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Abstract

Extended Dynamic Mode Decomposition (eDMD) is a powerful tool to generate data-
driven surrogate models for the prediction and control of nonlinear dynamical systems in the
Koopman framework. In eDMD a compression of the lifted system dynamics on the space
spanned by finitely many observables is computed, in which the original space is embedded
as a low-dimensional manifold. While this manifold is invariant for the infinite-dimensional
Koopman operator, this invariance is typically not preserved for its eDMD-based approxima-
tion. Hence, an additional (re-)projection step is often tacitly incorporated to improve the
prediction capability. We propose a novel framework for consistent reprojectors respecting
the underlying manifold structure. Further, we present a new geometric reprojector based on
maximum-likelihood arguments, which significantly enhances the approximation accuracy and
preserves known finite-data error bounds.

1 Introduction

In the Koopman framework nonlinear dynamical systems are lifted to the infinite-dimensional space
of observables, in which the system dynamics are governed by a semi-group of linear operators.
Since a compression of the Koopman operator can be efficiently computed in a purely data-based
manner based on the extended Dynamic Mode Decomposition (eDMD), see, e.g., [24], Koopman-
based prediction and control has attracted considerable attention in recent years, see, e.g., the
collection [15], the recent survey [2], and the references therein. In eDMD, finitely-many observables
are evaluated along a finite number of sample trajectories to compute a compression of the infinite-
dimensional Koopman operator by means of a regression problem [9]. The approximation is subject
to an estimation error due to a finite amount of data [17], and a projection error stemming from
a finite dictionary size [21].
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search Foundation) – Project-ID 507037103
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The observables map the state space to a manifold in the lifted space, which is preserved by the
Koopman operator, i.e., both the lifted state trajectories and the corresponding Koopman flow
evolve on this manifold. However, the finite-dimensional approximation does not satisfy this prop-
erty if one neglects particular cases typically linked to Koopman invariance of the dictionary [6], see
also the recent work [16]. While the mentioned references provide, at least up to a certain degree,
a remedy for the prediction and analysis of dynamical systems, the respective conditions w.r.t.
control systems are quite restrictive except for the drift-free case [8]. Hence, we are concerned with
the case that the dictionary is not Koopman invariant, which is often present in practice. This is of
paramount importance since the learned compression is based on information on the manifold only
and, thus, may exhibit large errors if applied on the lifted space, but not on the manifold itself.
The respective errors often even amplify for increasing dictionary size increases. Often a (re-) pro-
jection step is tacitly incorporated to ensure consistency, i.e., projecting back to the manifold [14],
and, thus, to counteract these deteriorating effects. To be more precise, following each prediction
step, the propagated observables are projected back onto the manifold before the surrogate model
is used for the next prediction step. If the coordinate functions are included in the dictionary, the
canonical choice is the coordinate projection [22]. Whereas the coordinate projection may be an
attractive choice due to its simplicity, we demonstrate that it is, in general, by far not the best.
Additionally, it requires that the coordinate functions are included in the dictionary.

The contribution of this paper is twofold. First, we prove that the additional projection step
cannot deteriorate the overall performance much. To this end, we link the respective error to the
one resulting from the regression problem for computing the finite-dimensional compression of the
Koopman operator. In addition, we explicate why the coordinate projection performs well if the
right-hand side of the differential equation is contained in the dictionary V. Second, we propose
a novel framework for closest-point projections containing the standard coordinate projection as
well as an alternative geometric projection based on a Maximum-Likelihood estimator. To this
end, we introduce a semi-inner product on the ambient space RN , where N is the dimension of
the dictionary V, which induces a Riemannian metric on the manifold. This allows for different
weightings, and we show that this does not interfere with solving the regression problem. To be
more precise, we prove that the solution of the L2-regression problem is also a solution w.r.t. this
new weighted counterpart. In conclusion, the different projections correspond to different choices
of semi-inner product. To illustrate the superiority of the presented approach w.r.t. approximation
accuracy, we provide several numerical examples.

The outline of the paper is as follows: In Section 2, we briefly recap eDMD in the Koopman
framework and in Section 3 we provide the problem formulation. Then, in Section 4, we consider
the coordinate projection to show that a projection step between predictions in the lifted space
is (highly) beneficial. In Section 5, the novel projection framework is introduced and the key
results are presented before the geometric projection and numerical simulations are conducted in
the following two sections. In Section 7, conclusions are drawn before a brief outlook is given.

