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Estimating ensemble flows on a hidden Markov chain

Isabel Haasler, Axel Ringh, Yongxin Chen, and Johan Karlsson

Abstract— We propose a new framework to estimate the
evolution of an ensemble of indistinguishable agents on a hidden
Markov chain using only aggregate output data. This work can
be viewed as an extension of the recent developments in optimal
mass transport and Schrödinger bridges to the finite state space
hidden Markov chain setting. The flow of the ensemble is
estimated by solving a maximum likelihood problem, which
has a convex formulation at the infinite-particle limit, and we
develop a fast numerical algorithm for it. We illustrate in two
numerical examples how this framework can be used to track
the flow of identical and indistinguishable dynamical systems.

I. INTRODUCTION

State tracking of a set of agents is an important issue

in many areas, e.g., target tracking, see [4] and references

therein. In this case, one is often interested in tracking one

single or a set of multiple distinct targets. However, in many

applications information for each agent may not be available,

e.g., if the population is too large to track every single agent,

as in many biological systems, or due to data privacy [24].

In this work, we thus consider tracking the evolution of a

finite ensemble of indistinguishable agents. Based on reduced

and incomplete measurements of the whole population at

different time points, we aim to recover an estimate of the

discrete-time flow of the ensemble. Related state estimation

problems for a continuum of agents and in continuous time

have been considered in [10], [35] (see also [6]).

In this work, we use a hidden Markov model (HMM)

to describe the particle flows and aggregate observations,

similar to [2], and seek the most likely paths that the agents

have taken. These paths are found by maximizing the log-

likelihood function of the flow, subject to the constraint that

the flow matches the given measurements. This gives rise to

a convex maximum entropy type optimization problem, and

we derive an efficient algorithm for solving it.

The problem of finding the most likely path for the

evolution of a distribution is related to a discrete Schrödinger

bridge problem [28].

Schrödinger’s thought experiment [31] has indirectly given

rise to the concept of reciprocal processes [5], [22], [25],

which connects this work to tracking of moving objects using

reciprocal processes [18], [32], [34]. However, as mentioned

before, we consider estimating the flow of an ensemble rather

than single target tracking.
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The outline of the paper is as follows: Section II presents

background material, in particular on HMMs, Schrödinger

bridges, and optimal mass transport. In section III we derive

the maximum likelihood problem for a Markov chain with

a known initial and final distribution, and relate it to prior

work on the Schrödinger bridge problem [28]. In Section

IV, which contains the main contribution, we extend this

maximum entropy framework to HMMs with indirect and

noisy observations. Moreover, we derive the corresponding

maximum likelihood problem, and develop a fast iterative

algorithm for solving it. The method is demonstrated on two

examples in section V, and section VI contains conclusions

and future directions. Some proofs are deferred to the ap-

pendix for improved readability.

II. BACKGROUND

A. Notation

By ./, ⊙, log(·), and exp(·) we denote elementwise divi-

sion, multiplication, logarithm, and exponential of matrices

and vectors. Moreover, by supp(·) we denote the support of

a matrix, i.e., the non-zero elements.

B. Hidden Markov chains

In this work, we consider hidden Markov models

for stochastic modeling of a group of indistinguishable

agents/particles. For an introduction to HMMs, see, e.g.,

[21], [29]. An HMM is a structure that consists of two

stochastic processes. The first part is a Markov chain that

evolves over a hidden set of states X = {X1, X2, . . . , Xn}
and is used to model the unobserved, underlying state of the

system. We denote the state at time t by qt. The stochastic

state transitions are encoded in the state transition matrix

A = [aij ]
n
i,j=1, where aij = P (qt+1 = Xj |qt = Xi). The

second part is an observation process providing partial and

noisy information of the underlying process; here we use

the observation symbols Y = {Y1, Y2, . . . , Ym}. Moreover,

the observation process is also Markovian with respect to

the underlying state in the hidden Markov chain, i.e., the

observation probabilities can be summarized in a matrix

B ∈ R
n×m with elements bjk = P (Yk at t|qt = Xj).

