2007.11955v1 [cs.CR] 22 Jul 2020

arxXiv

PhishZip: A New Compression-based Algorithm for
Detecting Phishing Websites

Rizka Purwanto*¥, Arindam Pal’¥, Alan Blair*, Sanjay Jha*
*School of Computer Science and Engineering, University of New South Wales, Australia
TData6], CSIRO, Sydney, New South Wales, Australia
J;Cyber Security Cooperative Research Centre, Australia

Abstract—Phishing has grown significantly in the past few
years and is predicted to further increase in the future. The
dynamics of phishing introduce challenges in implementing a
robust phishing detection system and selecting features which
can represent phishing despite the change of attack. In this
study, we propose PhishZip which is a novel phishing detection
approach using a compression algorithm to perform website
classification and demonstrate a systematic way to construct
the word dictionaries for the compression models using word
occurrence likelihood analysis. PhishZip outperforms the use of
best-performing HTML-based features in past studies, with a true
positive rate of 80.04%. We also propose the use of compression
ratio as a novel machine learning feature which significantly
improves machine learning based phishing detection over previous
studies. Using compression ratios as additional features, the true
positive rate significantly improves by 30.3% (from 51.47% to
81.77%), while the accuracy increases by 11.84% (from 71.20%
to 83.04%).

Index Terms—phishing detection, web page, compression, clas-
sification

I. INTRODUCTION

The number of phishing attacks has grown significantly in
the past few years. The Anti-Phishing Working Group (APWG)
recorded a significant increase of unique phishing attacks from
2014 to 2016 [1] causing considerably high financial loss rang-
ing between $60 million and $3 billion per year in the United
States [2]]. The number of attacks is likely to increase in the
future with the availability of phishing toolkits and algorithms
which ease the process of phishing [3]], [4f]. The dynamics in
phishing behaviours bring challenges in implementing a robust
and accurate phishing detection for the long term [J5].

To mitigate the negative impacts of phishing, security soft-
ware providers, financial institutions, and academic researchers
have studied various approaches to build an automated phishing
website detection system. These methods include the use of
blacklists and detecting phishing websites by investigating the
website content, URL, and web-related features [6]—[10].

While most past studies in phishing detection focused on the
use of machine learning algorithms, this study introduces the
use of compression algorithms to perform phishing website
classification. The compression-based classification process
aims to predict whether a certain website is phishing or benign
based on the textual information. To perform this task, we built
two compression models which are optimised for phishing and
benign websites respectively. Building these models requires

information regarding the word distribution in phishing and
benign websites, which is required to optimise the compression
for each class. Using these models, we can perform classifica-
tion by comparing the compression ratios of both models. We
expect that a phishing optimised model should compress phish-
ing websites better than a non-phishing optimised compression
model, resulting in a higher compression ratio, and vice versa.
The main tool that we use in this work is the z1ib library,
which is based on the DEFLATE compression algorithm [[11].
DEFLATE is a lossless data compression algorithm used for
compressing websites in HTTP [12].

To summarise, this paper makes the following contributions:

« We introduce a systematic process of selecting meaning-
ful words which are associated with phishing and non-
phishing websites by analysing the likelihood of word oc-
currences and calculate the optimal likelihood threshold.
These set of words are used as the predefined compression
dictionary for our compression models.

o We develop a tool called PhishZip which performs phish-
ing website detection using the DEFLATE compression
algorithm. To the best of our knowledge, this study is
the first to use compression algorithms to perform phish-
ing website classification. Unlike machine learning based
models, performing classification by leveraging compres-
sion algorithms does not require training the models nor
performing HTML parsing [13]]. Thus, classification with
compression algorithms is faster and simpler.

« We propose the use of compression ratio as a novel ma-
chine learning feature which is robust and easy to extract.
Compression ratio measures the distance or cross-entropy
between the predicted website and phishing/non-phishing
website content distribution. The high compression ratio
is associated with low cross-entropy, which indicates that
the content distribution is similar to the common word
distribution in phishing/non-phishing websites [13].

The paper is organised as follows. In section [lI} we provide
an overview of past studies in phishing detection systems
and compression based classification. Section provides
some background regarding phishing and the concept of
compression-based classification. Section [[V] gives the system
overview of PhishZip. We provide the word occurrence like-
lihood analysis for constructing the word dictionary of the
compression models in Section The experimental setups,

including the evaluation methodology and diversity of our
web page corpus, are presented in Section We provide
the performance evaluation results in Section [VII| and provide
more analysis regarding these results in Section Finally,
we wrap up with conclusions in Section

II. RELATED WORKS

Several past studies in phishing website detection systems
have been conducted, mainly focusing on the use of machine
learning algorithms to classify phishing websites based on
specific features. Whittaker et al. introduced a machine learn-
ing classifier for automatically maintaining Google’s phishing
blacklist using features extracted from the URL, page hosting
information, and the page content [10], [14]. Meanwhile, Xiang
et al. proposed CANTINA+ as a comprehensive framework
for detecting phishing websites using URL-based, HTML-
based, and web-based features [[6]. The study by Xiang et
al. extends CANTINA, which performs phishing detection
based on TF-IDF information retrieval algorithm and seven
other content-based heuristics, including age of domain, logo
image and domain name inconsistency, and suspicious links
in the HTML [§]]. Xiang and Hong also studied the use of
identity discovery as a hybrid phishing detection approach [7].
Meanwhile, Zhang et al. [9] proposed a content-based phishing
website detection by analysing the website textual and visual
content and assessing its similarity. In a recent study, Quinkert
et al. [15] focused on observing the use of homograph domains
to identify scamming and phishing.