Notation: Let R be the field of the real numbers. Further, for integers a, b ∈ Z with a ≤ b, we
set [a : b] := [a, b] ∩ Z. For η > 0, Bη(x̂) denotes the ball centered at x̂ ∈ Rd with radius η, i.e.,
the set {x ∈ Rd : ∥x − x̂∥ < η}, where ∥ · ∥ : Rd → R is the Euclidean norm. Moreover, for two
sets A,B ⊂ Rd, A⊕ B := {x+ y : x ∈ A, y ∈ B} is the Pontryagin sum. The pseudodeterminant
det†(W ) of a matrix W ∈ RN×N is defined as the product of the nonzero singular values of W .
For a function φ : Rn → Rm, the differential at a point x ∈ Rn is written as Dφ(x) ∈ Rm×n.
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2 Extended Dynamic Mode Decomposition

For a compact set X and (sufficiently large) η > 0, we consider the system dynamics

ẋ(t) = f(x(t)) (2.1)

with Lipschitz continuous vector field f : D := X ⊕ Bη(0) ⊂ Rd → Rd. We denote the solution
of (2.1) at time t ∈ R≥0 for the initial condition x(0) = x̂ ∈ X by x( · ; x̂) on its maximal interval
[0, tx̂) of existence. For given ∆t > 0, tx̂ ≥ ∆t holds for all x̂ ∈ X if η > 0 is sufficiently large,
which is tacitly assumed in the following to streamline the presentation. Alternatively, forward
invariance of the set X w.r.t. the flow of the dynamical system governed by (2.1) is assumed, see,
e.g., [25].

The Koopman semigroup (Kt)t≥0 of linear operators on L2(D,R) is defined via the identity

(Ktφ)(x̂) = φ(x(t; x̂)) ∀ x̂ ∈ X, φ ∈ L2(D,R) (2.2)

for all t < tx̂ and, thus, in particular on the interval [0,∆t]. By means of this semigroup, one may
either propagate the observable φ forward in time using the Koopman operator Kt and evaluate
the propagated observable at x̂ or evaluate the observable φ at the solution x(t; x̂) as depicted in
Figure 1.

observable
φ ∈ L2(D,Rn)

Ktφ

Koopman

(Ktφ)(x̂)

evaluate

initial state
x̂ ∈ X

x(t; x̂)

ODE

φ(x(t; x̂))

evaluate

φ(x(t; x̂)) = (Ktψ)(x̂)

equate

Figure 1: Schematic sketch of the Koopman framework.

For N ∈ N and linearly independent observables ψi ∈ L2(D,R), i ∈ [1 : N ], V := span{ψi | i ∈ [1 :
N ]} is called the dictionary. Define the vector-valued function

Ψ : D → RN , x 7→ (ψ1(x) . . . ψN (x))⊤. (2.3)

Invoking the identity (2.2), we get

KtΨ =

Ktψ1

...
KtψN

 = Ψ(x(t; x̂)) ∈ L2(X,R)N ≃ L2(X,RN ).
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Then, the approximation of the Koopman operator is defined as a best-fit solution in an L2-sense
by means of the regression problem

K̂ = arg min
K∈RN×N

∫
X
∥Ψ(x(t; x̂))−KΨ(x̂)∥22 dx̂. (2.4)

A solution to Problem (2.4) can easily be calculated by

K̂ = ΨY Ψ
−1
X , (2.5)

where ΨX and ΨY are given by ΨX =
∫
X Ψ(x̂)Ψ(x̂)⊤ dx̂ and ΨY =

∫
X Ψ(x(t; x̂))Ψ(x̂)⊤ dx̂, re-

spectively. K̂ is a compression of Kt, that is, K̂ = PVKt
|V holds, where PV is the L2-orthogonal

projection onto V. The projection error was first analyzed in [25] by means of a dictionary of finite
elements, see also [21] for an extension to control systems. In particular, if V is Koopman-invariant,
then K̂ = Kt

|V.

Remark 1. An empirical estimator of K̂ given m ∈ N i.i.d. data points x1, . . . , xm can be computed
via

K̂m = arg min
K∈RN×N

m∑
i=1

∥Ψ(x(t;xi))−KΨ(xi)∥22.

For m ≥ N , K̂m = (Ψm
XΨm

Y
⊤)(Ψm

XΨm
X

⊤)−1 is a closed-form solution using the (N × m)-data
matrices Ψm

X and Ψm
Y with entries ψi(xj) and ψi(x(t;xj)), (i, j) ∈ [1 : N ]× [1 : m], respectively.

