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Incentive Design for Temporal Logic Objectives

Yagiz Savas, Vijay Gupta, Melkior Ornik, Lillian J. Ratliff, Ufuk Topcu

Abstract— We study the problem of designing an optimal
sequence of incentives that a principal should offer to an
agent so that the agent’s optimal behavior under the incentives
realizes the principal’s objective expressed as a temporal logic
formula. We consider an agent with a finite decision horizon and
model its decision-making process as a Markov decision process
(MDP). Under certain assumptions, we present a polynomial-
time algorithm to synthesize an incentive sequence that mini-
mizes the cost to the principal. We show that if the underlying
MDP has only deterministic transitions, the principal can hide
its objective from the agent and still realize the desired behavior
through incentives. On the other hand, an MDP with stochastic
transitions may require the principal to share its objective
with the agent. Finally, we demonstrate the proposed method
in motion planning examples where a principal changes the
optimal trajectory of an agent by providing incentives.

I. INTRODUCTION

Consider a scenario where a principal provides incentives

to an agent so that the optimal behavior of the agent under

the provided incentives satisfies the principal’s objective. If

the principal had enough resources to provide arbitrarily

large incentives, it would be straightforward to obtain the

desired agent behaviour. However, since the resources are

limited in practice, it is important to establish the minimum

amount of incentives that leads to the desired behavior. In this

paper, we are interested in designing a sequence of incentives

that minimizes the cost to the principal while guaranteeing

the realization of its objective by the agent with maximum

probability.

We model the sequential decision-making process of the

agent as a Markov decision process (MDP) [1], and assume

that the agent’s objective is to maximize its expected total

reward at the end of a finite planning horizon. Although

each planning horizon is finite, the agent plans its future

decisions infinitely many times. Examples of such an agent

can be a person who plans her schedule on a weekly basis or

an autonomous system with a limited computational power

which plans its route by considering only a small subset of

all possible environment states.

The principal’s objective is described by a syntactically co-

safe linear temporal logic (LTL) formula. LTL specifications

are widely used to describe complex tasks for autonomous
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robots [2], design security protocols [3] and check the

reliability of software [4]. For example, in a navigation

scenario, syntactically co-safe LTL formulae allow one to

specify tasks such as liveness (eventually visit the region A)

or priority (first visit the region A and then B).

We assume that the principal is aware of the agent’s

reward function and the length of its planning horizon.

In many real-world applications, the decision horizon and

the reward structure of an agent can be known or at least

inferred through observations. For example, a manufacturing

company is generally interested in maximizing its profit at

the end of a fiscal year, and an autonomous car aims to reach

its destination within certain time interval.

From a practical point of view, an interesting question is

whether an adversarial principal can convince an agent to

satisfy its objective through incentives. In such a scenario,

if the agent knows the principal’s objective explicitly, it will

reject the provided incentives because the resulting behavior

under the incentives will serve to the benefit of the enemy.

However, if the principal can design an incentive sequence

without sharing its objective with the agent, then the in-

centives may lead to the desired agent behavior. Therefore,

it is important to establish the conditions under which the

principal can actually hide its objective from the agent.

The contributions of this paper can be summarized as

follows. First, we present an algorithm, based on a series

of linear optimization problems, to synthesize a sequence

of incentives that minimizes the cost to the principal while

ensuring that the optimal agent behavior under the provided

incentives satisfies a syntactically co-safe LTL formula with

maximum probability. Second, we present an example sce-

nario where the principal has to share its objective with

the agent to induce the desired behavior. Third, we provide

sufficient conditions on the structure of the MDP and the

length of the agent’s decision horizon under which there

exists an optimal incentive design that allows the principal

to hide its objective from the agent.

Related work. The problem of obtaining desired agent be-

havior through a sequence of incentives has been extensively

studied in the literature. In [5] and [6], the authors present

methods to design incentive sequences with limited resources

that maximizes the value of the principal’s objective function.