In contrast, our work leverages compression algorithm to
perform classification which has not been implemented for
phishing detection in past studies. A number of studies have
previously discussed the use of data compression algorithm to
perform text classification in various areas. Marton et al. in
[13] evaluated the performance of various compression-based
classification methods to classify text based on topic/genre and
authorship attribution. Meanwhile, Ziegelmayer and Schrader
in [16] discussed the use of Prediction by Partial Matching
(PPM) to perform sentiment polarity classification. Compres-
sion algorithms have also been used to perform classification
of amino acid sequences of DNA as discussed in [17].

III. BACKGROUND

In this section, we provide background on phishing,
compression-based classification, and a brief description of the
DEFLATE compression algorithm.

A. Phishing

Phishing is a social engineering attack which aims at stealing
user account credentials by impersonating legitimate organisa-
tions or institutional websites. Several motives underlie these
attacks, such as financial gain or stealing identities for hiding
illegal actions [[18]. To perform phishing, attackers typically
broadcast emails to the victims with urgent calls to a particular
action, e.g. account subscription status or password reset due
to a data breach, with a URL redirecting to these phishing

websites. As this type of attack exploits users’ vulnerabilities,
finding an effective strategy to avoid phishing and reduce its
impact is fairly challenging. Despite having an information
system which is technically secure against password theft,
attackers are still able to obtain user data when unaware end-
users type their credentials into a phishing website form.

Three types of anti-phishing techniques exist to mitigate
the negative impacts of phishing [19], which are detection,
prevention, and revision. The detection technique is arguably
the most effective as it minimises human errors, the main
vulnerability exploited by phishing attackers [20]. Developing a
phishing detection system requires some knowledge regarding
how attackers conduct the attacks. In their literature study, Dou
et al. mentioned five stages of phishing attacks as reconnais-
sance, weaponisation, distribution, exploitation, and exfiltration
[20]. Based on this life-cycle, phishing detection systems
are implemented to avoid phishing during the exploitation
step, when victims receive the phishing emails. The detection
systems detect phishing websites or phishing emails on the
client side through a Web browser or specific anti-phishing
software, or on the server side. Whenever a phishing website
or email is detected, the detection system will either block
user access to the suspected website, notify users through a
warning that the visited website or received email is potentially
malicious [21], [22].

B. Compression-Based Classification

Text categorisation tasks assign each document to one of the
preset categories. Various machine learning algorithms have
been used in several studies to perform text categorisation
tasks, such as Naive Bayes, SVM, and deep learning methods.
Machine learning based text classification typically consists
of four steps: (1) word and sentence segmentation on the
training files, (2) feature selection based on the word counts, (3)
building a model based on a machine learning algorithm, (4)
performing feature extraction on the testing files and evaluating
the model on this test data [[23]].

Compared to the standard machine learning approach for
classification, compression-based methods are relatively easy
to apply and do not require further input document pre-
processing or feature extraction [23]]. Data compression algo-
rithms build a model of the processed documents based on
extensive statistics regarding these documents [16]. Text clas-
sification is performed by compressing the documents using
compression models optimised for each class of document.
After obtaining the compression results, each document is
assigned to the preset category which results in the highest
compression rate, indicating the best compression. From the
perspective of information theory, the compression rate is
related to the cross-entropy between the distribution of the class
text corpus and the text distribution of the predicted document.
By choosing the class model which performs the best for the
predicted document, the classification is essentially performed
by choosing the category whose text corpus minimises this
cross-entropy [13]. In this study, we leverage a compression

algorithm as a novel approach to perform phishing website
classification. Further details regarding the DEFLATE algo-
rithm that we use are provided in the following subsection.

C. DEFLATE Algorithm

In this study, we use the DEFLATE lossless compres-
sion algorithm which is one of the compression schemes
used in the HTTP standard for minimising latency by re-
ducing the byte size transferred across the network [12]. In
Web browsers, two of the three encodings defined in the
HTTP specification ("Content-Encoding: gzip” and
“Content-Encoding: deflate”) are based on the DE-
FLATE algorithm [24].

The DEFLATE algorithm mainly consists of the LZ77
algorithm and Huffman encoding. LZ77 is a dictionary-based
Lempel-Ziv compression algorithm which aims to eliminate
duplicate bytes by replacing recurring bytes in the data with a
back-reference which points to the first occurrence of the bytes.
The next step is using Huffman coding for replacing symbols
with new weighted symbols depending on the frequency of
occurrence. Thus, symbols which frequently show up are
replaced with shorter symbol representations, and vice versa
[25]].

We have used the z1ib data compression library which
provides an abstraction of the DEFLATE compression algo-
rithm [26]]. The z1ib module in Python includes functions
which implement data compression and decompression using
the DEFLATE algorithm [27] and provides the functionality to
set a predefined zlib compression dictionary [28]]. This word
dictionary can help to improve the compression result and
should contain a list of bytes or strings which are expected
to occur frequently in the data [27]]. In this study, we built two
word-dictionaries, which consist of common words in phishing
and non-phishing websites respectively. With these two dictio-
naries, we performed compression on the same document twice
using each dictionary separately. Ideally, compressing phishing
website content using the phishing dictionary should produce a
more compressed output than using the non-phishing dictionary
and vice versa.

IV. SYSTEM OVERVIEW

This section contains a description regarding the design
of PhishZip detection system. There are two main modules
in PhishZip, which are the dictionary builder module and
compression model.

A. Dictionary Builder

This module aims at creating word dictionaries to build
compression models optimised for phishing websites and non-
phishing websites respectively. To build these dictionaries, we
calculate the likelihood of words occurring in each website
class (i.e. phishing and non-phishing) and selecting a minimum
likelihood threshold value. The words in the dictionaries are
those whose likelihood of occurring in a certain website class
are greater than a certain threshold.