The convergence K̂m → K̂ for m → ∞ follows by the law of large numbers [11, Section 4].
For finite-data error bounds we refer to [17] and the references therein, where also an extension
to Stochastic Differential Equations (SDEs) with ergodic sampling (along a single, sufficiently long
trajectory) is given. For a recent result in reproducing kernel Hilbert spaces, we refer to [19].

In fact, the regression problem (2.4) is the ideal formulation for the compression in the infinite-
data limit. In our numerical simulations, we solve an approximation of this using m = 10, 000 i.i.d.
data points drawn from the compact set X.

3 Problem formulation

The dictionary V is defined by the span of linearly-independent observables ψ1, ..., ψN . In (2.4),
K̂ is computed by stacking the observables ψ1, .., ψN into Ψ ∈ L2(X,R)N . Correspondingly, we
define the set

M := im(Ψ) = {Ψ(x) | x ∈ X} ⊂ RN . (3.1)

By definition, the set M is invariant w.r.t. the Koopman operator Kt, t ∈ [0,∆t], i.e.,

(KtΨ)(x̂) = Ψ(x(t; x̂)) ∈M ∀ x̂ ∈ X. (3.2)

The following example taken from [6] nicely illustrates that this property also holds for the eDMD-
based surrogate model if the dictionary V is Koopman-invariant, i.e., KtV ⊆ V.
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Example 2. Consider the system

d

dt

(
x1(t)
x2(t)

)
=

(
x1(t)

λ(x2(t)− x21(t))

)
. (3.3)

in R2 with λ ∈ R. Choosing the observables ψ1(x) = x1, ψ2(x) = x2, and ψ3(x) = x21, we get
ψ̇1(x(t)) = ψ1(x(t)), ψ̇2(x(t)) = λ(ψ2(x(t))−ψ3(x(t))), ψ̇3(x(t)) = 2ψ3(x(t)), which can be written
as the linear system

d

dt

y1y2
y3

 (t) =

1 0 0
0 λ −λ
0 0 2

y1y2
y3

 (t) =: Ay(t). (3.4)

As the prediction of observables in V = span{ψ1, ψ2, ψ3} can be performed by means of (3.4),
the subspace V is Koopman invariant and the matrix representation Kt ∈ R3×3 of the Koopman
operator Kt|V w.r.t. the basis {ψ1, ψ2, ψ3} is given by Kt = etA. The prediction of an observable

φ =
∑3

i=1 aiψi along the flow emanating from x̂ is given by φ(x(t; x̂)) = ⟨a, etAΨ(x̂)⟩2.

The invariance of V for Example 2 is preserved if the x1-component of the right-hand side
is multiplied by µ ∈ R \ {0} or the term x21 in the x2-component is replaced by an arbitrary
polynomial p(x1), see [6]. However, this desirable property does not hold in general as showcased
in the following example.

Example 3. Let us replace the linear term x1 in the first component of Example 2 by −x21, i.e.,

d

dt

(
x1(t)
x2(t)

)
=

(
−x21(t)

λ(x2(t)− x21(t))

)
.

Then, the dictionary spanned by ψi(x) = xi, i ∈ {1, 2}, and ψi(x) = xi−1
1 , i ∈ N≥3, is Koopman

invariant, but infinite dimensional.

In conclusion, one cannot expect K̂Ψ(x̂) ∈ M for the approximated Koopman operator K̂ as
depicted in Figure 2. This causes two issues in using K̂ (or data-driven approximations thereof)
to model the system dynamics (2.1). The first is that it is unclear how to recover the state values
underlying the propagated observables. Specifically, if K̂Ψ(x̂) /∈ M , then by definition there is
no value x ∈ D ⊂ Rd satisfying Ψ(x) = K̂Ψ(x̂). The second issue is that the learning process,
i.e., the regression problem (2.4), only uses measurements of the form z = Ψ(x), i.e, only points
contained in the set M are taken into account. Hence, one cannot expect K̂z to be meaningful if
z /∈ M , which may render a repeated application of K̂ questionable. Both of these issues can be
mitigated by projecting the dynamics z+ = K̂z, z = Ψ(x), back to the set M after each iteration,
see, e.g., [14].