They employ techniques from inverse reinforcement learning

literature and prove NP-hardness of the considered design

problem [5]. The work [7] provides a polynomial-time al-

gorithm to synthesize minimum incentives for inducing a

specific agent policy. Reference [8] considers a bandit model

and presents methods to induce desired agent actions under

different constraints on the incentives. Although it is quite
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different from the problem considered here, the design of

feasible incentives that aligns the objectives of an agent and a

principal is discussed in [9] from a control theoretic perspec-

tive. Unlike the references mentioned above, in this paper,

we consider the problem of designing minimum incentives

that maximizes the value of the principal’s objective function

expressed as a temporal logic formula. We also note that

establishing the complexity of the design problem considered

in this paper is mentioned as an open problem in [5].

II. PRELIMINARIES

For a set S, we denote its power set and cardinality

by 2S and |S|, respectively. Additionally, N={1, 2, . . .},

N0={0, 1, 2, . . .} and R≥0=[0,∞).

A. Markov Decision Processes

Definition 1: A Markov decision process (MDP) is a tu-

ple M=(S, s0,A,P ,AP ,L,R) where S is a finite set

of states, s0∈S is an initial state, A is a finite set of

actions, P :S×A×S→[0, 1] is a transition function such that∑
s′∈S P(s, a, s′)=1 for all s∈S and a∈A(s) where A(s)

denote the available actions in s, AP is a set of atomic

propositions, L:S→2AP is a function that labels each state

with a subset of atomic propositions, and R:S×A→R is a

reward function.

We denote the transition probability P(s, a, s′) by Ps,a,s′ .

Definition 2: For an MDP M, a decision rule

d:S×A→[0, 1] is a function such that
∑

a∈A(s) d(s, a)=1
for all s∈S. A decision rule d is said to be deterministic if

for all s∈S there exists a∈A(s) such that d(s, a)=1, and

randomized otherwise. For an MDP M, we denote the set

of all (deterministic) decision rules by (DD(M)) D(M).
For an MDP M, a decision-maker, i.e., an agent, chooses

a decision rule d∈D(M) at each stage.

Definition 3: An N -stage policy for an MDP M is a se-

quence π=(d1, d2, . . . , dN ) where N≤∞ and dt∈D(M) for

all t≤N . A stationary policy is a policy such that dt=d1 for

all t≤N . A policy is said to be deterministic if dt∈DD(M)
for all t, and randomized otherwise. For an MDP M, we

denote the set of all N -stage policies by ΠN (M). For

notational simplicity, we denote the set of ∞-stage policies

by Π(M).
For an MDP M and a policy π∈Π(M), let µπ

t (s, a) be the

joint probability of being in state s∈S and taking the action

a∈A(s) at stage t, which is uniquely determined through the

recursive formula

µπ
t+1(s

′, a′) =
∑

s∈S

∑

a∈A(s)

Ps,a,s′µ
π
t (s, a)dt+1(s

′, a′) (1)

where µπ
1 (s, a)=d1(s, a)µ0(s) and µ0:S→{0, 1} is a func-

tion such that µ0(s0)=1 and µ0(s)=0 for all s∈S\{s0}.

Definition 4: For an MDP M and a policy π∈Π(M), the

expected residence time in a state-action pair (s, a) is

ξπ(s, a) :=

∞∑

t=1

µπ
t (s, a). (2)

An infinite sequence ̺π=s0s1s2 . . . of states generated in

M under a policy π∈Π(M), which starts from the initial

state s0 and satisfies
∑

at∈A(st)
dk(st, at)Pst,at,st+1>0 for

all t≥0, is called a path. Any finite prefix of ̺π a finite

path fragment. We define the set of all paths and finite path

fragments in M under the policy π by Pathsπ(M) and

Pathsπfin(M), respectively. We use the standard probability

measure over the outcome set Pathsπ(M) [10].