The word occurrence likelihood in a specific website class
is proportional to the word frequency in this class; thus, words
which show up more often will be assigned higher likelihood
values. Meanwhile, this likelihood value should be comparable
for both website classes. Thus, for an arbitrary word, if its
likelihood value of occurrence in phishing websites is higher
than in non-phishing websites, we should expect the word to
appear more often in phishing websites, which indicates higher
association to phishing websites than non-phishing websites.

To estimate the likelihood of a word wy occurring in a
certain text category v; € {phishing, non—phishing} (either
'phishing’ or ’'non-phishing’), we adopt the m-estimate with
uniform priors and set m = |V| (the size of the word
vocabulary V). More formally,

ng+1

P(wgl|vy) = nE V] (1)

Here, n is the total number of word positions in all training
examples whose target value is v;, ny is the number of times
the word wy, is found in all the n word positions, and |V| is the
total number of distinct words and other tokens in all examples
[29].

B. Compression-Based Classification Model

To perform the classification task, we build two compression
models optimised for phishing websites and non-phishing
websites respectively. The phishing optimised compression
model uses the phishing dictionary, while the non-phishing
optimised compression model uses the non-phishing dictionary
as the preset compression dictionary. These dictionaries are
constructed from the dictionary builder process as discussed in
the previous subsection.

To perform website classification, we compress the raw
website HTML content using the phishing optimised model
and non-phishing optimised model separately. There are two
separate compression outputs from this process. We compare
these outputs by calculating the compression ratio, which is
the ratio of the original input size to the compression output
size.

size(HT M L_content)
size(Cy(HT M L_content))

Here, (; indicates the compression model and
HTML_content is the raw website content. The decision
on whether the website is classified as phishing or non-
phishing is based on which compression model produces
the higher compression ratio, i.e. if the phishing optimised
compression model produces a better compression ratio
than the non-phishing optimised model, then the website is
classified as phishing, and vice versa. An illustration of the
compression-based classification model is shown in Figure [I}

2

Compression Ratio; =

V. WORD OCCURRENCE LIKELIHOOD ANALYSIS

The compression-based classification mainly relies on word
distribution differences in each class. Thus, we performed

Phishing Word Dictionary

Phishing-Optimised
Compression Model

/'

-\

Website HTML Content

Website
Class

Compression Ratio
Comparison

——>

Non-phishing-Optimised
Compression Model

Non-Phishing Word Dictionary

Fig. 1. PhishZip Compression-Based Classification Model

analysis to observe the word distribution in the website textual
contents and calculate the likelihood of word occurrences in
phishing and non-phishing websites. This information is useful
to build the dictionary of common words in phishing and
non-phishing websites for the compression models. We also
performed an analysis to select the optimal likelihood threshold
for constructing the common word dictionary which leads to
the best classification performance. Before performing these
analyses, we performed some data preprocessing to obtain the
website textual contents. These processes will be described
further in the following subsections.

To perform this analysis, we use a set of website HTML con-
tents which consist of 5,000 phishing and 5,000 non-phishing
websites. These website contents were manually collected by
fecthing the content of phishing website URLs from PhishTank
[22] and safe website URLSs listed by Quantcast [6] using curl
[30] to securely inspect the website contents without running
any potentially malicious code on the browser.

As we focus on the textual information in the website, we
performed data preprocessing to extract text from the website
HTML content and removed common English stop words (e.g.
“the”, ~a”, “an”) as specified in Natural Language Toolkit
(NLTK) library [31]. After performing these data preprocessing
steps, we obtained a collection of phishing and non-phishing
website textual contents which were used to perform word
occurrence likelihood analysis.

To observe the word distribution in both classes and how
distinctive they are, we plot the frequency of words in both
phishing and non-phishing text corpora. We normalised the
word frequency by dividing the value by the length of phishing
or non-phishing text corpus to show the frequency of word
occurrence relative to the total number of words in the corpus.
The histograms of word distribution of phishing and non-
phishing websites are shown in Figure 2] In this histogram,
we included the 100 most frequent words to show the word
distribution differences more clearly. The histogram shows that
the word distribution of phishing websites is typically much
steeper than non-phishing websites. This intuitively means that
phishing websites typically share common words and use less
variety of words in the website content. Meanwhile, the use of
words in non-phishing websites are more general as shown by
the flatter distribution shape.

After calculating word occurrence likelihood calculation
using Equation |1} likelihood threshold analysis is performed

Word Frequency (Normalised)

= Phishing
= Non-phishing

0.020

0.015

Frequency

0.010

0.005

0-000 n-th Word

Fig. 2. Word Frequency Histogram

to obtain the likelihood threshold which leads to the best
classification accuracy. This optimisation is done by varying
the likelihood threshold and creating a hypothetical predefined
dictionary using the words whose likelihood of occurrence
in phishing and non-phishing websites is greater than this
threshold. Two compression models are built using the phishing
and non-phishing predefined word dictionaries. Afterwards,
classification is performed by comparing which model results
in a smaller file output size. The accuracy is calculated for
each likelihood threshold.

As the word list size is enormous (536,684 unique words
in the phishing text corpus and 3,668,395 unique words in
the non-phishing text corpus), for practical reasons, we only
stored 3,000 words with the highest likelihood in each text
corpus and its likelihood values. To obtain a general idea of
how many words are included in the dictionary as we vary the
likelihood thresholds, we plot the distribution of the likelihood
values. This plot could also help in analysing the accuracy
value dynamics and fluctuations when we vary the likelihood
thresholds in a specific range.