C. Schrödinger bridges and large deviations

In the early 1930s, Schrödinger discussed the problem of

determining the evolution of particles between two observed

distributions [31]. Assuming a cloud of independent Brown-

ian particles is observed at time instance t = 0, the expected

distribution at t = 1 would be described by

ρ1(x1) =

∫

Rn

qǫ(0, x0, 1, x1)ρ0(x0)dx0, (1)
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where qε is the Brownian transition probability kernel

qǫ(s, x, t, y) =
1

(2π(t− s)ǫ)n/2
exp

(

−‖x− y‖2
2(t− s)ǫ

)

,

and where the parameter ǫ denotes a diffusion coefficient.

Schrödinger studied the problem where the observed particle

distribution differs from the expected distribution (1). The

most likely particle evolution connecting, hence bridging, the

two marginals is called the Schrödinger bridge.

The Schrödinger bridge problem was later formulated in

the context of large deviation theory [19, Sec. II.1.3], the

study of rare events in the sense of deviations from the

law of large numbers [15], [16]. As the number of trials

(or particles) goes to infinity, the probability of such rare

events approaches zero. Large deviation theory studies the

rate of this decay, which can often be characterized by the

exponential of a so called rate function.

Modeling the particle evolutions as independent identically

distributed random variables on path space, a Schrödinger

bridge is a probability measure P on path space that is most

likely to describe the rare event of observing the two particle

distributions. Such a measure is obtained by minimizing the

corresponding rate function, which turns out to be the relative

entropy with respect to the underlying probability law of the

Brownian motion. In other words, P is the measure that is

“most similar” to the Wiener measure W in the sense that it

minimizes the relative entropy [26]

H(P | W) =

∫

log

(

dP
dW

)

dP (2)

over all probability measures that are absolutely continuous

with respect to W and have the given particle distributions

as marginals. The Schrödinger bridge can be constructed

from the solution to a certain system of equations, called the

Schrödinger system. A space and time discrete Schrödinger

bridge problem for Markov chains is analysed in [8], [20],

[28].

D. Optimal mass transport

Another recently established connection of Schrödinger

bridges is to the problem of optimal mass transport (OMT)

[7], [9], [26], [27]. As the diffusion coefficient ǫ in (1)

approaches 0, the solution to the Schrödinger bridge prob-

lem tends to the solution to a corresponding optimal mass

transport problem [26]. Moreover, the Schrödinger bridge

formulation is a regularization of OMT, as it is strictly convex

and therefore guarantees a unique solution.

We introduce a discretized formulation of the OMT prob-

lem. For an extensive discussion of OMT see, e.g., [33].

Consider a discretization {x1, . . . , xn} of a compact space

X and two distributions µ0, µ1 ∈ R
n defined on this

discretization. Given a cost matrix C = [cij ]
n
i,j=1, where cij

denotes the cost of transporting a unit mass from point xi

to xj , we seek a transport plan M = [mij ]
n
i,j=1, where mij

denotes the amount of mass being transported from xi to

xj , that minimizes the total transportation cost tr
(

CTM
)

between the two distributions, i.e., the transport plan is

required to satisfy M1 = µ0 and MT
1 = µ1, where 1

denotes an n× 1-vector of ones.

Solving this linear program is computationally expensive

for large n. It was therefore proposed to regularize the

problem by introducing a Kullback-Leibler divergence term

(sometimes called entropy term) to the objective [12].

Definition 1: Let p and q be two nonnegative vectors or

matrices of the same dimension. The Kullback-Leibler (KL)

divergence between p from q is defined as

H(p|q) :=
∑

i

pi log

(

pi
qi

)

where 0 log 0 is defined to be 0. Note that H(p|q) is jointly

convex over p, q. See, e.g., [11] for more properties and

interpretation of the KL divergence.

The discretized and regularized OMT problem then reads

minimize
M∈Rn×n

trace
(

CTM
)

+ ǫH(M |1n×n)

subject to M1 = µ0, MT
1 = µ1,

(3)

where ǫ > 0 is a regularization parameter and 1n×n denotes

an n×n-matrix of ones. The solution to this problem may be

found by Sinkhorn iterations, which correspond to the fixed

point iteration for the Schrödinger system in [7].