Within this paper, we propose a framework for understanding a wide class of projections and
propose two particular choices: the regularly used coordinate projection and our newly introduced
geometric projection. Such a projection step in particular is crucial for future applications in
Koopman-based (predictive) control [21, 5] using eDMDc [10] or a bilinear surrogate model [23],
where the construction of Koopman-invariant subspaces is a highly-nontrivial issue, see, e.g., [8].
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Ψ(Rd)

Rd

RN−d

x(∆t; x̂)

x̂

Ψ(x(∆t; x̂))

Ψ(x̂)

(K tΨ(x̂))t≥0

K̂Ψ(x̂)

Rd

πW ◦K̂Ψ(x̂)

Ψ−1◦πW ◦K̂Ψ(x̂)

Figure 2: Geometric projection after applying the approximation K̂.

4 The coordinate projection

In this section, we consider the coordinate projection – an approach that has been used by various
authors, including those developing neural-network based EDMD [22]. If the first d observables
are chosen to be the coordinate functions, i.e., ψi(x) = xi holds for all i ∈ [1 : d], we get

Ψ(x) =

(
x

Ψ̄(x)

)
:=
(
x1 . . . xd ψd+1(x) . . . ψN (x)

)⊤
,

where Ψ̄ = Ψ[d+1:N ] consists of the last N − d components of Ψ. Then, assuming that Ψ̄ : Rd →
RN−d is a smooth function, the set M is a graph and, thus, a smooth manifold. We emphasize
that, for each z ∈ M , there exists a unique x = z[1:d] ∈ Rd such that Ψ(x) = z holds, i.e., Ψ is
invertible by simply taking the first d coordinates. Hence, the coordinate projection π : RN →M
is defined by

π(z) := (z1,...,d, Ψ̄(z1,...,d)) ∈M, (4.1)

for all z ∈ RN . The associated approximated discrete-time dynamics on X ⊂ Rd are defined as

x+ = F̂π(x) := Ψ−1 ◦ π(K̂Ψ(x)). (4.2)

Using the particular structure of the coordinate projection (4.1), this simplifies to

F̂π(x) = Ψ−1 ◦ π
(

K̂[1:d]Ψ(x)

K̂[d+1:N ]Ψ(x)

)
= Ψ−1

(
K̂[1:d]Ψ(x)

Ψ̄(K̂[1:d]Ψ(x))

)
= K̂[1:d]Ψ(x),

where K̂[1:d] ∈ Rd×N and K̂[d+1:N ] ∈ RN−d×N are the first d and last N−d rows of K̂, respectively.
Thus, only the first d rows corresponding to the dynamics of the state are relevant for the pre-
dictions. Hence, Koopman-based prediction with coordinate projection resembles a discrete-time
version of SINDy [7] without the sparsity aspect.

The benefits of using such a projection π are demonstrated in the following example.
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Figure 3: Comparison of the surrogate models with coordinate projection using V3 (4.2; −−),
coordinate projection using V5 (4.2; ·−) and no projection using V5 (4.5; · · · ) for Example 4 on
X = [−2, 2]2 in comparison to the exact solution (—): exemplary trajectories (left) and mean error
over time averaged over x0 ∈ X (right).

Example 4. On the domain X = [−2, 2]× [−2, 2], we consider the unforced and undamped Duffing
oscillator,

ẋ = v, v̇ = x− x3. (4.3)

For n ∈ N, define the monomial dictionaries

Vn = span{xavb | a, b ∈ [0 : n] : a+ b ≤ n}. (4.4)

Using the time step δ = 0.01, we approximate the Koopman operator as described in Section 2. The
dynamics of the corresponding lifted, i.e., not projected, data-based surrogate model are obtained
simply by

z(n+ 1) = K̂z(n), z(0) = Ψ(x(0)). (4.5)

Then, we have x(n) = z1(n), v(n) = z2(n), n ∈ N0. Figure 3 shows that the additional projection
step in the dynamics (4.2) significantly improves the approximation accuracy and allows for pre-
dictions on much larger time intervals in comparison to its counterpart (4.5) without projection
step.

