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Abstract—In this paper, a hybrid evolutionary algorithm 

(HEA) based on the approaches of the evolutionary algorithm 

and a local search (LS) is proposed to determine the gene 

signatures for predicting histologic response of chemotherapy on 

osteosarcoma patients, which is one of the most common 

malignant bone tumor in children. The HEA consists of a 

population of individuals but the evolution of individuals is 

conducted by a LS, rather than the crossover and mutation used 

in the traditional evolutionary algorithms. The proposed HEA 

can simultaneously optimize the feature subset and the classifier 

through a common solution coding mechanism. Experimental 

results indicate that HEA can obtain more accurate signatures 

than the other existing approaches in determining 

chemoresponse for osteosarcoma. 

I. INTRODUCTION 

ecent study found osteosarcoma patients who were 

diagnosed at an advanced stage were more difficult to be 

treated [1]. Early diagnosis increases the chance of 

survival. Cancer develops mainly in epithelial cells 

(carcinomas), connecting/muscle tissue (sarcomas), and bone 

marrow cells (leukemias and lymphomas). Successive 

mutations in the normal cell lead to DNA damages and 

impairs the cell replication mechanism ultimately causing 

malignant cancers. Thus it is necessary to identify the most 

significant gene features that contribute to a cancerous state. 

While significant gene features are available, initial diagnosis, 

which aims at identifying whether the patients are likely to 

have a poor response to standard preoperative therapy, can be 

made shorter. 

 In fact, some key genes in a body will cause dysregulation 

of the transcription and translation of other genes through 

complicated signaling pathways to initiate oncogenesis, and 

ultimately leading to derangement of the cellular phenotype 

and the clinical manifestations of cancer [2]. Significance 

based methods [3], which aim at finding statistically 

significant genes in differentiating various patient groups, 

have been extensively utilized. However, the philosophy of 
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these methods is to evaluate each single gene but interactions 

between genes are neglected. Therefore, methods to assess the 

function of gene combinations in regulating tumor patterns are 

highly desired. Supervised classification is the most effective 

machine learning method to map the input space (with 

multiple predictor genes) and the output space (with labeled 

conditions).  

 In our recent study, an integrated approach of support 

vector machine (SVM) and a local search (LS) algorithm is 

introduced to determine signature gene of osteosarcoma [4]. 

The main problem of LS arises with its inbuilt neighbourhood 

functions, which restrain the search with spinning in some 

particular regions of the space. After searching in a long time, 

jumping to some other regions of the search space becomes 

almost impossible. The most effective healing option appears 

to be hybridised LS with other heuristic optimization 

algorithm like the evolutionary algorithms. 

In this paper, a hybrid evolutionary algorithm HEA which 

integrates the features of evolutionary algorithm and LS is 

proposed to avoid local minima traps and to achieve a faster 

convergence. In HEA, the individuals in the population are 

reproduced by the LS to explore the search space while the 

traditional evolutionary algorithm uses genetic operators, 

crossover and mutation, to explore the search space. HEA is 

used to find the signatures and building models for predicting 

chemo-response of osteosarcoma. To evaluate the 

performance and robustness, the results of the proposed 

method were compared with the recently used methods [4, 5]. 

II. INDIVIDUAL REPRESENTATION IN HEA 

A. Problem Formulation 

Let a gene microarray dataset D be l
iii y 1)},{( x , where 

m
i x  is the gene expression level of the i-th patient, 

}1,1{iy  is the condition label for binary classification 

problem, and m is number of gene features.  

The dataset after performing gene selection is defined as 

    DDx   l
iii y 1)},{(  with   'm

i x , where function 

  selects 'm  ( m ) gene features among all the m gene 

features from the gene expression data set D. 

For a new sample x , the decision function of a SVM 

classifier with radial-basis-function (RBF) kernel can then be 

defined based on the selected gene subset: 

  )))(,(sgn(),,,,(
vectorssupport 

 xxDx  iii KayCf       (1) 

where   is the width parameter of the RBF kernel and C  is 

the regularization parameter, ia  is solved by optimizing a 

quadratic function 
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subject to Cai 0 . The support vectors are only 

corresponding to those items with 0ia . 