III. PARTICLE DYNAMICS OVER A MARKOV CHAIN

Consider a cloud of N particles, where each particle

is evolving according to a Markov chain as described in

Section II-B. Let the vectors µt ∈ N
n describe the particle

distributions at time t ∈ {0, 1}, where the i-th element (µt)i
denotes the number of particles in state Xi at time t. In

analogy to the OMT framework, we define the mass transfer

matrix M = [mij ]
n
i,j=1, where mij denotes the number of

particles that transit from state Xi to state Xj . Note that the

mass transport matrix satisfies M1 = µ0 and MT
1 = µ1.

The state transition matrix A = [aij ]
n
i,j=1 contains the

particle transition probabilities. Thus, given the initial state

µ0, the probability of a mass transfer matrix M is

Pµ0,A(M) =

n
∏

i=1





(

(µ0)i
mi1,mi2, . . . ,min

) n
∏

j=1

a
mij

ij



 , (4)

where
(

·
·,...,·

)

denotes a multinomial coefficient. The expected

distribution at time t = 1 is then given by E(µ1|µ0) =
ATµ0. If µ1 is observed to be different from ATµ0 a discrete

version of the Schrödinger bridge problem can be solved (see

Section II-C). That is, to find the matrix M that maximizes

Pµ0,A(M) subject to that the constraint MT
1 = µ1 on the

final marginal is satisfied.

If the number of particles is large, then the log-likelihood

of (4) can be approximated in terms of a KL divergence.

Proposition 1: Given A, let µ
(N)
0 ∈ N

n be a sequence

of distributions with N particles, and M (N) ∈ N
n×n be a

sequence of mass transfer matrices such that M (N)
1 = µ

(N)
0

and supp(M(N)) ⊆ supp(diag(µ
(N)
0 )A). Then there exists a



constant C > 0 such that for all N it holds that
∣

∣

∣log
(

P
µ
(N)
0 , A

(M (N))
)

+H
(

M (N)
∣

∣diag(µ
(N)
0 )A

)∣

∣

∣

≤ C log(N).

Proof: See appendix.

Proposition 1 implies that for sequences µ
(N)
0 and M (N)

satisfying the assumptions, if

1

N
µ
(N)
0 → µ̄0 and

1

N
M (N) → M̄

as N → ∞, then

1

N
log
(

P
µ
(N)
0 , A

(M (N))
)

→ −H
(

M̄
∣

∣ diag(µ̄0)A
)

as N → ∞. This means that the KL divergence approximates

the log-likelihood of Pµ0,A(M) with increasing accuracy as

the number of particles increases. We write this informally

as

Pµ0,A(M) ∼ e−H(M|diag(µ0)A).

In terms of large deviation theory, we thus interpret

H(·|diag(µ0)A) as the rate function for Pµ0,A(·). In fact,

Proposition 1 can also be derived from a large deviation

principle (see, e.g., [15, Ch. 2.1.1]).

For systems with many particles, we may therefore for-

mulate the problem of finding the most likely mass transfer

matrix M between distributions µ0 and µ1 with underlying

state transition matrix A as the convex optimization problem

minimize
M∈Rn×n

H (M | diag(µ0)A)

subject to M1 = µ0, MT
1 = µ1.

(5)

Remark 1: Let A and µ0 be strictly positive. With the cost

matrix

C = −ǫ log(diag(µ0)A),

the entropy regularized OMT problem (3) is equivalent to

problem (5). Note that entropy regularized OMT problems

have previously been solved by formulating them in terms

of KL-projection problems [1].

A. Connection to Schrödinger bridges

We note that given the prior distribution µ0, the objective

in (5) may be written as

H(M | A)−H(µ0 | 1)
where the second term is constant. Hence, if we associate A
and M with the measures dW and dP in (2), the problem

in Proposition 1 relates to a discretized Schrödinger bridge.

Our problem formulation indeed corresponds to the time and

space discrete Schrödinger bridge from [28]. To see this,

consider a Markov chain of length T . Using Proposition 1,

knowing the marginals µ0 and µT , we can find the most

likely evolution of the particles between them as the solution

to

minimize
M[1:T ],µ[1:T−1]

T
∑

t=1

H(Mt | diag(µt−1)A)

subject to Mt1 = µt−1, MT
t 1 = µt,

for t = 1, . . . , T.