Definition 5: An incentive design for an MDP M is a se-

quence Γ=(γ1, γ2, . . .) where γt:S×A→R≥0. A stationary

incentive design is a design such that γt=γ1 for all t∈N. For

an MDP M, we denote the set of all incentive designs by

Θ(M).

B. Linear temporal logic

We consider syntactically co-safe linear temporal logic

(scLTL) formulae to specify tasks and refer the reader to

[10], [11] for the syntax and semantics of scLTL.

An scLTL formula is built up from a set AP of atomic

propositions, logical connectives such as conjunction (∧) and

negation (¬), and temporal modal operators such as until (U)

and eventually (♦). An infinite sequence of subsets of AP
defines an infinite word, and an scLTL formula is interpreted

over infinite words on 2AP . We denote by w|=ϕ that a word

w=w0w1w2 . . . satisfies an scLTL formula ϕ.

For an MDP M under a policy π, a path ̺π=s0s1 . . .
generates a word w=w0w1 . . . where wk=L(sk) for all k≥0.

With a slight abuse of notation, we use L(̺π) to denote

the word generated by ̺π. For an scLTL formula ϕ, the set

{̺π∈Pathsπ(M):L(̺π)|=ϕ} is measurable [10]. Hence, we

define

PrπM(s0 |= ϕ) := PrπM{̺π ∈ Pathsπ(M) : L(̺π) |= ϕ}

as the probability of satisfying the scLTL formula ϕ for an

MDP M under the policy π∈Π(M).

III. PROBLEM STATEMENT

We consider an agent whose sequential decision-making

process is modeled as an MDP M, and a principal that

provides the agent a sequence of incentives Γ∈Θ(M).
The agent’s objective is to maximize its expected total

reward after N stages. However, since the incentive sequence

offered by the principal might be non-stationary, the agent

computes an N -stage policy every N stages. A graphical

illustration of the agent’s planning method is shown in Fig.

1. Formally, let N∈N be a constant, and R(St, At) and

γt(St, At) be the random reward and incentive received in

stage t≤N . Additionally, let J :=(J0, J1, . . .) be a sequence

of objective functions where Jk:ΠN (M)×Θ(M)→R
|S| is

such that

Jk(π,Γ)(s) := E
π
s

[ N∑

t=1

(R(St, At) + γkN+t(St, At))
]

for all s∈S where the expectation is taken over the finite

path fragments that are generated by the policy π∈ΠN (M)
and start from the state s. Then, for a given incentive design
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Fig. 1: An illustration of the incentive implementation and

the agent’s decision-making process. The principal offers

incentives for the next N stages. After receiving the incen-

tive offers, the agent computes and implements its optimal

decisions for the next N stages.

Γ∈Θ(M), the agent’s optimal ∞-stage policy is given by

π⋆:=(π⋆
0 , π

⋆
1 , . . .) where π⋆

k is such that

π⋆
k ∈ arg max

π∈ΠN (M)
Jk(π,Γ)(s) (3)

for all s∈S and k∈N0. Note that the agent’s policy π⋆
k

maximizes the total reward starting from any s∈S.

The principal’s objective is to design an incentive sequence

such that the agent’s optimal policy under the provided

incentives satisfies an scLTL formula ϕ with maximum

probability.

The problem that we consider is the synthesis of an in-

centive design that minimizes the cost to the principal while

realizing its objective. We make the following assumptions:

(i) Agent’s reward function R is known by the principal.

(ii) Agent’s decision horizon N is known by the principal.

(iii) The principal pays the offered incentives if and only if

the agent takes the incentivized action.

Then, the optimization problem that we are interested in

to solve is the following:

min
Γ∈Θ(M)

E
π⋆

s0

[ ∞∑

t=1

γt(s, a)
]

(4a)

subject to: π⋆ = (π⋆
0 , π

⋆
1 , . . .) (4b)

π⋆
k ∈ arg max

π∈ΠN (M)
Jk(π,Γ)(s) ∀s ∈ S, ∀k ∈ N0

(4c)

Prπ
⋆

M(s0 |= ϕ) = max
π∈Π(M)

PrπM(s0 |= ϕ) (4d)

where Γ=(γ1, γ2, . . .).