To develop a robust SVM model based on the training set, 

the leave-one-out cross-validation (LOOCV) was applied to 

optimize the model parameters (  and C). In LOOCV, one 

sample is leaved out as testing sample, and the remained 

1l  samples are used as training data. Let 
kD  represent the 

training set   , , 1, 1, 1, ,i iy i k k l  x , then the 

accuracy for a validation is calculated by: 
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k

k yCf
y

CJ  ),,,,(
1

,,,   DxD        (3) 

Thus the overall accuracy is 


l

k
k lJ

1

. Now the problems of 

gene feature selection and SVM parameter optimization are 

integrated to optimizing the above objective function (3). 

B. Solution Representation 

Solutions of the above problem are represented in 

combination of both binary and real codes where binary coded 

representation is for the selection of gene features with  , and 

real coded representation is for the SVM parameters   and 

C. This scheme of representation is illustrated in Fig. 1. 

As illustrated in the left hand side of Fig. 1, binary coded 

representation [6, 7] is composed of a fixed-length binary 

string to determine the usage of gene features by their 

corresponding genes. It has the form of the binary string with 

m bits such that m’ of entries are 1 and the rest are 0. A bit with 

1-element means that the corresponding gene feature is 

selected in the subset of gene features while a bit with 

0-element indicates that the corresponding gene feature is not 

selected. For instance, a solution of [0,1,0,1,0,0] with 2'm , 

i.e. the number of 1-elements of the solution, and m=6, i.e. the 

number of bits of the solution, represents the 2
nd

 and 4
th

 gene 

features are selected. As illustrated in the right hand side of 

Fig. 1, real code is adopted for representing the two SVM 

parameters, the kernel width parameter   and the 

regularization parameter C. 

The number of bits m is equivalent to the total number of 

genes, and the number of 1-elements 'm  is the number of 

selected gene signatures. Thus the number of possible gene 

subsets cn  can be calculated as the following: 
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In general, the number of the genes contained in microarray 

data is very large. This will make the whole solution space 

extremely large, thus impair the efficiency and effectiveness 

of the algorithm. Therefore, utilizing a pre-screening 

procedure to filter out those noisy genes will remarkablely 

improve the performance of this algorithm. 

III. LOCAL SEARCH (LS) 

Local search (LS) [8, 9] could be used to solve the integrated 

gene feature selection and SVM classification problem 

defined in (3) due to its ease of use with remarkable success in 

solving hard combinatorial optimization problems [10, 11]. It 

has been proposed to solve the gene signature selection 

problem as formulated in (3). Basically, it carries out 

exploration within a limited region of the whole search space. 

That facilitates a provision of finding better solutions without 

going further investigation. It is shown to be a simple and 

effective search procedure that explores the solution space 

with systematic change of neighbourhood. It searches in 

which a local search intensifies the exploration within a 

preferred neighbourhood until a certain level of satisfaction. 

Once a local search was finished with a neighbourhood, then 

another neighbourhood is systematically moved to. That 

refreshes the search and let the algorithm converge faster. Its 

main components, neighborhood functions (NFs), and its 

detailed procedures are discussed as follows. 

A. Neighborhood Functions (NFs) 

In VNS, the neighborhood functions (NFs) are the methods 

in which the neighboring solutions are determined through. 

Therefore, they are the key elements of LS in success of 

metaheuristics with exploration through search spaces. 

Following two types of NFs are used for exploring the solution 

space of the integrated gene feature selection and SVM 

classification problem as defined in (4): 

‘MutationBin’ is a neighborhood function used to explore 

solutions of the binary representation by exchanging the 

entries of a 0- and 1- elements. For instance, suppose that the 

2
nd

 bit with entry 1- element and 5
th

 bit with entry 0- element 

of the solution [0,1,0,1,0,0] are selected to be exchanged. 