While the additional projection step typically yields a significant improvement of the approximation
quality, we provide some additional insight why the coordinate projection is particularly well suited
for the Duffing oscillator considered in Example 4. The reasoning is the close relationship between
the system equations (4.3) and the choice of the dictionary V5, which can be shown in a more
general fashion: Let V be a dictionary including the coordinate functions, i.e., Ψ can be written
as (2.3), and assume that fi ∈ V holds for i ∈ [1 : d] (each component of the right hand side (2.1)
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is contained in the dictionary). The representation (2.3) allows to rewrite the argument of the
regression problem (2.4) as

∥Ψ(x(t; x̂))−KΨ(x̂)∥22=
∥∥∥∥( x(t; x̂)−K[1:d]Ψ(x̂)

Ψ̄(x(t; x̂))−K[d+1:N ]Ψ(x̂)

)∥∥∥∥2
2

=

∥∥∥∥(x̂+ tf(x̂) +O(t2)−K[1:d]Ψ(x̂)
Ψ̄(x(t; x̂))−K[d+1:N ]Ψ(x̂)

)∥∥∥∥2
2

,

where we tacitly imposed sufficient smoothness of the vector field f such that x(t; x̂) = x̂+ tf(x̂)+
O(t2) holds. Then, invoking fi ∈ V, the approximation error of the solution K̂[1:d] is bounded by
O(t2). In particular, we obtain

F̂π(x̂) = x(t; x̂) +O(t2)

for all initial conditions x̂ ∈ X.

5 Closest-Point Projections

In the following we assume that the set M defined by (3.1), which is induced by Ψ ∈ L2(X,R)N ,
is a smooth and d-dimensional embedded manifold in RN , where continuous differentiability is a
sufficient smoothness assumption for our purposes. Alternatively, one may consider any injective
immersion Ψ which satisfies any of the conditions of [12, Proposition 4.22].

Let W ∈ RN×N be a positive semi-definite matrix and define the weighted semi-inner product

⟨u1, u2⟩W := u⊤1 Wu2 ∀u1, u2 ∈ RN .

If W is invertible or the weaker condition

det(DΨ(x)⊤WDΨ(x)) ̸= 0 ∀x ∈ X (5.1)

holds, then W induces a Riemannian metric on M . This then defines the notion of distance on
the manifold M .

Based on the chosen semi-inner product ⟨·, ·⟩W , we construct the closest-point projection.

Definition 5. For a given (N ×N)-matrix W =W⊤ ≥ 0 satisfying Condition (5.1), the closest-
point projection πW : RN →M is defined as

πW (z) := argminp∈M ∥z − p∥W . (5.2)

Condition (5.1) ensures that πW is well-defined in a neighbourhood of the manifold embedded in
RN , and, in particular, πW (z) = z for all z ∈ M . Since the projection operator (5.2) is invariant
under scalings of W , i.e., πW (z) = παW (z) holds for all z ∈ RN and α > 0, it suffices to consider
semi-inner product W satisfying det†(W ) = 1. This corresponds to the choices of W for which the
Riemannian volume of M is constant.

Next, we show that the coordinate projection is a closest-point projection.

Proposition 6. Let Ψ be given by Equation (2.3), i.e., Ψ contains the coordinate functions. Then,

C :=

(
Id 0d×N−d

0N−d×d 0N−d×N−d

)
∈ RN×N (5.3)

induces a Riemannian metric on M , and the coordinate projection (4.1) coincides with the closest-
point projection with W = C.
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Proof. We verify Condition (5.1) to show that C induces a Riemannian metric on M . Let x ∈ X
be given. Then, we have det(DΨ(x)⊤CDΨ(x)) = det(Id) ̸= 0, which can be directly inferred by
rewriting the left hand side as

det

((
Id

DΨ̄(x)

)⊤(
Id 0d×N−d

0N−d×d 0N−d×N−d

)(
Id

DΨ̄(x)

))
.

Now, for any z ∈ RN , one has

πC(z) = argminp∈M ∥z − p∥C
= Ψ ◦ argminx∈X ∥z −Ψ(x)∥C

= Ψ ◦ argminx∈X

∥∥∥∥( z[1:d] − x
z[d+1:N ] − Ψ̄(x)

)∥∥∥∥
C

= Ψ ◦ argminx∈X
∥∥z[1:d] − x

∥∥ = Ψ(z[1:d]),

which completes the proof.

We emphasize that the matrix C is not invertible. Further, the closest-point projection πW is,
in general, a nonlinear projection, and, may be implemented using variants of steepest descent or
Newton’s method [1].

The following proposition shows that the error resulting from the closest-point projection is
proportionally bounded to the approximation error in the regression problem (2.4).

