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Abstract—Process mining encompasses the research area which
is concerned with knowledge discovery from information sys-
tem event logs. Within the process mining research area, two
prominent tasks can be discerned. First of all, process discovery
deals with the automatic construction of a process model out
of an event log. Secondly, conformance checking focuses on the
assessment of the quality of a discovered or designed process
model in respect to the actual behavior as captured in event logs.
Hereto, multiple techniques and metrics have been developed and
described in the literature. However, the process mining domain
still lacks a comprehensive framework for assessing the goodness
of a process model from a quantitative perspective. In this study,
we describe the architecture of an extensible framework within
ProM, allowing for the consistent, comparative and repeatable
calculation of conformance metrics. For the development and
assessment of both process discovery as well as conformance
techniques, such a framework is considered greatly valuable.

I. INTRODUCTION

Process mining [1] should be situated in the diagnosis phase
of the business process management life cycle, as it bridges
the BPM-domain with the domain of Knowledge Discovery in
Databases (KDD) [2]. Van der Aalst [3] identifies three main
process mining types of tasks: discovery, conformance and ex-
tension. Regarding conformance, the need for a comprehensive
evaluation framework in the process mining domain was first
articulated by Rozinat et al. [4]. To date, the process mining
domain still lacks a comprehensive, useable toolset for assess-
ing the goodness of a process model or to easily benchmark the
performance of different models against each other using mul-
tiple conformance checking metrics. In this paper, we present
the architecture of an extensible comprehensive benchmarking
framework (abbreviated to CoBeFra) integrated within ProM,
allowing for the consistent, comparative and repeatable calcu-
lation of process conformance metrics. Such an architecture
should be considered highly valuable for process mining
researchers because it significantly facilitates the development
and assessment of process discovery as well as conformance
checking techniques. This paper is structured as follows. Sec-
tion II provides an overview of existing conformance checking

metrics. Section III discusses the various requirements which
were identified as being important in the construction of a
conformance checking framework. Next, Section IV discusses
the technical architecture of the developed framework, putting
an emphasis on modularity and extendability. Finally, Section
V provides a list of current limitations and possibilities for
future work and further improvement before closing with
some general conclusions. Installation instructions, source files
and binaries for the CoBeFra framework are available at
http://processmining.be/cobefra. The framework is currently
focusing on the control-flow dimension, however, its scope
might be broadened to accommodate for other information
dimensions.

II. PROCESS MODELS QUALITY METRICS

The quality of a procedural process model (designed or
discovered) can be judged along different perspectives. Fig-
ure 1 details that these perspectives can be categorized into
two high-level dimensions: accuracy and comprehensibility.
Each of these high-level quality dimensions can be further
decomposed. For instance, the accuracy of a process model
consists of the following three subdimensions: its recall (or:
fitness), indicating the ability of the process model to replay
or execute the observed behavior; its precision (or: appro-
priateness), denoting the model’s ability to disallow (i.e. not
support the execution of) unwanted, unseen behavior and
thus its ability towards preventing underfitting the observed
behavior; and last, the model’s generalization capability, which
indicates the model’s ability to allow unseen but nevertheless
desired or expected behavior and which can thus be seen as
the counterpart of precision (i.e. avoiding overfitting). Next,
from the viewpoint of comprehensibility, a distinction can be
made between simplicity (or: complexity) and structuredness
(or: understandability, entropy), the latter representing the
ease of interpretation of the model while simplicity refers to
the number of control-flow constructs present in the process
model. As such, simplicity represents the principle that “all



other things equal, a simpler explanation is better than a
more complex one”, a statement famously known as “Occam’s
razor”. Oftentimes, simple counts of model elements are used
as simplicity metrics.