Thus the 2
nd

 gene is selected as the gene signature, and the 5
th

 

gene is not. After applying MutationBin, the new solution will 

be [0,0,0,1,1,0]. Obviously, the elements of the 2
nd

 and 5
th

 bits 

were exchanged from 1 to 0 and from 0 to 1 respectively. Thus 

after the performing the operation MutationBin, the 5
th

 gene is 

selected as the gene signature, and the 2
nd

 gene is not. 

‘MutationReal’ is a neighborhood function that implies small 

shake on a randomly choice of SVM classifier parameters in 

the real coded representation of the solution. The 

MutationReal function is defined as the following shake 

function: 

 ppshake )(                 (5) 

where p  represents the randomly chosen parameter, and 

  is randomly generated within the range 

 minmax1.0 pp  , representing 0.1 times scale of the 

parameter space of the SVM classifier. 

B. LS 

VNS starts with a randomly selected initial solution, 

SxC ],,[  , where S is the whole search space, and 

manipulates the solutions via steps (a) and (b), where two 

main functions, Shake Function and Local Search Function 

LSF, for intensification and exploration in search.  



 

 

 

The pseudo-code of the variable neighborhood search (LS) 

is illustrated follows:  

Repeat the following Step (a) to (c) until the stopping 

condition is met: 

Step (a) Perform Shake Function: x’=MutationReal(x) 

Step (b) Perform Local Search Function: x’’=LSF(x’’) 

Step (c) Improve or not: if x’’ is better than x, do x’’’  x 

In Step (a), Shake Function generates and/or modifies the 

solutions regardless of the quality of solution so as to 

initializes a fresh search in a local neighborhood or to switch 

to another neighborhood. Then Step (b) carries out the major 

intensive search by Local Search Function (LSF), which a 

simple hill-climbing algorithm based on both aforementioned 

NSs detailed in the appendix is used. It explores for an 

improved solution within the local neighborhood chosen. 

After that the outcome of local search function is evaluated 

whether or not to adopt it as the solution for further search. 

Shake Function and LSF need to be chosen so as to achieve an 

efficient LS. The NF discussed in Section III, A are used for 

Shake Function and LSF to obtain neighborhood changes and 

local intensification in LS. Since the purpose of Shake 

Function is to diversify the exploration, it is designed to 

switch to another region of the search space so as to carry out 

a new local search over there. In this study, Shake Function is 

not applied to the binary coded representation part of 

solutions, but is designed to conduct a random move within 

the real coded part. Thus, the given solution *x  operated 

with the Shake Function to obtain x’ uses MutationReal(x*). 

That is reiterated until the termination condition is met. 

IV. HYBRID EVOLUTIONARY ALGORITHM (HEA) 

LS is able to converge to the optimum value, but it could be 

very expensive to obtain a desired solution in terms of 

computational time. It can be found from the literature that LS 

has been either hybridized with other methods such as genetic 

algorithms or parallelized. In this paper, the hybrid 

evolutionary algorithm (HEA) was developed to overcome the 

long computational time for solving the gene signature 

problem as formulated in (3). It offers an evolutionary process 

in which a LS algorithm substitutes for the genetic operators to 

evolve a population of solutions. The pre-defined number of 

iterations in LS algorithm is kept short and sufficiently 

compact so that it can be easily used in any evolutionary 

process as an operator. This makes the HEA implementable in 

various environments, working alongside other methods. We 

embedded a shortened LS into an evolutionary algorithm, 

which adopts the LS as the only operator and does not contain 

any other reproduction operators (crossover, mutation). The 

HEA for solving (3) is sketched below: 

 

 

 

 

 

 

 

 

Begin  

 Initialise the population (X), 

 Set the number of evaluations (N) 

 Repeat: 

  Select an individual (xn) 

Operate by the LS and generate the new individual (xn’) 

  Evaluate the new individual xn’ for replacement 

 Until n>=N 

End. 

After initialization and parameter setting, the algorithm 

repeats the following steps: (i) selects one individual xn 

subject to the running selection rule; (ii) generate a new 

individual xn’ by the LS operator; and (iii) evaluates whether 

or not to put it back into the population through a particular 

replacement rule. The LS operator is basically a metropolis 

algorithm, which is the original inspirational idea, where inner 

repetitions are kept optional.  