(6)

Note that for a nonnegative matrix Mt and strictly positive

marginal µt−1, the first constraint asserts that there is a

row-stochastic matrix M̄t such that Mt = diag(µt−1)M̄t.

Plugging this expression for the matrices Mt into (6) gives

minimize
M̄[1:T ],µ[1:T−1]

T
∑

t=1

∑

i

(µt−1)iH
(

(M̄t)i·, Ai·

)

subject to M̄t1 = 1, µt = M̄T
t µt−1,

for t = 1, . . . , T.

(7)

Here Ai· denotes the i-th row of A. This is precisely

the formulation of a Schrödinger bridge over a Markov

chain from [28, eq. (24)] with time invariant transition

probabilities. In [28] it is shown that a unique solution to

a corresponding Schrödinger system exists if µT is a strictly

positive distribution and all elements are strictly positive

in the matrix A raised to the power T . The solution to

the Schrödinger system may be obtained by a fixed point

iteration [20], which is linked to the Sinkhorn iterations for

entropy regularized OMT problems, cf. Section II-D.

We note that the optimization problem (7) is non-convex

and will thus work with the formulation (6) in the remaining

part of this article.

IV. PARTICLE DYNAMICS OVER HIDDEN MARKOV CHAIN

In this section, we extend our framework to the setting of

a hidden Markov chain. The initial marginal distribution is

assumed to be known. In case the hidden states are linked

to the observations by a deterministic linear mapping, they

may be estimated in a similar fashion as in [17]. Here instead,

we consider the non-deterministic case where the available

observations emerge from the hidden distributions through

an observation probability matrix B ∈ R
n×m.

Equivalently to the mass transfer plans M , define the

observation matrix D ∈ N
n×m, with entries djk denoting the

number of particles that are in hidden state Xj and observed

in state Yk. Given a hidden state µ, the probability for any

observation matrix D is given by Pµ,B(D) as defined in (4).

Hence, the large deviation result in Proposition 1 holds for

D with rate function H(·|diag(µ)B).
Given an initial distribution µ0 ∈ N

n and a set of

measurements Φ1, . . . ,ΦT ∈ N
m, we seek the most likely

set of matrices M1, . . . ,MT and D1, . . . , DT such that for

some set of hidden distributions µ1, . . . , µT it holds that

Mt1 = µt−1, MT
t 1 = µt,

Dt1 = µt, DT
t 1 = Φt, for t = 1, . . . , T.

(8)

This model is illustrated in Figure 1. The maximum like-

lihood solution is obtained by solving the optimization

problem

maximize
M[1:T ],D[1:T ],µ[1:T ]

T
∏

t=1

Pµt−1,A(Mt)Pµt,B(Dt)

subject to (8). From Proposition 1 it follows that

log

(

T
∏

t=1

Pµt−1,A(Mt)Pµt,B(Dt)

)



µ0 µ1 µ2 µT

Φ1 Φ2 ΦT

M1 M2 M3 MT

D1 D2 DT

Fig. 1: Illustration of the hidden Markov model correspond-

ing to (8).

can be approximated by

−
T
∑

t=1

(

H(Mt | diag(µt−1)A) +H(Dt | diag(µt)B)
)

(9)

when the number of particles is large. We thus estimate the

matrices M1, . . . ,MT , D1, . . . , DT and the hidden states

µ1, . . . , µT by maximizing (9) subject to the constraints (8),

i.e., by solving

minimize
M[1:T ],D[1:T ],µ[1:T ]

T
∑

t=1

H(Mt | diag(µt−1)A)

+

T
∑

t=1

H(Dt | diag(µt)B)

subject to Mt1 = µt−1, MT
t 1 = µt

Dt1 = µt, DT
t 1 = Φt

for t = 1, . . . , T.

(10)

Remark 2: The modeling assumptions leading to this op-

timization problem require knowledge of the initial distri-

bution as well as the transition and observation probabilities

for the hidden Markov model. However, in practice these are

typically not known exactly. In the examples in Section V, we

illustrate that the estimation is accurate even when there are

significant model errors. The generalization of the proposed

method to the case where the initial distribution is not known

will be discussed in a forthcoming paper.