Proposition 7. The closest point projection of Definition 5 satisfies∥∥∥πW (K̂Ψ(x))−KtΨ(x)
∥∥∥
W

≤ 2
∥∥∥K̂Ψ(x)−KtΨ(x)

∥∥∥
W

for all x ∈ Rd. That is, its error is bounded by twice the training error in the given metric W .

Proof. Since KtΨ(x) ∈M , the definition of πW (K̂Ψ(x)) implies∥∥∥πW (K̂Ψ(x))− K̂Ψ(x)
∥∥∥
W

≤
∥∥∥KtΨ(x)− K̂Ψ(x)

∥∥∥
W
.

Hence, using the triangle inequality and the definition of the regression problem (2.4) weighted
with W yields the assertion.

One may observe that the bound of Proposition 7 uses the semi-inner product W , which is not
the metric used in the construction of the surrogate model K̂, cp. the regression problem (2.4).
However, we show in the following proposition that the solution of problem (2.4) also solves the
weighted regression problem.

Proposition 8. The solution K̂ to the regression problem (2.4) satisfies

K̂ ∈ arg min
K∈RN×N

∫
X
∥Ψ(x(t; x̂))−KΨ(x̂)∥2W dx̂ (5.4)

for all W =W⊤ ≥ 0, W ∈ RN×N .
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Proof. Using ΨX ,ΨY given by (2.5), differentiation of the cost w.r.t. K in an arbitrary direction
∆ yields

2

∫
X
⟨KΨ(x̂)−Ψ(x(t; x̂)) , ∆Ψ(x̂)⟩W dx̂ =2⟨

∫
X
KΨ(x̂)Ψ(x̂)⊤ −Ψ(x(t; x̂))Ψ(x̂)⊤ dx̂,∆⟩W

=2⟨KΨX −ΨY ,∆⟩W = 2⟨W (KΨX −ΨY ),∆⟩.

This expression is nullified for K̂ = ΨY Ψ
−1
X , which is thus indeed a solution to the regression

problem (5.4); independently of the chosen weighting matrix W =W⊤ ≥ 0.

6 Geometric Projection

The choice of a suitable metric is a non-trivial task. We propose a geometrically-motivated one,
which exhibits a superior performance as demonstrated in this section.

Definition 9. Let Σ ∈ RN×N be given by

Σ =

∫
X
(K̂Ψ(x)−KtΨ(x))(K̂Ψ(x)−KtΨ(x))⊤ dx (6.1)

and be invertible. Then, the geometric projection πW is the closest point projection of Definition 5
associated with the metric W = det(Σ)1/NΣ−1.

Recalling the scaling invariance, it is straightforward to see that the geometric projection is
a special case of closest-point projection with the metric W = Σ−1, where Σ is defined as in
(6.1). The geometric projection can be interpreted from a probabilistic viewpoint. Suppose that
we approximate the Koopman operator based on normally distributed i.i.d. random variables, i.e.,
K̂Ψ(x) ∼ N(KtΨ(x),Σ) for every x ∈ D with Σ defined by (6.1). Then, for every x ∈ D, the
likelihood of a point p ∈ RN being equal to KtΨ(x) can be written as

ρ( p | K̂Ψ(x)) =
exp

(
−0.5 · ∥p− K̂Ψ(x)∥2Σ−1

)
√
(2π)N det(Σ)

.

If we restrict ourselves to look for points p ∈M , then the maximum likelihood solution is exactly

argmaxp∈M ρ( p| K̂Ψ(x)) = πW (K̂Ψ(x)),

where W = Σ−1 holds.

Next, we consider the example of a pendulum to demonstrate the advantages of the geometric
projection in comparison to its coordinate-based counterpart. To this end, we use the notation ∆t
in the following to indicate the time step, i.e., K̂ approximates K∆t.

Example 10. Consider the pendulum with dynamics

ẋ = v, v̇ = − sin(x) (6.2)

on the domain X = [−π, π] × [−3, 3]. We approximate the Koopman operator by taking 10, 000
data points x̂ drawn uniformly i.i.d. from X and the respective solution x(∆t; x̂) as described in
Section 2 using monomial dictionaries Vn, n ∈ N, cp. (4.4).
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The projection methods are compared by examining the approximated system dynamics (4.2)
with those obtained through a high-order numerical integration scheme with step-size control. The
one-step error at a given value x̂ ∈ X is