Process Model Quality 

Accuracy 
 Recall 

“able to replay the event log” 

Precision 
“not overfitting the event log” 

Generalization 
“not underfitting the event log” 

Comprehensibility 
 Simplicity 

“Occam’s razor” 

Structuredness 
“ease of interpretation” 

Fig. 1. Quality dimensions for evaluating procedural process models

A. Accuracy Metrics

As indicated above, the overall accuracy of a process model
consists of three perspectives: recall, precision and general-
ization. Cook and Wolf [19] are to be considered the first re-
searchers to quantify the relationship between process models
and event logs. Within the process mining domain, Rozinat
et al. [8] defined the notions of fitness and appropriateness
in a foundational study on conformance checking. Since, the
domain has attracted the attention of many other researchers,
as demonstrated by Table I, which provides an overview of
the most noteworthy conformance metrics and an indication
of which metrics are currently already implemented in the
proposed benchmarking framework. In the remainder of this
section, the metrics included in the CoBeFra framework are
discussed in further detail. For detailed information about the
other conformance metrics such as CPM , PM , PF complete ,
etc., we refer to our earlier work as well as the original
manuscripts describing these metrics.

a) Recall: Recall or fitness can be seen as the primordial
accuracy evaluation perspective because it reflects how much
behavior present in the event log is captured by the model,
which can be regarded as an obvious quality requirement for
designed or discovered models before continuing onwards with
other analysis tasks. As such, many researchers have proposed
metrics that quantify this dimension.

• Fitness (f ) is a metric that is obtained by evaluating
whether each trace in the event log can be reproduced
by the generative model, in this case a Petri net. This
procedure is called sequence replay [8]. During replay,
the transitions in the Petri net will produce and consume
tokens to reflect the state transitions. Consequently, the
fitness measure punishes for tokens that must be created
additionally in the marked Petri net and also for tokens
that remain after replay.

• Proper Completion (PPC) [8] is a coarse-grained met-
ric which returns the percentage of traces without any
missing or remaining tokens after trace replay. Or, put
differently, the percentage of traces for which a Fitness
(f ) value of 1 can be obtained.

• Behavioral Recall (rpB) as defined by Goedertier et al. [9]
is the percentage of correctly classified positive events in
the event log. Also by using sequence replay techniques,
it is verified whether every positive event can be parsed by
the model. Note that this metric differs from Fitness (f )
since it denotes the ratio of (positive) events which could
be replayed successfully by the process model, without
incorporating the exact amount of missing or remaining
tokens in the metric definition.

• (Average) Alignment-Based Trace Fitness (fa, favga ) is the
most recent recall metric in the process mining domain
[13]. In contrast to a large majority of recall metrics, this
metric is based on aligning a process model and an event
log [12], [20], [21], instead of replaying the log in the
model. As such, the metric punishes for alignments which
require model (log) moves without a corresponding move
in the log (model). Other variants base the resulting value
on the raw cost given to various kinds of misalignments
rather than returning the percentages of non-aligned log-
model moves.

• Weidlich et al. [17] have proposed a collection of Be-
havioral Profile-based conformance metrics. Instead of
relying on state-based techniques that involve replaying
the logs, the authors base their metrics on different
types of constraints that a process model can impose
for a pair of activities (i.e. the behavioral profile of the
process model). We have included the Behavioral Profile
Conformance metrics in the CoBeFra framework, both
available in the form of the “standard” implementation
provided by Weidlich et al. (using the jBPT library) and
as an alternative implementation developed by the authors
which is able to deal with event logs containing duplicate
activities.

b) Precision: Precision entails that process models
should prevent the execution of unseen and unwanted behavior
(i.e. not underfitting the data). The following metrics are
included in CoBeFra.

• Advanced Behavioral Appropriateness (a
′

B) as defined in
[8] is a footprint-based, rather coarse-grained precision
metric, which in addition requires an exhaustive time
consuming state space exploration.