IV. THE DESIGN OF INCENTIVE SEQUENCES

In this section, we provide a method to synthesize an

incentive design that solves the problem (4a)-(4d). For sim-

plicity, we restrict our attention to reachability specifications,

i.e., ϕ=♦p where p∈AP . The incentive design for general

scLTL specifications is discussed in Section VI.

We first partition the states into three disjoint sets as

follows. Let B⊆S be the set of all states such that {p}⊆L(s),
i.e., the set of states that the principal wants the agent

to reach, and S0⊆S be the set of states that have zero

probability of reaching the states in B under any policy.

More precisely, s∈S0 if PrπM(s |= ♦p)=0 for all π∈Π(M).
Finally, we let Sr=S\B ∪ S0 be the set of all states that

are not in B and have nonzero probability of reaching a

state in B under some policy. These sets can be found in

time polynomial in the size of the MDP using graph search

algorithms [10].

The agent’s initial state s0∈S can belong to either B,

S0 or Sr. However, we only consider the case s0∈Sr since

otherwise the optimal incentive design is trivially γt(s, a)=0
for all t∈N.

A. The cost of control

Recall that the agent’s first objective function

J0:ΠN (M)×Θ(M)→R
|S| is

J0(π,Γ)(s) = E
π
s

[ N∑

t=1

(R(St,At) + γt(St,At))
]

for all s∈S. Let Vn:S→R be the agent’s value function at

stage n such that

Vn(s) := max
π∈ΠN (M)

E
π
s

[ N∑

t=n

(R(St,At) + γt(St,At))
]

for all s∈S, where the expectation is taken over the paths

that occupy s at stage n. Then, we have the recursive formula

Vn(s) = max
a∈A(s)

R(s, a) + γn(s, a) +
∑

s′∈S

Ps,a,s′Vn+1(s
′)

for all 1≤n≤N , where VN+1(s)=0 for all s∈S. Let

Qn:S×A→R be the agent’s Q-function at stage n such that

Qn(s, a) := R(s, a) + γn(s, a) +
∑

s′∈S

Ps,a,s′Vn+1(s
′).

By the principle of optimality [1], [12], the agent’s optimal

policy π⋆
0=(d⋆1, d

⋆
2, . . . , d

⋆
N ) is such that, for all 1≤n≤N ,

dn(s, a
′)>0 only if

a′ ∈ arg max
a∈A(s)

Qn(s, a).

We recursively define

Qn(s, a) := R(s, a) +
∑

s′∈S

Ps,a,s′V n+1(s
′), (5)

V n(s) := max
a∈A(s)

Qn(s, a), (6)

for all s∈S and a∈A(s). For a given ǫ≥0, we finally define

a real-valued function φǫt :S ×A→R≥0 such that

φǫn(s, a) :=

{
V n(s)−Qn(s, a) + ǫ if s ∈ Sr, a ∈ A(s)

0 otherwise.

For an arbitrarily small ǫ>0, the value of φǫn(s, a), referred

as the cost of control for the state-action pair (s, a), is

the minimum incentive that should be offered to the agent

in order to make the action a∈A(s) uniquely optimal at

stage t. It is worth noting that although the cost of control

φǫn(s, a) depends on the stage number n, it is independent

of the objective number, i.e., it is the same for all Jk.

This is because the agent’s reward function R is stationary,

and therefore, V n(s) and Qn(s, a) do not change with the

objective number k as can be seen from (5)-(6).



B. An ǫ-optimal incentive design

To synthesize the minimum incentive sequence, we should

specify the actions to be incentivized by the principal at each

state for each stage. To this aim, we modify the MDP M
by considering the agent’s decision horizon N as another

dimension in the state-space.