A. Computational method

In this section we develop a numerical method to solve

problem (10). To this end, recall from Remark 1 the connec-

tion between KL-minimization problems and entropy regu-

larized OMT problems. The latter can be efficiently solved

by Sinkhorn iterations [12], which in turn are equivalent to

a block coordinate ascent in a dual problem [23]. Motivated

by this, we choose to follow a similar approach.

Proposition 2: Let u1 ∈ R
n and vt ∈ R

m, for t =
1, . . . , T , be positive initial values, and iterate the following

steps:

(1) u1 = e1./(Aw1)
(2) vt = eΦt./

(

BT (yt ⊙ (Awt+1))
)

for t = 1, . . . , T ,

where in each step and for each t in step (2), the vectors yt
and wt are recursively defined as

y1 = AT (µ0 ⊙ u1),

yt = AT (yt−1 ⊙ (Bvt−1)) , t = 2, . . . , T

and

wT = BvT

wt = (Bvt)⊙ (Awt+1), t = 1, . . . , T − 1.

In the limit point of the iteration, the estimates for the hidden

marginals are then recursively constructed, starting from the

known µ0, as

µt = diag(wt)A
T (µt−1./(Awt)) , t = 1, . . . , T.

Furthermore, the corresponding mass transfer matrices are

given by

Mt =
1

e
diag(µt−1 ⊙ ut)Adiag(wt),

Dt =
1

e
diag(µt ⊙ xt)B diag(vt),

where
xt = e1./ (Bvt)

ut = e1./ (Awt)

for t = 1, . . . , T.
Proof: See appendix.

It is worth noting that intermediate results of the vec-

tors yt and wt may be stored, such that the update of

u1 requires only one matrix-vector multiplications with A,

and the update of vt, for any t = 1, . . . , T , involves two

multiplications with B and one with A. One iteration sweep,

i.e. one update of u1 and the set vt, for t = 1, . . . , T , thus

requires O(Tnmax(n,m)) operations.

V. SIMULATIONS

A. Particle dynamics

Consider a cloud of 1000 particles evolving from an initial

distribution µ0 ∈ R
n with n = 100 states. The particles

transition matrix is given by Ã ∈ R
n×n with elements

ãij ∼ exp

(

1

2σ2
ã

(i− j − 1)2
)

, with σã = 0.5,

which corresponds to a discretization of a normal distribution

N (1, 0.5), and thus induces a drift on the dynamics of the

cloud. The true dynamics of the particles are assumed to be

unknown and instead modeled by a transition matrix A ∈
R

n×n with elements

aij ∼ exp

(

1

2σ2
a

(i− j)2
)

, with σa = 2.

At each time instance, the particles are observed in m = 5
bins, where the observation probability matrix B ∈ R

n×m

has elements

bij ∼ exp

(

1

2σ2
b

(

j − i+ 10

20

)2
)

, with σb = 0.5.

We estimate the flow of the particles and hidden particle

distributions solving problem (10) for T = 50 time instances

with the method proposed in Proposition 2. One estimate

is formed using the true initial distribution µ0 as a prior

distribution, and for a second estimate we use a uniform

prior.



Figure 2 shows the true hidden particle cloud, the corre-

sponding observations, and the two estimates. With full in-

formation of the initial states available, the proposed method

provides a good estimate of the hidden states despite discrep-

ancies between the true and assumed transition matrices Ã
and A. In the case of no prior information, i.e., the prior

distribution is set to be uniform, we see that the estimate

converges to the estimate with true prior within a few time

steps. This indicates that the proposed method is robust to

modeling uncertainties and lack of information in the initial

state.

B. Tracking ensembles over a network

In this example we consider the problem of tracking a

number of indistinguishable agents over a network given

measurements from sensors that are distributed around the

network. This is inspired by [13], where an HMM is used

to estimate the flow of a crowd in an urban environment

based on observations generated when cell phones connect

to Wi-Fi sensors. The environment is modeled as a network

of nodes and arcs, where the arcs represent walking paths

in the area and the nodes are the intersections between the

paths.

For this application, the optimization problem (10) needs

to be extended to allow for multiple measurements. To this

end, let Φst be a set of observations from measurement unit

s at time point t, for t = 1, . . . , T , and for s = 1, . . . , S.