Figure [3] shows the word occurrence likelihood values of
the 10", 20", up to the 100" percentile. The graph shows
that for both tasks, the likelihood value increases exponentially.
This distribution shows that the majority of word occurrence
likelihood (around 80% of words in the lower-rank) ranges
between 0.00001 to 0.0002. Meanwhile, there is a steep
increase in likelihood values in the top 20% of words. The
optimal likelihood threshold would eliminate as many words
as possible, but still include words which are meaningful in
providing information regarding a category.

Meanwhile, Figure [shows the accuracy trend as the
likelihood threshold is varied. This graph shows a relatively
regular pattern where the accuracy increases as the likelihood
threshold increases and gradually decreases after reaching the
optimal likelihood threshold value. The maximum accuracy
(75.64%) is reached when the likelihood threshold is set
to 0.0005. From the distribution of word occurrence likeli-
hood (Figure , 0.0005 is around the 94*" percentile in the
likelihood data. Thus, by setting the likelihood threshold to

—— likelihood

0.0010

0.0008

0.0006

Likelihood

0.0004

0.0002

0.0000

20 40 60 80 100
Percentile

Fig. 3. Distribution of Word Occurrence Likelihood

TABLE I
SAMPLE OF WORDS IN THE DICTIONARIES

Phishing Non-phishing
email us
account news
sign get
password view
please free
server best
help shop
deleting day

0.0005, we are selecting the top 6% of words from our list
which are associated with phishing and non-phishing classes.
Setting this likelihood threshold results in a phishing word
dictionary which consists of 178 words and a non-phishing
word dictionary that contains 246 words. Sample of words
with high likelihood values in both dictionaries are provided
in Table [, We also attempted to select the words using other
methods, i.e., based on the occurrence likelihood difference of
phishing and non-phishing websites. However, we were unable
to achieve good performances with the dictionaries constructed
using this word selection method, as the method includes
words with high likelihood differences and low occurrence
likelihoods into the dictionaries; thus, adding words which do
not frequently appear in non-phishing or phishing websites.

VI. EXPERIMENTAL SETUP

In this section, we briefly provide the evaluation methodol-
ogy that we use in this study, including the performance metrics
to assess the models’ performances, followed by further details
regarding the Web page corpus size and distribution.

A. Evaluation Methodology

We conducted two experiments in this study. In the first
experiment, we examined the performance of PhishZip in
detecting phishing websites and compared this to a machine
learning model using HTML-based features proposed by Xiang

0.000 0.001 0.004 0.005

2 0.003
Likelihood Threshold

Fig. 4. Accuracy vs Likelihood Threshold

et al. in CANTINA+ [6]. Meanwhile in the second exper-
iment, we evaluated the performance of compression ratios
as machine learning features and investigated how this could
improve the detection performance of CANTINA+. In these
experiments, we focus on the following metrics to evaluate the
performances:

o True positive rate (TPR): the ratio between the number of
correctly classified phishing websites and the total number
of phishing websites,

« False positive rate (FPR): the ratio between the number of
misclassified non-phishing websites and the total number
of non-phishing websites.

o Fl-score: the harmonic mean of recall (true positive rate)
and precision.

B. Web Page Corpus

The Web page corpus used to perform these performance
evaluations consist of 2,045 phishing and 2,000 non-phishing
raw HTML contents. To avoid classification model overfitting,
this Web page collection is an entirely different website dataset
used for performing word likelihood analysis and building the
compression dictionaries.

To contrast, the phishing website dataset for word likeli-
hood analysis comprises of 5,000 phishing websites chosen
randomly which were reported by users to PhishTank [32]] from
2016 to 2018 (665 websites in 2016, 1921 websites in 2017,
and 2414 websites in 2018). On the other hand, the phishing
website dataset used for the performance evaluations consists
of phishing websites reported to PhishTank between January
to May 2019. While we were able to collect 8,492 verified
phishing websites listed by PhishTank, 6,447 of these websites
have unknown target brand (labeled as ’Others’ in PhishTank)
and only 2,045 of these are provided with information of the
legitimate target brand they attempt to resemble. To strictly
observe the dataset diversity, we excluded phishing websites
whose target brand name are undefined. The total number of
target brands in this dataset is 92 with PayPal, Facebook, and
Microsoft as the top brand targets. Further details regarding
the phishing dataset diversity are provided in Table

Meanwhile, the non-phishing website dataset for this per-
formance analysis consists of 2,000 non-phishing Web pages

TABLE II
Top 10 PHISHING TARGET BRANDS

Brand Name Number of Websites

Paypal 846
Facebook 262
Microsoft 125

ABSA Bank 117
RuneScape 107
ING Direct 79
eBay, Inc. 56

Delta Air Lines 40

Allegro 30

Blockchain 25
TABLE III

PHISHZIP PERFORMANCE COMPARISON TO CANTINA+

Performance PhishZip CANTINA+
Metrics (HTML-based features)
TPR 80.04% 51.47%
FPR 18.25% 8.92%
Accuracy 80.89% 71.20%
F1-score 80.89% 64.21%

selected at random from the list of safe websites by Quantcast
[33]. Similar to our approach when building the phishing
dataset, we also make sure that the non-phishing websites in
this dataset are not one of the websites included in the non-
phishing dataset for the word likelihood analysis.

VII. RESULTS

In this section, we provide the results of two experiments
conducted in this study: the first experiment examines the
performance of PhishZip as a compression based classification
method for detecting phishing websites, while the second ex-
periment investigates the performance of website compression
ratio as a viable machine learning feature for phishing detection
systems.