• Behavioral Specificity (snB) is the percentage of correctly
classified negative events during sequence replay. As
such, it is the counterpart of Behavioral Recall (rpB).
Artificial negative events can be generated with the
technique developed by Goedertier et al. [9]. However,
the definition of the metric does not exclude the use
of natural negative events or negative events stemming
from other techniques. Note that, for many process model
evaluation tasks, it is not the percentage of correctly



Perspective

Name Symbol Author
Included

in
CoBeFra

Range Model input type

R
ecall

Precision

G
eneralization

C
om

prehensibility

Continuous Parsing Measure CPM Weijters et al. [5] [0,1] Heuristic net X

Parsing Measure PM Weijters et al. [5] [0,1] Heuristic net X

Partial Fitness - complete (or:
Improved Continuous Semantics) PF complete (ICS ) Alves de Medeiros et al. [6] [-∞,1] Heuristic net X

Completeness Greco et al. [7] [0,1] Workflow schema X

Soundness Greco et al. [7] [0,1] Workflow schema X

Fitness f Rozinat and van der Aalst [8] X [0,1] Petri net X

Proper Completion pPC Rozinat and van der Aalst [8] X [0,1] Petri net X

Behavioral Appropriateness aB Rozinat and van der Aalst [8] [0,1] Petri net X

Advanced Behavioral Appropriateness a
′
B

Rozinat and van der Aalst [8] X [0,1] Petri net X

Structural Appropriateness aS Rozinat and van der Aalst [8] [0,1] Petri net X

Advanced Structural Appropriateness a
′
S

Rozinat and van der Aalst [8] X [0,1] Petri net X

Behavioral Recall rpB Goedertier et al. [9] X [0,1] Petri net X

Behavioral Specificity snB Goedertier et al. [9] X [0,1] Petri net X

Behavioral Precision pB De Weerdt et al. [10] X [0,1] Petri net X

Weighted Behavioral Precision pwB vanden Broucke et al. [11] X [0,1] Petri net X

Behavioral Generalization gB vanden Broucke et al. [11] X [0,1] Petri net X

Weighted Behavioral Generalization gwB vanden Broucke et al. [11] X [0,1] Petri net X

(Average) Alignment-Based Trace
Fitness fa, favg

a van der Aalst et al. [12], [13] X [0,1] Petri net X

ETC Precision etcP Muñoz-Gama et al. [14] X [0,1] Petri net X

One Align Precision a1p Adriansyah et al. [15] X [0,1] Petri net X

Best Align Precision ap Adriansyah et al. [15] X [0,1] Petri net X

Alignment Based Precision precision(L,M) Adriansyah et al. [13] X [0,1] Petri net X

Alignment Based Probabilistic
Generalization

generalization(L,M)
and

generalizations(L,M)
Adriansyah et al. [13] X [0,1] Petri net X

Probabilistic Generalization Buijs et al. [16] [0,1] Process tree X

Behavioral Profile Conformance
metrics MCC, CCC, etc. Weidlich et al. [17] X [0,1] Petri net X

Various simplicity metrics |nodes|, |arcs|
|nodes| , etc. Mendling et al. [18] X [0,1] Petri net X

TABLE I
OVERVIEW OF PROCESS MINING CONFORMANCE METRICS

classified negative events which is of real interest to the
end user (the specificity), but rather the amount of “false
positives”, i.e. behavior which is allowed by the process
model although this behavior is rejected in the given
event log in the form of a negative event. This notion
better corresponds with the true meaning of precision
and is captured in the Behavioral Precision metric (pB)
as defined by De Weerdt et al. [10]. The benchmarking
framework also includes a weighted variant (pwB) of this
metric (Weighted Behavioral Precision), based on an
artificial negative event induction technique described in
[11].

• ETC Precision (etcP ) [14], [22] is based on the con-
struction of a prefix automaton for the event log at hand.
By taking into account the number of so-called escaping
edges while mapping the behavior in the event log with
the behavior in the model, a state-of-the-art precision
metric is defined by comparing the amount of “escaping”
behavior the models allows in a given state compared to

the log prefix automaton which is brought (using replay)
in a comparable state. A very similar metric (Alignment
Based Precision) based on the concept of log-model
alignments is described in [13].