We obtain the maximum likelihood solution as the optimal

solution to1

minimize
M[1:T ],D[1:T ],[1:S],µ[1:T ]

T
∑

t=1

H(Mt | diag(µt−1)A)

+

T
∑

t=1

S
∑

s=1

H(Dst | diag(µt)Bs)

subject to Mt1 = µt−1, MT
t 1 = µt (11)

Dst1 = µt, DT
st1 = Φst

for t = 1, . . . , T, and s = 1, . . . , S.

Consider a hidden Markov model where the states X =
{X1, . . . , Xn} are the edges in the directed graph G =
(V,X), and where the edge Xi = (V in

i , V out
i ) goes from

V in
i ∈ V to V out

i ∈ V . In this example we will use the

graph illustrated in Figure 3, consisting of 11 nodes and

n = 28 edges. For the true model, transition probabilities

are defined according to weights in the graph that represent

which walking paths are preferred by the pedestrians. For the

model used in the estimation we assume that this information

is not known and use uniform weights. More specifically, the

1This is a convex optimization problem which in principle can be solved
with off-the-shelf solvers. In this example we use an efficient algorithm in
the spirit of Proposition 2, but due to lack of space we defer the exact
algorithm to a forthcoming paper.
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Fig. 2: Particle cloud reconstructed from observations.

Fig. 3: Network and sensors.

transition probabilities are given by

ãij =



























0.5, if j = i

0.5wij





∑

{k:V in
k

=V out
i

}

wik





−1

if V in
j = V out

i

0, else,

where {wij} is a set of weights. For the transition matrix A
used in the estimation we assign uniform weights wij = 1,

for all (i, j) with V in
j = V out

i . For the true transitions the

weights are defined as

wij =











20, Xj ∈ W and V out
j 6= V in

i

0, V out
j = V in

i

1, else,

for (i, j) such that V in
j = V out

i , and where W is the set

of edges highlighted in Figure 3. Note that the second case

implies that agents do not transition to the reverse edge in

the next time step.

The agents are observed by a set of S = 7 sensors

located at the positions indicated in Figure 3. The observation



Fig. 4: Ensemble flow over network.

probability for an agent on edge Xi to be detected by a

given sensor s is defined as bsi1 = min(0.99, 2e−5d), where

d denotes the Euclidean distance between the location of s
and the midpoint of Xi. Consequently the probability of not

being detected is bsi2 = 1− bsi1.

Given an initial distribution of 100 agents on the edge

(1, 3), the flow and the measurements for the true ensemble

are computed for T = 20 time steps using the true transition

and observation probabilities. Then we estimate the flow by

solving the optimization problem (11). The true and esti-

mated particle distributions are compared for some time steps

in Figure 4, where the width of each edge is proportional to

the number of agents on it. As can be seen in the figure

the proposed method provides a good estimate also for this

example.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we propose a method for estimating the flow

of an ensemble of particles on a hidden Markov chain. The

estimation, which is formulated as a maximum likelihood

problem, can be recast as a convex optimization problem,

for which we provide an efficient algorithm.

There are several natural directions in which this work

can be extended. One restriction in this paper is that the

number of agents are fixed and known, thus extensions with

a variable number of particles, such as birth/death processes,

could be of interest (cf. [14]). Furthermore, the model may

be extended to continuous-state dynamics. Another natural

direction is to study the connections to reciprocal processes.

APPENDIX

A. Proof of Proposition 1

Let µ
(N)
0 and M (N) be as described in the statement of

the proposition. Moreover, let Z(N) = {(i, j) | m(N)
ij 6= 0},

which is non-empty, and let Z(N)
i = {j | (i, j) ∈ Z(N)},

which is non-empty if and only if (µ
(N)
0 )i > 0. Furthermore,

let Y(N) = {i | (µ(N)
0 )i > 0}. Then, using Stirling’s formula

√
2πnn−1/2e−n ≤ n! ≤ enn−1/2e−n,

see, e.g., [30], for i ∈ Y(N) the multinomial coefficient in

(4) can be bounded from above by

(

(µ
(N)
0 )i

m
(N)
i1 ,m

(N)
i2 , . . . ,m

(N)
in

)