Implementations of LS differ depending on the setting of 

inner repetitions, which are set to stabilize the solution before 

the LS stops exploring the solution space. This identifies the 

total number of evaluations per run of the LS operator. 

Obviously, the only operator running alongside the selection 

is the LS. Since the LS operator re-operates on particular 

solutions several times, the whole method works as if it is 

explored the solution space every particular number of 

iterations. If we assume that there is a single solution operated 

by this LS, it will become a multi-start (not multi-run) 

algorithm that reruns repeatedly. Thus, the novelty of HEA 

can be viewed from two points of view: one is its multi-start 

property, and the other is its evolutionary approach. The 

multi-start property provides HEA with a more uniform 

distribution of random moves along the whole procedure and 

that helps to diversify the solutions. In fact, typical LS works 

in such a way that the search space is explored by distributed 

random moves, where each random move starts a new hill 

climbing process to reach the global minimum. Since it almost 

behaves like a hill climber in the later stages of the process, it 

becomes harder to escape from local minima then, especially, 

when it is applied to difficult optimisation problems, which 

have harder local minima. The idea is to distribute the random 

moves more uniformly than exponentially across the whole 

process. 

 Suppose that the landscape of the formulated problem (3) is 

l, and E0 is one of the very strict local minima. Furthermore, 

suppose we run a LS algorithm that sticks in E0 under some 

initial conditions. Most of the time, getting stuck in such local 

minima happens in the later stages of runs, therefore the 

probability of moving to a rescuable neighbour is very low. In 

order to avoid sticking in E0, it is required to relax the 

restricted conditions to let the algorithm proceed by jumping 

to a solution state that avoids E0. A multi-start HEA is more 

useful to relax these conditions rather than a single run LS 

since the random moves are more uniformly distributed in the 

multi-start one and the chance to commence new hill climbing 

cycles in the later stages is higher. Thus, a compact LS 

algorithm that constantly picks the same solution and 

manipulates it along a number of iterations for several times 

can easily avoid the local minima, as it adopts a set of short 



 

 

 

Markov chains instead of a single and long one. This allows 

changing the direction of solution path towards a much more 

useful destination. 

 The other property of HEA is to tackle a population of 

individuals rather than a single individual. This decreases the 

effects of initial solutions on the optimization process. Many 

works on solving hard optimization problems by heuristics 

focused on the effects of initial solutions. When an initial 

solution has been chosen, there arise limited possible paths to 

proceed under the certain circumstances since the 

optimization process behaves as a Markov chain and each 

chain offers limited paths to the destination, as widely shown 

in the literature [12]. Looking at the initial conditions, one can 

estimate the probability of getting an optimal or useful near 

optimal solution with a particular initial solution. In fact, it is 

hard to ensure that all initial conditions can avoid the local 

optima in searching for reasonable time. Therefore, a diverse 

population of initial solutions can give higher probability than 

a single initial solution to catch the optimum or a useful near 

optimum within a reasonable time. Moreover, if useful 

selection and replacement strategies can be utilized, it will 

definitely help the process to improve the quality of solutions. 

So, for that reason, the HEA algorithm is run on a population 

of solutions rather than an individual. 

V. DATA DESCRIPTION 

The osteosarcoma microarray data were collected through 

institutional review board-approved protocols at four Centers 

after informed consents were signed [13]. A total of 20 

samples, which are definitive surgery specimens, were 

employed to be used in this study. The definitive surgery 

samples were collected after the completion of preoperative 

chemotherapy. The drug responses are centrally reviewed by 

one pathologist after definitive surgery. Good response is 

defined as more than 90 percent necrosis in tumor, and poor 

response with less than 90 percent necrosis. 

This amount of patient samples are considered to be 

valuable and satisfied in cancer research in which were 

collected through many years of observation of diagnosis, 

treatment and surgery of the patients [14]. Also osteosarcoma 

is not that common, but long-term and strong chemotherapy 

needs to take to turn recovery. Our objective is to make use of 

this amount of patient samples to solve the integrated gene 

feature selection and SVM classification problem formulated 

in (3). 