• One Align Precision (a1p) and Best Align Precision (ap)
extend the etcP metric by first aligning the log and the
model [15]. In this way, the main problem of etcP , i.e. the
fact that precision is assessed as long as the trace under
investigation can be replayed without error, is solved.

c) Generalization: Although models should be precise,
generalizing beyond observed behavior is also a necessity.
This is because assuming that all behavior is included in an
event log is a far too strong completeness assumption. Metrics
quantifying the generalization dimension should punish pro-
cess models which are overly precise, thus not allowing unseen
but very likely (not explicitly forbidden) behavior when taking
into account the data in the event log.

• Behavioral Generalization (gB) and Weighted Behavioral



Generalization (gwB): based on the work published in [10]
and [11], it is possible to create a mirrored counterpart
for the Behavioral Precision metric, where not only
the model’s classification of given positive and negative
events is assessed, but where it is also investigated
whether the model is able to correctly execute other
possible behavior which is not explicitly forbidden by
the presence of a negative event at the current state. We
have added these metrics to the benchmarking framework
in order to evaluate generalization.

• The Alignment Based Probabilistic Generalization
(generalization(L,M) and generalizationS(L,M))
metric also starts from the principle of log-model
alignment as described by Adriansyah et al. [13]. The
authors propose a probabilistic (Bayesian) estimator
which tries to assess the chance whether events will
occur which exhibit behavior that was not seen before.

B. Comprehensibility Metrics

Because structuredness (ease of interpretation) is a difficult
dimension to measure, many researchers focus on simplicity
for quantifying the comprehensibility of process models. In
[18], around 20 different metrics are defined to assess a
model’s compressibility. We have opted to include just a few
count-based simplicity metrics by default in the CoBeFra
framework: the number of arcs, nodes, places, transitions or
cut vertices; the average node arc degree and the weighted
place/transition node arc degree. Next to these metrics, the
Advanced Structural Appropriateness (a

′

S) [8] is also in-
cluded. This metric evaluates two specific design guidelines
for expressing behavioral patterns, namely the occurrence of
alternative duplicate tasks and redundant invisible tasks.

C. Combining Metrics

Another aspect that is becoming increasingly important in
the conformance checking domain is the question on how
to combine evaluation dimensions. In earlier work, we have
proposed the use of the F-score to combine recall and precision
metrics [10]. In [23], Buijs et al. propose to weight four
evaluation dimensions, i.e. recall, precision, generalization and
comprehensibility, in one metric for steering their genetic
programming inspired Evolutionary Tree Miner (ETM) algo-
rithm. As such, it was decided to add the F-score technique
as well as a so-called “free weigher” to CoBeFra. The F-
score allows to combine a fitness and precision metric with a
configurable β value (F1 being the harmonic mean of fitness
and precision), whereas the free weigher allows to configure
a linear combination of various metrics with configurable
coefficients (weights).

III. REQUIREMENTS FOR THE ARCHITECTURE OF A
BENCHMARKING FRAMEWORK

The following principles summarize the basic design re-
quirements that were considered when developing the bench-
marking framework in ProM.

a) Ease of Use: The first design requirement puts an
emphasis on user friendliness. With this benchmarking frame-
work, we aim to offer a straightforward interface for importing
event logs and process models, for mapping each event’s
class (i.e. its activity name and life cycle transition) to one
of the activities (tasks, transitions) in the process model, for
configuring the various metrics and, finally, for inspecting
and exporting the obtained results. Furthermore, although the
ProM framework allows for a clear differentiation between
the end-user oriented graphical interface and internal logic,
we have found that many plugins still rely on the presence
of the user interface (UI), preventing an easy implementation
in external (headless) scripts or tools. Therefore, in order to
simplify experimental setups requiring a great deal of scripting
and batch processing, we have strengthened the decoupling
of the user interface and programming logic in CoBeFra,
allowing each step (log and model setup, metric configuration
and result processing) to be executed in a pure “headless”
manner.

