, B, C).

Projective coordinates on a plane

In a projective plane P, any four points
A, B, C, D, no three collinear, define a projective
coordinates system (see figure 2). Given a point
P of P, let (z1,z2,3) be a triple of real numbers
defined up to a scaling factor and such that :

? =[CA,CB,CD,CP] (4)

2

fz_z = [AB, AC, AD, AP] (5)
3

(z1, 2, z3) are called the projective coordinates of
P in the coordinates system (4, B,C, D). Natu-
rally we also have z3/z; = [BC, BA, BD, BP]}.



Figure 2: Projective coordinates in the plane

In a projective plane with four known points we
can uniquely reference any point of the plane by
their projective coordinates so defined. In fact
only the two cross-ratios k; = z1/z2 and k2 =
z2/x3 are necessary to uniquely define a point.

3 Projective reconstruction

This section solves the problems mentioned in the in-
troduction in the simplest case when at least four of
the reference points are coplanar. First the back pro-
jection is solved and the technique introduced is used
for solving the other ones.

Given two sets of 4 coplanar points {4, B,C, D}
and {E,F,G,H} and their projections onto the im-
age plane {a,b,c,d} and {e, f,g,h}, we are going to
show how to solve the problems mentioned in the first
section.

Note that this configuration can be obtained with
A = E and B = F; this is the case each time we
choose six vertices on a block as reference points, the
six points lying on only two adjacent faces (see figure

3).

C D=F

Figure 3: 6 points on adjacent faces provide 2 sets of
4 coplanar points

3.1 How to back project an image
point?

Given an observed point m on the image plane, it is
possible to determine the location of the viewing line
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Om through m with respect to the scene, without any
calibration.

reference plane 1

reference plane 2

Figure 4: The back projection of the image point m

Proof: As shown in subsection 2.3, we can deter-
mine the projective coordinates (z;,z2,£3) of m with
respect to the coordinate system (a, b, c, d), from mea-
sures in the image plane. Let M; be the intersection
in 3D space of the viewing line Om with the plane
ABCD (see figure 4). The projection of M; onto the
image plane is m. Since the projective coordinates are
invariant under projection (see section 2.3), the pro-
jective coordinates of M; with respect to (A, B,C, D)
are (z1,Z2,23). The position of M; in the reference
plane ABCD can then be determined from its projec-
tive coordinates as shown in section 2.3.

We can similarly determine M, the intersection of
the viewing line Om with the plane EFGH. (My, M3)
determine the viewing line with respect to the scene,
and this without knowing the camera position in the
scene.

3.2 Where is the camera?

We just showed in 3.1 how to reconstruct the viewing
line from a single shot. It is also possible to recon-
struct the position of the optical center with respect
to the scene, in a single shot, using the same method.
If two points m and p are given in the image plane,
it is possible to reconstruct the viewing line Om and
Op. These two lines happen to intersect in space at
O, which provides us with a method to compute the
location of O.

Furthermore, if more than two points are available,
it will be possible to derive a solution using the least
squares estimate, which will be much more reliable
against noise in the measures.

3.3 Where is the image point?

We suppose here that the position of camera center 0
is computed using the previous method. The image
point m of a space point M is then easily constructed:
First compute the intersection point of OM with a



known plane containing four reference points; then in
this known plane take measures of the projective co-
ordinates of this intersection as defined in section 2.3.
Finally with these two known cross-ratios construct the
point m in the image plane using the image projection
of the four reference points.

3.4 How to locate a point in the scene?

The previous method can be applied to locate a point
in a scene containing reference points. Here two snap-
shots of the same scene are needed. A given point M
in the 3D space is projected respectively as m; and m,
in each of these two images.

Let us suppose that the matching of m; and ms has
been solved. For each image we are able to reconstruct
the viewing line passing through M and therefore these
two lines intersect on M. This method degenerates
only when the two positions of the optical centers are
aligned with the viewing line.

3.5 Where are the epipolar lines?

3.5.1 Finding one epipolar line

In stereo vision, the epipolar centers o and o’ are the
intersection of the line OO’ with the image planes (see
figure 5). These points are quite important as all epipo-
lar lines are radiated from these centers. The epipolar
constraint states that given a point M in 3D space
with projections m in the first image plane and m’ in
the second one then the epipolar plane OO’M inter-
sects the image planes along the lines om and o'm’.
Therefore given a point m in the first image plane, its
image m’ in the second image lies on the corresponding
epipolar line. The line om (resp. o'm’) is what we call
the epipolar line of the point m’ (resp. m).

7 .

Figure 5: The epipolar geometry.

[}
0 NS

The same method defined in 3.1 enables to determine
the epipolar lines.

142

The two sets of 4 coplanar points {A, B, C, D} and
{E,F,G,H} respectively project as {a,b,c,d} and
{e, f, 9, h} onto the image plane. Given an observed
point m on the image plane, it is possible to determine
the location of the viewing line Om through m with
respect to the scene.

Another snapshot from a new optical center O’ pro-
vides a new image. We suppose here that this image
contains also reference points (not necessary the same
as for image 1, but within the same reference frame).
It is then possible to determine the projection of the
viewing line Om on the new image plane, which is the
epipolar line of point m. Indeed, we know the projec-
tive coordinates of points M1 and M2 (as defined in
3.1), and we are therefore able to reconstruct points
ml and m2 on the new image plane. These two points
determine the epipolar lines of point M on the new
image plane.