EW
1−Step(x̂) := ∥F̂πW

(x̂)− x(∆t; x̂)∥ (6.3)

for a given projection πW . Figure 4 shows the one-step errors for the coordinate and geometric
projections using the dictionary V2. For a better comparison and the impact of using, in addition,
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−2 0 2
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1-Step Error
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Figure 4: Example 10 with dictionary V2: Comparison of the one-step errors (6.3) for the approx-
imated dynamics using coordinate (left) and geometric projection (right), respectively.

monomials of order three in the dictionary, Figure 5 shows the difference in one-step errors. For V2,
the geometric projection has a lower one-step error in most of the domain, which is consistent with
the underlying regression problem, in which the L2-error is minimized. For V3, the geometric
projection has a lower one-step error everywhere. The underlying reasoning is that the geometric
projection exploits its additional freedom by taking more dictionary elements into account to return
to the manifold M .

The 1-step error depends on ∆t for any projection method. Figure 6 shows how the 1-step er-
ror statistics change for the coordinate and geometric projections depending on the time step ∆t.
Again, the geometric projection clearly outperforms its coordinate-based counterpart if the dictio-
nary size increases, i.e., for Vn and n ∈ {3, 4, 5} (see Figure 6 for n = 2, 3). Regardless of dictionary
size, both projections degrade as the time-step is increased.

Next, we consider the Lorenz system for a dictionary Ψ without ψ1(x, y, z) = x, i.e., the dictionary
does not contain all coordinate functions, see also [13, Section III.C].

Example 11. Consider the Lorenz system given by

ẋ = σ(y − x), ẏ = x(ρ− z)− y, ż = xy − βz,

on the domain X = [−20, 20]× [−20, 20]× [10, 50].
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Figure 5: The difference in 1-Step errors EW
1−Step(x̂)−EC

1−Step(x̂) for the approximated dynamics
using geometric and coordinate projections and dictionary orders 2 (left) and 3 (right).
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Figure 6: Comparison of median 1-step error for the geometric and coordinate projections using V2

(left) and V3 (right) depending on time step ∆t.

In this case, the coordinate projection can be realised by selecting three observables from which
x, y, z can be recovered: xz, y, and z, i.e., x can be reconstructed by x = xz/z since z ∈ [10, 50].
Figure 7 shows an examplary trajectory from the true and approximated dynamics using the
dictionary V4 \{x}. While the geometric projection performs well without the coordinate function,
the accuracy of the reconstructed coordinate projection is poor.
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Figure 7: 1-step errors along a sample trajectory of Example 11 for the coordinate (left) and
geometric projections (right) using the dictionary V4 \ {x}.

7 Conclusions and outlook

Our key contributions are the following: First, we have demonstrated the need for a reprojection
step whenever the dictionary is not Koopman invariant. Second, we proposed a general framework
to conduct the reprojection step based on a large class of semi-inner products. In particular, it is not
necessary that the coordinate functions are contained in the dictionary to conduct the reprojection
step, see, e.g., the novel closest-point projection supposing invertibility of the map Ψ. Third, we
have rigorously shown that the additional reprojection step essentially maintains the estimation
error resulting from the regression problem and, indeed, significantly reduces the approximation
error as shown in our numerical simulations. A key reason is that the chosen weighting does not
interfere with the regression problem to be solved for computing the data-based compression K̂.

Clearly, the proposed framework is directly applicable to nonlinear control-affine systems, if
bilinear surrogate models are used, see, e.g., [18, 21] and the references therein. Here, already
the coordinate projection has turned out to be very beneficial in simulation and experiments for
non-holonomic robots [4] such that we expect clear benefits if the novel geometric projection is
applied. This claim also applies to eDMD with control [20] since the weighting W of the control
in the augmented state may be set to zero.

Future work might be devoted to leveraging recently introduced concepts [16] for the analysis
of systems with a globally-stable attractor in our setting more tailored towards control systems
typically lacking such structures. Here, taking into account the recent results of [8] is of interest.
Furthermore, we will leverage known results from regression [3] to further analyze and potentially
improve the proposed framework.

13



References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. In
Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.

[2] P. Bevanda, S. Sosnowski, and S. Hirche. Koopman operator dynamical models: Learning,
analysis and control. Annu Rev Control, 52:197–212, 2021.

[3] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

[4] L. Bold, H. Eschmann, M. Rosenfelder, H. Ebel, and K. Worthmann. On Koopman-based
surrogate models for non-holonomic robots. Preprint arxiv:2303.09144, 2023.
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