b) Reproducibility of Experiments: A second important
design requirement consists of providing the functionality
to reproduce results. By allowing to store input and metric
configurations, it is very straightforward to repeat experiments
over time.

c) Comparative Consistency: Consistency is safeguarded
by a number of elements. First of all, because the same initially
configured model-log mapping is used across all metrics, no
obvious mistakes are made to this regard. Furthermore, by
streamlining the metric configuration step, users will have less
trouble in configuring the often huge amount of configurations
across different experiments, which promotes consistency of
results.

d) Computation Management: A limitation of the ProM
framework is that it is not straightforward to set up an
environment in which multiple conformance checks can be
executed at the same time. Therefore, our approach is to
first allow the user to configure all model-log inputs together
with the list of desired metrics to run and their configuration.
Afterwards, the calculation of the metrics itself is started; we
have implemented a computation manager which allows to
run multiple metric calculations in parallel. Section IV pro-
vides more technical details. Finally, since some metrics can
consume a large amount of time before finishing, an option to
both manually and automatically cancel a metric’s calculation
procedure was added as well. This allows researchers to easily
impose time-based bounds while running experiments.

e) Extensibility: Finally, the framework is designed so to
be easily extended with other or future conformance metrics.
A large number of metrics have already been implemented,
but we invite scholars and authors to implement their work
in CoBeFra as well. Making a ProM conformance checking
plugin available in CoBeFra is quite straightforward, especially
if best practises were followed during the development of the
original ProM plugin, since CoBeFra also uses and allows to
easily tie in with the ProM architecture.



IV. FRAMEWORK ARCHITECTURE

This section describes the technical architecture of the
framework in more detail. Particular attention is paid to the
topics of model-log mapping, separation between domain logic
and user interface, legacy support and parallelism.

A. General Architecture

The CoBeFra framework is integrated in ProM 6 and reuses
various existing libraries and components available in ProM.
Figure 2 provides a schematic overview of the developed
architecture. At the root of the architecture is a global ap-
plication controller which is responsible for managing the
general user interface, the flow between the initial input setup,
metric configuration and result handling, and also provides an
application programming interface (API) to perform all steps
programmatically. CoBeFra can be started as any other ProM
plugin, and allows to optionally specify a previously saved
project to resume or restart an experiment. Importing and
exporting of input objects is done through the standard ProM
provided architecture as well, and visualization of obtained
metric results was decoupled into a separate visualization
plugin. Once CoBeFra is started, the framework discards all
ProM-specific dependencies so that it can easily be ran as a
stand-alone application as well.

B. Particular Items

a) Mapping Process Models with Event Logs: Although
it appears straightforward to link process model activities
(Petri net transitions) with events in a process model after
executing a process discovery algorithm or during model
execution, this link or “mapping” is lost once both objects are
saved separately, or are modified asynchronously. Mapping a
model to a log is thus a crucial step in each conformance
checking analysis task, as there needs to be a clear and un-
ambiguously defined relation between process model activity
elements and log events. A model-log mapping is established
as follows. First, an event class alphabet is constructed from
the event log by deriving the class of each event using a
given classifier1. The most basic event classifier just extracts
the activity name from each event. Next, a process model
activity alphabet is constructed, which contains all process
model elements whose semantical definition corresponds with
a task executing or firing element. For Petri nets, this alphabet
simply contains each transition. Finally, a mapping function
between these two sets is established, so that for a Petri
net, each transition is either mapped to an event class (a
“visible” transition), is unmapped and denoted as a “silent”
or “invisible” transition (meaning that this transition can be
executed whenever it is enabled without corresponding with
a logged event), or is unmapped and denoted as a “blocked”
transition, effectively preventing (or hence, blocking) this tran-
sition from being executed at all. Note that multiple transition
can be mapped to the same event class. Another requirement