A. PhishZip Performance Evaluation

To assess the performance of PhishZip, we compress each
website in the phishing and non-phishing evaluation dataset
with compression models optimised for phishing and non-
phishing websites respectively, then compare the compression
ratio of each model. Phishing websites are expected to have
higher compression ratio using phishing optimised compres-
sion model than non-phishing compression model, and vice
versa.

By performing classification using compression algorithms
alone, we are able to detect phishing websites with a true
positive rate of 80.04%, false positive rate of 18.25%, and
accuracy of 80.89%.

As a comparison, we also perform phishing website classi-
fication with features proposed by Xiang et al. in CANTINA+
[6]. We choose the features proposed in this study as they

provide comprehensive results regarding the performance of
the system and each individual feature. In their study of
CANTINA+, Xiang et al. investigated the performance of
various URL-based features, HTML-based features, and Web-
based features. The top-performing features are page in top
search results, bad forms, bad action fields, and non-matching
URLSs. As our work focuses on website content based features,
we compare the performance of PhishZip with top-performing
HTML-based features only, which are bad forms, bad action
fields, and non-matching URLs.

A summary of the performance evaluation results of
PhishZip and the selected features in CANTINA+ is shown in
Table We found that the machine learning model achieved
an accuracy of 71.20%, low false positive rate around 8.92%,
and relatively low true positive rate of roughly 51.47%. These
results show that while the use of these HTML-based features
still produce in a relatively descent accuracy and low false
positive rate, they did not perform well in detecting phishing
websites as reflected by the true positive rate. Meanwhile, as
shown in Table PhishZip outperforms the use of HTML-
based features in CANTINA+ with a true positive rate of
80.04%, false positive rate of 18.25%, and accuracy of 80.89%.
Further results of each HTML-based feature are discussed as
follows.

1) Bad forms: One of the best performing HTML-based
features in CANTINA+ [6] is the bad form indicator, which
is a binary feature set to 1 if any malicious form exist in the
Web page HTML content. A malicious form exists if a Web
page has all of the following:

o an HTML form,

e an <input> tag in the form,

« sensitive keywords (e.g. ’password”, or “credit card num-
ber”) or image only (with no text) in the scope of the
form,

¢ a non-https URL in the action field of the form or in the
Web page URL (if the action form is empty).

We applied the approach above to identify bad forms in
the 2,045 phishing and 2,000 non-phishing Web page corpora.
Using this heuristic, we categorise the website as phishing if
any bad forms exist, and vice versa. This approach gives us a
true positive rate of 8.90% and false positive rate of 19.45%.

While the true negative rate is relatively descent (80.55%),
plenty of the phishing websites (91.10% from the phishing Web
page corpora) were misclassified as benign. This is due to the
strict condition that the bad forms should have a non-https
scheme URL in the action field or the Web page URL. We
found that 1,209 out of 2,045 phishing websites (59.12%) in
our phishing Web page corpora use HTTPS in its URL. Further,
Anti-Phishing Working Group (APWG) [1] reported that there
is a significant increase in the use of secure connection in
phishing websites to increase its credibility.

2) Bad action fields: Another best performing features in
CANTINA+ [6] is the bad action field indicator, which is a
binary feature that detects if an action field is empty or a simple
file name, or if it points to a different domain than the Web page

domain. Assessing the binary feature performance on our Web
page corpora, this approach was able to achieve a true positive
rate of 19.95% and false positive rate of 38.25%. Further, we
found that 232 phishing websites in our corpora have empty or
simple filename in the action field and 182 phishing websites
have a domain in the action field different to the Web page
domain.

3) Non-matching URLs: The other best performing HTML-
based feature in CANTINA+ [6] is the non-matching URLs
indicator, which is set to 1 if the percentage of highly similar
URLs or the percentage of empty or ill-formed URL in the
website is greater than a certain threshold. To obtain this
threshold, we observed the distribution of these percentages
and chose the threshold which gives the best performance in
terms of the total number of correctly classified samples (true
positive + true negative). Using this setting, we are able to
detect phishing websites using this heuristic with a true positive
rate of 47.92% and a relatively low false positive rate of 8.0%.

B. Compression Ratios as Machine Learning Features

Compression ratio is a novel machine learning feature. To
the best of our knowledge, this has not been applied to detect
phishing websites in past studies. Compression ratio is also
relatively robust against the dynamic behaviour of phishing, as
we could easily update the predefined word dictionaries and
optimise the compression models correspondingly. Calculat-
ing compression ratio is relatively easy, as website browsers
perform website compression frequently to improve user ex-
perience when opening websites [24]]. As defined in HTTP
specification, compression is one of the options in the standard
for minimising latency during data transfer over the internet
[12] and is a built-in feature in current Web browsers [24]]. This
could be incorporated through protocol option support, where
no re-compression may be needed. These characteristics make
compression ratio as a viable option as a machine learning
feature for performing phishing detection.

1) Dataset Size: We allocated roughly 80% of our Web
page corpus (1,672 phishing websites and 1,630 non-phishing
websites) for training the machine learning model and around
20% (373 phishing websites and 370 non-phishing websites)
to evaluate the performance of the machine learning model.
We apply temporal-split between training and testing dataset,
following past studies that recommend this approach over a
randomised cross-validation evaluation which introduces per-
formance overestimate due to the risk of training future data
and testing on the past [34], [35]]. Our phishing training dataset
consists of phishing websites reported to PhishTank in January-
April 2019 targeting 86 unique brands, while the testing dataset
are phishing websites reported to PhishTank in May 2019.
Meanwhile, we collected the non-phishing Web page corpus
in a single time point rather than collecting at each time point
following the methodology of CANTINA+ [6], which is based
on the study by Fetterly et al. discovering that Web page
content is relatively stable over time [36].