Raw quantification output of all array experiments were 

preprocessed and filtered by removing spots with low signal 

intensity and low sample variance (P > 0.01) as well as those 

that were missing in >50% of the experiments. A total of 1,934 

genes remained after pre-processing and filtering. Intensities 

were then normalized by intensity dependent local weighted 

regression method. After normalization, intensity ratios were 

log transformed before further analysis. 

There were some missing data after filtering. Since most of 

the learning machines including SVM require complete data 

matrix, simply ignoring those genes with missing values may 

possibly miss some significant genes. In this study, we simply 

replaced those missing data by the mean value of the existing 

data sets. This approach ensures that the testing data are 

entirely independent to the training process to exclude any 

possibility of overestimation. 

VI. RESULTS AND DISCUSSION 

A case study of classification of osteosarcoma is proposed 

to be solved by HEA. The effectiveness and robustness of the 

proposed HEA is performed by comparing with the other two 

existing methods, genetic algorithm [5] and variable 

neighbourhood search [4] which have been proposed to solve 

this classification problem. The 20 definitive surgery samples 

were employed to perform the LOOCV discussed in Section 

II, the classifier was firstly trained by 19 out of the 20 

definitive surgery samples, optimized and validated on 1 out 

of the 20 definitive surgery samples to classify good 

responders and poor responders. To reduce the computational 

cost for optimization, two-sample t-test is first performed to 

pre-screening those noisy genes among the 1934 genes. The 

192 most significant genes, which their t-value are higher than 

2.15 (the significance is with 98% confidence level, are kept 

from the total 1934 genes. Then the algorithms used to train 

the SVM classifier with 5 genes out of the 192 genes. Since all 

algorithms, HEA, GA and LS are the stochastic algorithms, 

different solutions are obtained with runs. The better the 

algorithm is, the smaller mean and variance of solutions in all 

runs can be obtained. Therefore 30 test runs were performed. 

The means and variances of the three algorithms are also 

shown in Table I, and the numbers of times that the algorithms 

reached 100% accuracy are recorded on the table. It can be 

found from Table I that HEA achieves the best mean accuracy 

among all the algorithms. In fact, HEA obtains the highest 

mean accuracy. Also the variance of accuracy of HEA is the 

smallest comparing with the other algorithms. The smaller the 

variance means the closer the values cluster around the mean. 

Since all the variance of accuracy of HEA is the smallest, it 

demonstrates that the HEA is capable to approach and keep 

searching around the optimal mean closer. Therefore HEA 

can produce better and more stable solution quality than the 

other two algorithms. Also Table I shows that the numbers of 

times that the LS, GA and HEA can reach 100% accuracy are 

3, 21 and 29 respectively. Therefore the capability of HEA to 

reach 100% accuracy is higher than the other two algorithms. 

VII. CONCLUSION 

In this paper, we have proposed an evolutionary variable 

neighborhood search algorithm HEA, which is an integrated 

approach of variable neighborhood search LS and 

evolutionary algorithm, aiming at selecting a compact gene 

subset and simultaneously optimizing SVM classifier 

parameters. Applying HEA on osteosarcoma microarray data 

resulted in 99.83% of cross-validation accuracy on the 

training dataset with 20 definitive surgery samples 

outperforming the other proposed algorithms, LS and 

evolutionary algorithm. Apart from higher solution quality, 



 

 

 

more robust solutions can be produced by HEA than the other 

proposed algorithms. 
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Fig. 1 Solution representation 

 

 

TABLE I.  CLASSIFICATION ACCURACIES OF THE 30 RUNS, MEAN OF 

ACCURACIES, VARIANCE OF ACCURACIES, AND NUMBER OF TIMES 

REACHED 100% CLASSIFICATION ACCURACY 
Acc. of i-th run LS GA HEA 

Mean 92.83 96.67 99.83 

Variance 28.76 13.24 0.83 

Times reached 

100%  

5 21 29 

 