1The notion of event classes and event classifier is part of the XES
standard, used to store and manage event log data. See: http://www.xes-
standard.org/openxes/start

is that every event class must be the mapped target of at least
one transition in the event log, otherwise, such “alien” events
will block further trace execution when they are encountered
(possible ways to deal with this include either adding never
enabled dummy transitions to the Petri net mapped to the alien
event class, or first filtering the corresponding events out of
the log). We have found that many conformance checking
plugins in ProM provide alternative implementations of the
above described mappings; to be exact, six different methods
to describe the link between event log activities and Petri
net transitions were discovered. Furthermore, many of them
do not deal with the possibility of “blocked” transitions,
and have different ways to specify “invisible” transitions.
Finally, many existing mappers come with UI components that
allow users to construct a mapping, but many of them are
cumbersome to use, especially when having to deal with large
models containing many transitions or event classes, or when
having to execute repeated experiments. Since even a single
incorrectly mapped transition may lead to largely skewed
quality results, the mapping process should try to prevent
errors as best as possible. Therefore, we have implemented
an unified mapping system to deal with the above issues.
A mapping must be performed by the user between each
model-event log pair, but the provided user interface allows to
configure mappings for multiple models towards the same log
file simultaneously. Furthermore, an intelligent string matching
routine pre-maps transitions to event classes whenever pos-
sible, providing an option to the user to immediately map
the non-automatically matched transitions as being invisible
or blocked. Finally, autocompletion-enabled UI controls allow
users to rapidly assign the remaining transitions to an event
class. Our mapping object serves as the basis to save and
load model-event log combinations, preventing having to re-
enter the mapping between an event log and process model
every time an experiment is ran. Finally, our collection of
utility classes provides support to convert our mapping to
the different other mapping representations used by various
metrics in a transparent manner, so that the step of constructing
a mapping is completely decoupled from the configuration and
execution of the conformance checking metrics.

b) User Interface – Program Logic Separation: A second
architectural aspect we wish to emphasize is the great deal of
attention given to separating user interface components with
the actual domain model and program logic (e.g. calculation
of metric values). To do so, the conformance checking metrics
themselves have been implemented as classes which fulfill
their metric contract by implementing a “Metric” interface.
In general, this contract imposes the constraints on an imple-
menting metric that it must be able to return a numeric result
value, and should be configurable via a standard means, i.e. by
getting and setting key-value attributes. The latter also allows
for easy serialization of a metric configuration, which is used
to save and load experimental setups. These metric calculating
classes are completely UI-agnostic. Next, to provide an easy
means to configure each metric, UI components can be defined
which take a metric class as an input and allow to modify a
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Fig. 2. Schematic overview of the CoBeFra architecture

metric’s configuration via a visual interface. The UI compo-
nents are annotated (using standard Java Annotations) with
information to specify which metric classes can be configured
through their provided interface. When starting CoBeFra, an
internal repository of all UI providing classes is constructed.
When a user wishes to configure a specific metric, all matching
UI classes are iterated through (using the chain of command
programming pattern) and shown. Users accessing CoBeFra
using the API can completely bypass the user interface and
directly configure the metrics themselves using the key-value
store discussed above. Finally, it should be noted that some
existing ProM plugins rely heavily on (or assume) the presence
of a user interface, for example by hooking logical segments
directly into UI actions (such as pressing a button). To cleanly
implement these metrics in CoBeFra, some code was copied
and refactored to remove the UI-relying segments. Another
issue often encountered when inspecting ProM plugins is that
authors assume the presence of the ProM-provided “plugin
context” object (for example to report progress back to the
ProM framework), but are not able to continue when this
context is absent or – worse – when this context is not
specifically defined as being a UI-enabled (ProM allows to
specify a command line interface context, but some plugins
specifically check for the UI-based context, even when this
is not required). Therefore, we have also defined a utility
class which wraps around the ProM context object definition
by overloading UI-specific functions, which can be passed
directly to a conformance checking metric’s methods.