≤ e−(|Z
(N)
i

|−1) exp

(

∑

j∈Z
(N)
i

m
(N)
ij − (µ

(N)
0 )i

)

· (µ(N)
0 )

(µ
(N)
0 )i+

1
2

i

∏

j∈Z
(N)
i

(m
(N)
ij )−(m

(N)
ij

+ 1
2 )

≤ (µ
(N)
0 )

(µ
(N)
0 )i+

1
2

i

∏

j∈Z
(N)
i

(m
(N)
ij )−(m

(N)
ij

+ 1
2 ),

where |Z(N)
i | denotes the cardinality of the set, and where the

second inequality follows from the fact that
∑

j∈Z
(N)
i

mij =
∑n

j=1 mij = (µ0)i, and that e−(|Z
(N)
i

|−1) ≤ 1. Thus, the log-

likelihood of the probability for a transfer plan M (N) can be

upper-bounded as follows:

log
(

P
µ
(N)
0 ,A

(M (N))
)

≤
∑

(i,j)∈Z(N)

(

m
(N)
ij log(aij)−

(

m
(N)
ij +

1

2

)

log(m
(N)
ij )

)

+
∑

i∈Y(N)

(

(µ
(N)
0 )i +

1

2

)

log((µ
(N)
0 )i)

=
∑

(i,j)∈Z(N)

(

m
(N)
ij log

(

(µ
(N)
0 )iaij

m
(N)
ij

))

−
∑

(i,j)∈Z(N)

1

2
log(m

(N)
ij ) +

∑

i∈Y(N)

1

2
log((µ

(N)
0 )i)

≤ −H
(

M (N), diag(µ
(N)
0 )A

)

+
n

2
log(N),

where the last inequality comes from the second-to-last

expression by i) identifying the first term as the KL diver-

gence, ii) noting that the second term is nonpositive, and iii)

overestimating the third term by taking (µ
(N)
0 )i = N for

i = 1, . . . , n.

Similarly, underestimating the multinomial coefficients



gives that the log-likelihood can be bounded from below by

log
(

P
µ
(N)
0 ,A

(M (N))
)

≥
∑

(i,j)∈Z(N)

(

m
(N)
ij log

(

(µ
(N)
0 )iaij

m
(N)
ij

)

− 1

2
log(m

(N)
ij )

)

+
∑

i∈Y(N)

1

2
log((µ

(N)
0 )i)−

1

2
n(n− 1) log(2π)

≥ −H
(

M (N), diag(µ
(N)
0 )A

)

− 1

2

(

n2 +
n(n− 1) log(2π)

log(N)

)

log(N).

By using the two inequalities, the result follows.

B. Proof of Proposition 2

We solve (10) by a block coordinate ascent in the

dual. First note that since µ0, A, B, and Φt are all

elementwise nonnegative, so will the optimal solution

M∗
[1:T ], D

∗
[1:T ], µ

∗
[1:T ] also be. We can therefore add the

constraint µ[1:T ] ≥ 0 to (10) without changing the optimal

solution. For this problem, we relax the constraints in (10)

with corresponding dual variables λMt
, νMt

, λDt
, νDt

. Let

M := M[1:T ], D := D[1:T ], and define the Lagrangian

L(M,D, µ[1:T ], λM, νM, λD, νD)

=
T
∑

t=1

(

∑

ij

mt
ij log

( mt
ij

µt−1
i aij

)

+ λT
Mt

(µt−1 −Mt1)

+ νMt
(µt −MT

t 1) +
∑

ij

dtij log
( dtij
µt
ibij

)

+ λT
Dt

(µt −Dt1) + νDt
(Φt −DT

t 1)

)

.

Minimizing this with respect to the matrices Mt and Dt

gives explicit expressions for the optimal solution in terms

of µ[0:T ] and the dual variables, i.e.,

Mt =
1

e
diag(µt−1 ⊙ ut)Adiag(wt),

Dt =
1

e
diag(µt ⊙ xt)B diag(vt),

where ut = exp(λMt
), wt = exp(νMt

), xt = exp(λDt
) and

vt = exp(νDt
), for t = 1, . . . , T . Plugging these into the

Lagrangian, we get the modified Lagrangian

L(µ[1:T ], uM, wM, xD, vD) = −1

e

T
∑

t=1

(µt−1 ⊙ ut)
TAwt

− 1

e

T
∑

t=1

(µt ⊙ xt)
TBvt + log(u1)

Tµ0

+

T−1
∑

t=1

µT
t (log(ut+1) + log(wt) + log(xt))

+ µT
T (log(wT ) + log(xT )) +

T
∑

t=1

log(vt)
TΦt.