TABLE IV
MACHINE LEARNING MODEL PERFORMANCE USING COMPRESSION
RATIOS AS FEATURES

Classifier Performance
TPR FPR Accuracy Fl-score
Logistic regression 75.34% 17.03% 79.14% 78.38%
SVM 78.82% 16.76% 81.02% 80.66%
K-nearest neighbours 77.48% 12.43% 82.50% 81.64%
Decision tree 75.34% 11.89% 81.70% 80.52%
Random forest 78.28% 12.97% 82.64% 81.91%
Neural network 79.89% 30.27% 74.83% 76.11%
Naive Bayes 42.09% 8.38% 66.76% 55.97%

2) Model Training: We used several machine learning algo-
rithms to perform classification, including logistic regression,
support vector machine, k-nearest neighbours, decision tree,
random forest, neural network, and Naive Bayes. We used
the scikit-learn library in Python which provides the
implementation of these machine learning algorithms. Model
parameter tuning is performed by using grid search to find
the model parameters which produce the best performance.
We used 3-fold cross-validation method to validate the model
performance during the model training process which is the
default cross-validation method of GridSearchCV in the
scikit-learn library.

3) Performance Evaluation: Using solely compression ra-
tios as features of our machine learning model, the best
performance is achieved by the model trained using random
forest algorithm with an Fl-score of 81.91%. The random
forest algorithm works well in this classification problem as
it combines different individual models which lead to less bias
and less variance. The neural network is able to achieve the best
true positive rate of 79.89%; however, this model suffers from
a high false positive rate. The performances of the machine
learning models are provided in Table

We also assessed the performance of the use of compression
ratios and HTML-based features in CANTINA+ to perform
phishing website detection. Using both these features, the best
performing model achieved a true positive rate of 81.77%, false
positive rate of 15.68%, and accuracy of 83.04%. This shows
that the combination of compression ratios and HTML-based
features could enhance the performance of the phishing website
detection with improvements in the true positive rate of 58.87%
over the model using HTML-based features in CANTINA+.
While there is a compromise in an increase of false positive
rate, the use of this combination of feature has also helped in
improving the accuracy and F1-score as well. A comparison of
the best performances using various combination of features is
provided in Table

We also attempted to assess the performance using an
imbalanced testing dataset with a class ratio of non-phishing
to phishing websites of 100:1, as suggested in past studies in
phishing detection systems [10], [20]. During this evaluation,
we down-sampled the phishing dataset by selecting a few

TABLE V
MACHINE LEARNING MODEL PERFORMANCE COMPARISON

Performance Features
metrics Compression HTML-based = Compression ratios &
ratios Sfeatures HTML-based features

TPR 78.28% 51.47% 81.77%

FPR 12.97% 8.92% 15.68%
Accuracy 82.64% 71.20% 83.04%
F1-score 81.91% 64.21% 82.88%

TABLE VI

MACHINE LEARNING MODEL PERFORMANCE COMPARISON
(IMBALANCED DATASET)

Performance Features
metrics Compression HTML-based Compression ratios &
ratios features HTML-based features
TPR 77.25% 51.00% 82.50%
FPR 12.97% 8.92% 15.68%
Accuracy 86.92% 90.65% 84.30%
F1-score 11.17% 10.34% 10.08%

phishing samples in random and iterate the testing process n
number of times using different random phishing samples. In
this experiment, we chose n = 100 iterations and calculated
the average true positive rate, false positive rate, accuracy,
and Fl-score. A summary of the machine learning models
performances in this experiment is provided in Table
Using HTML-based features in CANTINA+, the best model
was able to achieve an accuracy of 90.65%. However, accuracy
would not be the best metric to measure the model performance
in an imbalanced dataset. As shown in Table[VI] the model only
achieved a true positive rate of 51%, which means around half
of the phishing websites in the dataset are not detected. As the
class ratio of non-phishing to phishing is 100:1, misclassifying
one phishing website would still lead to 99% accuracy. Thus,
in this scenario, we measure the model performance based on
the true positive rate. Combining the HTML-based features
with compression ratios, the best model was able to achieve a
significant increase of true positive rate, from 51% to 82.50%.

VIII. DISCUSSION

In this section, we discuss the model evaluation results in
Section [VII} including some limitations of the approach and
possible future works.

A. Performance Evaluation

In this study, we propose the use of compression algorithm
to perform phishing website classification. The compression
ratio measures the cross entropy between the distribution of
the website content we are trying to classify and the word
distribution of phishing or non-phishing websites. As shown
in Table PhishZip outperforms the performance of top-
performing HTML-based features proposed in CANTINA+ [6]],

achieving a true positive rate of 80.04%. The use of compres-
sion ratios as an additional feature to add with CANTINA+
features is able to significantly improve the machine learning
model performance as shown in Table [V] achieving a true
positive rate of 81.77% and accuracy of 83.04%. As shown
in Table [V| using solely compression ratios, we are also
able to detect phishing websites with a comparably good true
positive rate of 78.28% and an accuracy of 82.64%. These
results show that compression ratio is a viable option as a
machine learning feature for detecting phishing websites and
as an additional feature to improve the performance of existing
phishing website detection systems.

B. Limitations and Future Works

There are some limitations in the current PhishZip imple-
mentation. First, it may not perform well when classifying
websites which are purely made up of images without any text
to analyse. Therefore, the system can possibly be bypassed
when attackers use images only on the phishing website pages
to imitate the design of the targeted website. On the other hand,
legitimate websites rarely contain solely images and no text [6].
This characteristic would be useful to distinguish legitimate
websites from phishing websites. One possible solution is by
training classification models to detect potential phishing Web
pages with no sufficient text and mostly filled up with images.