c) Support for ProM 5 Metrics: An important contribu-
tion of our conformance checking framework is that it includes
some well-known conformance checking metrics which are
only implemented in ProM 5, namely Fitness (f ), Advanced

Behavioral Appropriateness (a
′

B) and Advanced Structural
Appropriateness (a

′

S). The ProM 5 architecture greatly differs
from ProM 6. Not only is the notion of plugin contexts missing
(instead, progress listener objects are used), but the internal
way event logs are represented is dissimilar as well (ProM 5
does not use the XES standard). Since it would be infeasible
to redundantly rewrite large parts of ProM 5 conformance
checking metrics (possibly leading to new errors as well), we
have defined facade classes wrapped around ProM 5’s progress
and event log related definitions. Not only does this allow
to use ProM 5-only conformance checking metrics, but also
to directly load in XES-files and use them in combination
with these metrics, which is not possible when using ProM
5 itself (which only accepts the MXML-format). Since the
facade objects overload the event log reading methods on the
fly, this process is transparent to the end-user.

d) Computation Management and Parallelism: The
CoBeFra benchmarking framework allows to run multiple
metric calculations in parallel, thus speeding up experiments,
especially on multi-core systems. Next to parallelization, the
ability to (automatically) cancel a metric’s calculation routine
is also an important requirement, as this allows users to impose
time constraints on the executed experiments. To implement
these features, we have opted towards using a multi-process
architecture (rather than multi-threaded). This approach entails
some useful advantages. Not only does this avoid having to
wrap each metric’s calculation routine in a threaded worker
unit (possibly leading to synchronization issues or other multi-
threading related problems), but also prevents that a fatal error
in one metric would halt the complete experiment and discard
its results. Management of processes is a simple matter. Users



can specify a time limit after which the metric’s process is
killed. To communicate back and forth from the CoBeFra host
process and the metric executing processes, we make use of
standard interprocess communication practices by redirecting
standard POSIX input, output and error streams. The CoBeFra
host process first sends the metric’s configuration, event log
and model to the process using a compressed stream, after
which the host process waits until a result is sent back on
the metric’s process output stream, or an error is thrown
on the metric’s process error stream, which is captured and
shown to the end user in the final result overview as well.
Although currently unimplemented, it can indeed be remarked
that this setup theoretically allows to parallelize conformance
checking not only on the same host machine, but also across
multiple machines over a networked architecture. Exploring
the possibilities towards enabling conformance checking to
be executed on a computing grid is acknowledged to be an
interesting path for further work. Other possibilities towards
future work and current limitations are listed in the following
section.

This discussion on architecture concludes the presentation
of our comprehensive benchmarking framework (CoBeFra).
Figure 3 depicts a screen capture of the benchmarking tool. We
invite peers and researchers studying conformance checking to
contribute and improve upon the framework.

Fig. 3. Screen captures of the CoBeFra user interface

V. POSSIBILITIES FOR FUTURE WORK

Although the proposed CoBeFra framework satisfies the
desired design requirements and already includes a great deal
of conformance checking metrics, different potential improve-
ments exist, summarized in the following overview.

a) Other Process Model Representations: The currently-
available implementation of CoBeFra only includes Petri net
oriented metrics. However, many other process representations
exist for which an extensive conformance checking framework
would be beneficial. For instance, de Leoni et al. [24] apply

the principle of model-log alignment on declarative process
models (Declare models). Accordingly, we plan to investigate
how other representations can be incorporated in CoBeFra.