3.5.2 The pencil of epipolar lines

Projective geometry allows us to prove easily the fol-
lowing result which constrains the position of the
epipolar lines.

Theorem : two pencils of four corresponding epipo-
lar lines have same cross-ratio.

Proof : from their definition, corresponding epipolar
lines are the intersections of a 3D plane containing the
base line OO’ with the two image planes. Therefore
the cross-ratio of the pencil of lines is the cross-ratio
of the pencil of planes.

from there, if three corresponding epipolar lines are
known, the epipolar geometry is completely defined:
for any point m in imagel, m defines the epipolar line
going through m in imagel. The cross-ratio of these
known four lines can then be computed and we define
the corresponding line in the second image as the one
with the same cross-ratio.

4 Experimentation

In order to test the robustness of our method, we
present here some few results. The scene is a sim-
ple polyhedral scene showing a cube in the foreground
and with a background made up with two paper sheets
containing black painted rectangles. Figure 6 shows
two images of this scene after extracting edges, using
polygonal approximation, and least square fitting.
Measures of reference points in the scene were per-
formed with a regular ruler, which provides a 1mm
accuracy. The two vertical planes were supposed to be
orthogonal, in fact their angle is 92 degree.



Figure 6: Contours image of the scene

A stereo reconstruction is performed using the two
images displayed in figure 6. The second image is taken
after rotating the scene about 40 degrees around a ver-
tical axis. Matching between corresponding points was
done by hand as matching was no the primary concern
of this paper.

Table 1 describes the results of the retrieval of the
cube vertices, using the method described in section
3.4. The exact size of the cube is 50mm. Hence the
results are equal within 4% to the exact values. No
comparison can be made with exact location of the
cube since only its approximate position was known.

poinis z Yy z edges | length

0 78.9 | 140 | 48.5 || 0-1 50.5
1 79.1 | 141 -2 0-2 49.1
2 813 | 189 } 475 | 0-6 48.9
3 82.0 [ 188 | -1.5 1-3 47.1
4 33.2 [ 195 | 485 || 2-3 49.5
5 344|194 | -15 2-4 48.9
6 30.3 | 145 | 49.0 } 3-5 48.0

4-5 49.8

4-6 50.1

Table 1: Results for 3D reconstruction of the cube

So, if absolute errors are up to three millimeters, it
has to be noticed that differences of such values (rela-
tive errors) are also bounded by three millimeters. The
average value is lower, but this simple experiment had
no intend to deliver reliable statistic on these results.
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5 Case of a moving camera
In order to compare the error obtained with the ge-
ometrical approach and the traditional one, we have
analyzed a standard simple case (see fig. 7). A point
P lying in a plane is viewed from two linear cameras C;
and C,. The camera base-line is 8000 pixels long and
the point is located 40000 pixels from the base-line.
We assume the two cameras to be perfectly calibrated
and their positions and orientations to be known with
some uncertainty. The error on an image point posi-
tion is set to 1 pixel. The camera positions are assumed
to have a 100 pixels uncertainty. We assume that the
field of view contains a reference line L passing through
three known points.

Ay
L
YL oLL
e P(%Y)......40.000.pixels

€1(X1,Y1) C2(X2,Y2)
-4000 +4000

Figure 7: A particular case :
tion.

planar stereo reconstruc-

Using the traditional approach, we can reconstruct
the position of P from the two images using standard
triangulation.

We can also compute the position of P using the
cross—ratio method in a straightforward way.

From the Jacobian matrix associated to the recon-
struction equations, we have analyzed for both meth-
ods the error on P as a function of the errors on the
data.

Figure 8 shows for the traditional method the error
on z and y coordinates of P as a function of the error
on camera orientation (60 = 66, = 665).

Figure 9 refers to the geometrical method. It shows
the error on z as a function of the orientation of the
refence line, ay. The different curves correspond to
different values of Yz, distance of the reference line
from the cameras.



As shown in these two curves and as a conclusion of
our other plots, the geometrical approach easily pro-
vides errors below 3.000 pixels, except in the proximity
of degenerate cases (reference line oriented along the
viewing line); in the traditional case (see fig. 8) this
means an accuracy of 0.004 radians (~ 0.2 deg) mea-
suring the angles 61 and 62. Moreover, as expected for
relative positioning, the minimum errors occur when
the point P is located near by the reference line.

Configuration 1 : ewor on poakion of P10.40.000)

3

dheie [méans)

notes [T

Figure 8: Error on x and y position of P as a function
of the error on #. The lower curve corresponds to the
error on .

4903

Cortigurmion 1 : eor on x poskion of P{(0.40.000) ot

30003

10003

- )

Figure 9: Error on z and y position of P as a function
of arr. Each curve corresponds to a different Yy.: from
the bottom Yz = 40000pizels, Y. = 100000pizels,
Y = 25000pizels.

a7 o 07

6 Conclusion

We demonstrated here how taking into account po-
sition points in the space allows relative positioning.
Such an approach solves in an elegant way problems
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like back projection of a image point, 3D positioning
from two frames, or how to determine the epipolar
geometry. Furthermore such an approach has several
benefits. Of course no calibration is needed (we assume
however that the camera is a perfect pinhole camera)
and only simple computations are required.

A study of error and experimentation shows that
the precision obtained is better than the one obtained
through the traditional approach. The geometrical ap-
proach provides explicit object based information, with
uncertainty proportional to the distance so it is a re-
ally natural way to describe the environment in a wide
set of robotic tasks.
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