PhishZip also suffers when dealing with websites with
content obfuscation, e.g. using an external file to load the
website content, as well as cross site scripting (XSS) attacks
and the use of iframe. However, we believe that existing
methods, e.g. cookie protection and DOM or HTML sanitizer,
would complement PhishZip and provide solutions to mitigate
these vulnerabilities.

There are also possibilities during which attackers inten-
tionally avoid PhishZip detection by selecting words which
are not included in the compression dictionaries or using
words with low likelihood of showing up in phishing websites.
One possible approach to avoid this scenario is by keeping
the likelihoods and dictionaries confidential. This is similar
to the case of machine learning models, where the model
architecture, weights, or parameters should be kept secure to
avoid adversarial attacks.

For future works, there is also an opportunity to improve
the performance of PhishZip by making use of website HTML
structure information. As discussed by Cui et al. [37], phishing
websites have similar HTML DOMSs and are often variations
of other phishing websites. This information might be useful
to optimise the compression models better or select the best
compression algorithms which will be well-suited to compress
websites with slight variation of the HTML DOM trees.

IX. CONCLUSION

In this study, we propose PhishZip as a novel approach
to perform phishing website classification using a dictionary-
based compression algorithm. This method leverages word
dictionaries constructed by analysing the word occurrence

likelihood, which is also demonstrated in this work. PhishZip
outperforms the use of best-performing HTML-based features
proposed in past studies with a true positive rate of 80.04%. We
also introduced the use of compression ratio as a novel machine
learning feature which has shown to significantly improve
past studies in machine learning based phishing detection
systems. Using compression ratios as additional features, the
true positive rate has significantly improved by around 30.3%,
from 51.47% to 81.77%, while the accuracy increased roughly
by 11.84%, from 71.20% to 83.04%.

ACKNOWLEDGMENT

The work has been supported by the Cyber Security Re-
search Centre Limited whose activities are partially funded
by the Australian Governments Cooperative Research Centres
Programme.

Rizka Widyarini Purwanto was supported by a UNSW Uni-
versity International Postgraduate Award (UIPA) scholarship.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the scholarship provider.

REFERENCES

[11 APWG, APWG Phishing Trends Reports. Anti Phishing Working Group,
2016.

[2] J. Hong, “The state of phishing attacks,” Commun. ACM, vol. 55, no. 1,
pp. 74-81, Jan. 2012. [Online]. Available: http://doi.acm.org/10.1145/
2063176.2063197

[3] A. K. Sood and S. Zeadally, “A taxonomy of domain-generation algo-
rithms,” IEEE Security & Privacy, vol. 14, no. 4, pp. 46-53, 2016.

[4] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and
detecting fast-flux service networks.” in NDSS, 2008.

[5] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspicious
urls: An application of large-scale online learning,” in Proceedings of
the 26th Annual International Conference on Machine Learning, ser.
ICML ’09. New York, NY, USA: ACM, 2009, pp. 681-688. [Online].
Available: http://doi.acm.org/10.1145/1553374.1553462

[6] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “CANTINA+: A
Feature-Rich Machine Learning Framework for Detecting Phishing
Web Sites,” ACM Transactions on Information and System Security,
vol. 14, no. 2, pp. 1-28, sep 2011. [Online]. Available: http:
/fdl.acm.org/citation.cfm?do1d=2019599.2019606

[71 G. Xiang and J. 1. Hong, “A hybrid phish detection approach by
identity discovery and keywords retrieval,” in Proceedings of the 18th
international conference on World wide web. ~ACM, 2009, pp. 571—
580.

[8] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: A content-based
approach to detecting phishing web sites,” in Proceedings of the
16th International Conference on World Wide Web, ser. WWW °07.
New York, NY, USA: ACM, 2007, pp. 639-648. [Online]. Available:
http://doi.acm.org/10.1145/1242572.1242659

[9]1 H. Zhang, G. Liu, T. W. Chow, and W. Liu, “Textual and visual content-

based anti-phishing: a bayesian approach,” IEEE Transactions on Neural

Networks, vol. 22, no. 10, pp. 1532-1546, 2011.

C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic

classification of phishing pages,” in NDSS ’10, 2010. [Online].

Available: http://www.isoc.org/isoc/conferences/ndss/10/pdf/08.pdf

P. Deutsch, “Deflate compressed data format specification version 1.3,”

United States, 1996.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “Hypertext transfer protocol — http/1.1,” United States,

1999.

Y. Marton, N. Wu, and L. Hellerstein, “On compression-based text clas-

sification,” in European Conference on Information Retrieval. Springer,

2005, pp. 300-314.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]
[27]

[28]
[29]
(30]
[31]
[32]
[33]

[34]

[35]

(36]

[37]

C. N. Gutierrez, T. Kim, R. D. Corte, J. Avery, D. Goldwasser,
M. Cinque, and S. Bagchi, “Learning from the ones that got away:
Detecting new forms of phishing attacks,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 6, pp. 988-1001,
Nov.-Dec. 2018. [Online]. Available: doi.ieeecomputersociety.org/10.
1109/TDSC.2018.2864993

F. Quinkert, T. Lauinger, W. Robertson, E. Kirda, and T. Holz, “It’s
not what it looks like: Measuring attacks and defensive registrations of
homograph domains,” in 2019 IEEE Conference on Communications and
Network Security (CNS). 1EEE, 2019, pp. 259-267.

D. Ziegelmayer and R. Schrader, “Sentiment polarity classification using
statistical data compression models,” in 2012 IEEE 12th international
conference on data mining workshops. 1EEE, 2012, pp. 731-738.