Noting that since µ[1:T ] occurs linearly in L, for the modified

dual functional infµ[1:T ]≥0 L(µ[1:T ], λM, νM, λD, νD) to be

bounded from below, the corresponding factors need to be

elementwise nonnegative. In this case the corresponding

terms will be zero when taking the infimum, and thus the

dual problem is to maximize

− 1

e
(µ0 ⊙ u1)

TAw1 + log(u1)
Tµ0 +

T
∑

t=1

log(vt)
TΦt (12)

subject to

−1

e
diag(ut+1)Awt+1 −

1

e
diag(xt)Bvt

+ log(ut+1) + log(xt) + log(wt) ≥ 0
(13)

for t = 1, . . . , T − 1, and

− 1

e
diag(xT )BvT + log(xT ) + log(wT ) ≥ 0. (14)

Note that neither the objective function (12), nor the first

T−1 constraints (13) depend on xT . Thus the optimal choice

of xT is the one creating the most slack in the last constraint,

i.e., the one maximizing the first two terms of (14). This is

achieved by xT = e1./(BvT ), and for this choice of xT the

constraint (14) can be replaced by

− log(BvT ) + log(wT ) ≥ 0. (15)

Similarly, the slack in (13) is maximized by selecting

xt = e1./ (Bvt) , t = 1, . . . , T

ut = e1./ (Awt) , t = 2, . . . , T.

and thus the constraints (13) can be replaced by

− log(Awt+1)− log(Bvt) + log(wt) ≥ 0, (16)

for t = 1, . . . , T−1. Next, note that if some of the constraints

(15) and (16) are not fulfilled with equality, the objective

function (12) can be improved by increasing the values of

the corresponding vt. Therefore, in an optimal point we must

have that

wT = BvT

wt = (Bvt)⊙ (Awt+1) for t = T − 1, . . . , 1.

This gives an expression for w1, that depends on vt, t =
1, . . . , T . Inserting this into the objective (12) leads to an

unconstrained problem that depends only on u1 and vt, t =
1, . . . , T , which we solve using block coordinate ascent. To

this end, the unconstrained objective is first maximized with

respect to u1, which gives

u1 = e1./(Aw1).

Further, note that the gradient of the unconstrained objective

with respect to vt is

−1

e
⊙
(

BT (yt ⊙Awt+1)
)

+Φt./vt,

where yt is defined by the recursion

y1 = AT (µ0 ⊙ u1),

yt = AT (yt−1 ⊙ (Bvt−1)), t = 2, . . . , T.



Hence, maximization with respect to vt is achieved by

vt = eΦt./
(

BT (yt ⊙Awt+1)
)

.

As the unconstrained problem is convex and the objective

function continuously differentiable, the block coordinate

ascent method converges [3, Prop. 2.7.1]. In the limit point,

the hidden marginals can be reconstructed from

µt = MT
t 1 =

1

e
diag(wt)A

T (µt−1 ⊙ ut)

= diag(wt)A
T (µt−1./(Awt)).
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[31] E. Schrödinger. Über die Umkehrung der Naturgesetze. Sitzungs-

berichte der Preussischen Akademie der Wissenschaften, Physikalisch-

mathematische Klasse, pages 144–153, 1931.
[32] G. Stamatescu, L.B. White, and R. Bruce-Doust. Track extraction with

hidden reciprocal chains. IEEE Transactions on Automatic Control,
63(4):1097–1104, 2018.

[33] C. Villani. Optimal transport: Old and new. Springer, Berlin
Heidelberg, 2008.

[34] L.B. White and H.X. Vu. Maximum likelihood sequence estimation for
hidden reciprocal processes. IEEE Transactions on Automatic Control,
58(10):2670–2674, 2013.

[35] S. Zeng, S. Waldherr, C. Ebenbauer, and F. Allgöwer. Ensemble
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