b) Graphical Output: The current version of CoBeFra
presents the metric results as a table, exportable as a CSV-
file. Graphical outputs such as charts, graphs, pareto-maps,
etc. will make the resulting output more user friendly. This
will also be explored in future work.

c) Root Cause Analysis: It is important to note that
while conformance checking metric values give a good initial
indication regarding the quality of a process model (or the level
of conformance of an event log), it is also important to know
where errors occurred in the process model (or perhaps time
frame in the event log). Some conformance checking metrics
already allow to do so. Standardizing this feature over multiple
metrics is a challenging task which is perhaps out of scope for
a benchmarking oriented framework.

d) Automatizing Process Discovery: CoBeFra allows to
automatize a great deal of experimental setup, configuration
and management tasks when executing a quality assessment
study. Nevertheless, the presence of process models and event
logs is assumed, which may require that users first run several
process discovery algorithms to obtain the set of desired
process models to be checked. Automatizing the task of
process discovery (perhaps in a separate tool) is a possible path
for future consideration, but was not included in the current
scope of the project.

e) Fine Tuning Event Classification and Non-Control
Flow Conformance Checking: As mentioned in the intro-
ductory section, the benchmarking framework proposed in
this paper mainly focussed on the control-flow perspective of
process models. It is possible to incorporate other perspectives
(e.g. data or resource-based views) in the task of conformance
checking as well. To do so, the current mapping system has
to be modified to allow for more configurability regarding
the classification of events. In addition, conformance checking
metrics have to be incorporated which are able to check on
these other dimensions. We note, however, that much of the
conformance checking literature so far has focussed on the
control-flow perspective.

f) Standard Validation Event Log Set: Especially for
researchers developing a new process discovery algorithm, or
conformance checking technique, it is necessary to compare
ones own work with the efforts of other peers. The question
then becomes which input data set(s) (event logs) should
be used to do so. Ideally, a “standard” data set should be
constructed, including logs of different sizes (trace variant
count, trace instances count, activity type count, etc.) and of
different known quality level (e.g. flower model). Additionally,
a standard data set should also include some robustness checks,
for example by including very noisy (purely random) event
logs. Constructing such an ideal event log set is an interesting
challenge which would be a fitting complementary item for
the proposed benchmarking framework.

g) Fine Tuning Computation Management: Although the
current version of CoBeFra allows to parallelize the calcu-



lation of conformance checking metrics, it should be noted
that executing too many tasks at once may bias run time
results of the metric. The current recommendation is thus
to keep the number of parallel executions below the amount
of available processing cores (the host operating system will
then attempt to distribute each metric as best as possible over
the possible cores), but it is also possible to further fine tune
the computational management by strictly binding a process
to a specific processing core and only allowing one metric
execution per core. Furthermore, we have indicated that an
interesting possibility for future work is to leverage the multi-
process execution architecture so that conformance checking
metrics can be executed on a computing grid over a network.
Finally, while the current computation manager allows to set
a time bound after which a metric is automatically cancelled,
a second option could be added which sets a bound on the
amount of memory which may be consumed by a conformance
checking metric.

h) Cross-Validation: Cross-validation-based evaluation
is not frequently applied in the area of process mining, since
process mining tasks are typically applied for descriptive,
rather than predictive analysis purposes. Furthermore, sensibly
splitting a given event log is not easy. Still, it should be
possible to implement cross-validation (or train/test splitting,
jackknifing) methods in a conformance checking setting by
making guided decisions (instead of choosing randomly) when
splitting the event log.

VI. CONCLUSION

This study proposes a new comprehensive benchmarking
framework in ProM, called CoBeFra. The current release of
the framework already includes a great amount of well-known
conformance checking metrics and focuses on the consistent,
comparative and repeatable calculation of conformance met-
rics. For the development and assessment of both process
discovery as well as conformance techniques, we conclude that
the proposed CoBeFra framework offers a valid contribution
for both practitioners and scholars in the field.
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