S. Chiba, K. Sugawara, and T. Watanabe, “Classification and function
estimation of protein by using data compression and genetic algorithms,”
in Proceedings of the 2001 Congress on Evolutionary Computation
(IEEE Cat. No. 0ITH8546), vol. 2. 1EEE, 2001, pp. 839-844.

M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: A literature
survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp.
2091-2121, Fourth 2013.

S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of
machine learning techniques for phishing detection,” in Proceedings
of the Anti-phishing Working Groups 2Nd Annual eCrime Researchers
Summit, ser. eCrime "07. New York, NY, USA: ACM, 2007, pp. 60-69.
[Online]. Available: http://doi.acm.org/10.1145/1299015.1299021

Z. Dou, I. Khalil, A. Khreishah, A. Al-Fuqaha, and M. Guizani,
“Systematization of Knowledge (SoK): A Systematic Review of
Software-Based Web Phishing Detection,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 4, pp. 2797-2819, 2017. [Online].
Available: http://ieeexplore.ieee.org/document/8036198/

G. Varshney, M. Misra, and P. K. Atrey, “A survey and classification
of web phishing detection schemes,” Security and Communication Net-
works, vol. 9, no. 18, pp. 6266-6284, 2016.

I. Fette, N. Sadeh, and A. Tomasic, “Learning to detect phishing emails,”
in Proceedings of the 16th international conference on World Wide Web.
ACM, 2007, pp. 649-656.

W. J. Teahan and D. J. Harper, “Using compression-based language
models for text categorization,” in Language modeling for information
retrieval. Springer, 2003, pp. 141-165.

“Compressing the Web,” https://blogs.msdn.microsoft.com/ieinternals/
2014/10/21/compressing-the-web/, note = Accessed: 2019-06-024.

A. Feldspar, “An Explanation of the Deflate Algorithm,” https://zlib.net/
feldspar.html, accessed: 2019-06-24.

“zlib,” https://www.nltk.org/, accessed: 2019-06-24.

“Compression compatible with gzip,” https://docs.python.org/3.6/library/
zlib.html, accessed: 2019-06-24.

P. Deutsch and J.-L. Gailly, “Zlib compressed data format specification
version 3.3,” United States, 1996.

T. M. Mitchell, Machine Learning, 1st ed.
McGraw-Hill, Inc., 1997.

“curl,” https://curl.haxx.se/, accessed: 2018-09-30.

“Natural Language Toolkit,” http://www.zlib.net, accessed: 2019-02-21.
“PhishTank: An Anti-Phishing Site,” https://www.phishtank.com/, ac-
cessed: 2018-10-1.

“Quantcast: Top International Websites & Ranking,” https://www.
quantcast.com/top-sites/, accessed: 2018-10-1.

G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson, S. Savage,
G. M. Voelker, and D. Wagner, “Detecting and characterizing lateral
phishing at scale,” in 28th {USENIX} Security Symposium ({USENIX}
Security 19), 2019, pp. 1273-1290.

F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“{TESSERACT}: Eliminating experimental bias in malware classifica-
tion across space and time,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 729-746.

D. Fetterly, M. Manasse, and M. Najork, “On the evolution of clusters
of near-duplicate web pages,” in Proceedings of the First Conference
on Latin American Web Congress, ser. LA-WEB ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 37—. [Online]. Available:
http://dl.acm.org/citation.cfm?id=951953.952397

Q. Cui, G.-V. Jourdan, G. V. Bochmann, R. Couturier, and I.-V. Onut,
“Tracking phishing attacks over time,” in Proceedings of the 26th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2017, pp. 667-676.

New York, NY, USA:

http://doi.acm.org/10.1145/2063176.2063197
http://doi.acm.org/10.1145/2063176.2063197
http://doi.acm.org/10.1145/1553374.1553462
http://dl.acm.org/citation.cfm?doid=2019599.2019606
http://dl.acm.org/citation.cfm?doid=2019599.2019606
http://doi.acm.org/10.1145/1242572.1242659
http://www.isoc.org/isoc/conferences/ndss/10/pdf/08.pdf
doi.ieeecomputersociety.org/10.1109/TDSC.2018.2864993
doi.ieeecomputersociety.org/10.1109/TDSC.2018.2864993
http://doi.acm.org/10.1145/1299015.1299021
http://ieeexplore.ieee.org/document/8036198/
https://blogs.msdn.microsoft.com/ieinternals/20 14/10/21/compressing-the-web/
https://blogs.msdn.microsoft.com/ieinternals/20 14/10/21/compressing-the-web/
https://zlib.net/feldspar.html
https://zlib.net/feldspar.html
https://www.nltk.org/
https://docs.python.org/3.6/library/zlib.html
https://docs.python.org/3.6/library/zlib.html
https://curl.haxx.se/
http://www.zlib.net
https://www.phishtank.com/
https://www.quantcast.com/top-sites/
https://www.quantcast.com/top-sites/
http://dl.acm.org/citation.cfm?id=951953.952397

	I Introduction
	II Related Works
	III Background
	III-A Phishing
	III-B Compression-Based Classification
	III-C DEFLATE Algorithm

	IV System Overview
	IV-A Dictionary Builder
	IV-B Compression-Based Classification Model

	V Word Occurrence Likelihood Analysis
	VI Experimental Setup
	VI-A Evaluation Methodology
	VI-B Web Page Corpus

	VII Results
	VII-A PhishZip Performance Evaluation
	VII-A1 Bad forms
	VII-A2 Bad action fields
	VII-A3 Non-matching URLs

	VII-B Compression Ratios as Machine Learning Features
	VII-B1 Dataset Size
	VII-B2 Model Training
	VII-B3 Performance Evaluation

	VIII Discussion
	VIII-A Performance Evaluation
	VIII-B Limitations and Future Works

	IX Conclusion
	References