Definition 6: For an MDP M and T={1, 2, . . . , N}, the ex-

panded MDP is a tuple M=(S, s0,A,P ,AP ,L,R) where

• S=S × T ,

• s0=(s0, 1) is the initial state,

• P:S ×A× S→[0, 1] is such that

P(s,n),a,(s′,n′) =



Ps,a,s′ if 1 ≤ n ≤ N − 1 and n′ = n+ 1

Ps,a,s′ if n = N and n′ = 1

0 otherwise,

• L:S→2AP is such that L((s, t))=L(s) for all s∈S and

for all t∈T ,

and A, AP and R are as defined for M.

We note that the transition function P is defined such that

the agent’s initial state while computing the k-th N stage

policy is the state occupied by the agent at kN+1-st stage

on the expanded MDP.

Let B∪S0∪Sr be the partition of the states of M such

that if s∈B, then (s, n)∈B for all n∈T , and the sets S0

and Sr are defined similarly. Then, the principal’s objective

on M is to induce an agent policy that reaches the set B
with maximum probability. To synthesize an incentive design

under which the optimal agent policy satisfies the desired

property, we modify the expanded MDP M by making its

states s∈B∪S0 absorbing, and denote the resulting MDP by

M
′
. Then, for a given ǫ≥0, we define the cost of control for a

state-action pair on M through the function φǫ:S×A→R≥0

such that

φǫ((s, n), a) :=

{
V n(s)−Qn(s, a) + ǫ if s ∈ Sr, a ∈ A(s)

0 otherwise.

Let Ξ(M
′
)⊆Π(M

′
) be a subset of the set of ∞-stage

policies such that π′∈Ξ(M
′
) if and only if

π′ ∈ arg max
π∈Π(M

′
)
Prπ(s0 |= ϕ), (7)

and for ǫ≥0, fǫ : Ξ(M
′
)→R be a function such that

fǫ(π) := E
π
s0

[ ∞∑

t=1

φǫ(St,At)
]
. (8)

Then, for an arbitrarily small ǫ>0, an ǫ-optimal incentive

sequence can be designed in two steps as follows.

Step 1: Compute V n(s) and Qn(s, a) given in (5)-(6),

and construct the cost of control function φǫ. Then for

the modified expanded MDP M
′
, compute a stationary

deterministic policy π̃=(d̃, d̃, . . .) such that

π̃ ∈ arg min
π∈Ξ(M

′
)
fǫ(π). (9)

Step 2: Let ̺π∈Pathsπ(M) be the path followed by the

agent. At stage kN where N is the agent’s decision horizon

and k∈N0, provide the agent with the incentive sequence

{γ̃1, γ̃2, . . . , γ̃N} such that

• if ̺π[n] 6∈B ∪ S0 for all n≤kN

γ̃n(s, a) :=





φǫ((s, n), a) if s ∈ Sr and d̃((s, n))(a) > 0,

ǫ if s 6∈ Sr and d̃((s, n))(a) > 0,

0 otherwise,

(10)

• γ̃n(s, a):=0 otherwise.

Under the proposed incentive design (10), the agent’s

value function Vn satisfies Vn(s)=V n(s)+(N +1−n)ǫ for

all s∈S, n≤N . Additionally, if ̺π[n] 6∈B∪S0 for all n≤kN ,

then for all s∈S, d̃((s, n))(a)>0 implies that the agent’s Q-

function satisfies

Qn(s, a) = R(s, a) + γ̃n(s, a) +
∑

s′∈S

Ps,a,s′Vn+1(s
′)

= γ̃n(s, a) +Qn(s, a) + (N − n)ǫ

= (N + 1− n)ǫ + V n(s)

> (N − n)ǫ + V n(s) = max
a′∈A(s)\{a}

Qn(s, a
′).

Consequently, the agent is guaranteed to take the incentivi-

tized actions at each stage until reaching the set B∪S0.

We now show ǫ-optimality of the proposed incentive

design. Note that an optimal incentive design, i.e., ǫ=0, does

not exist since choosing ǫ=0 in the cost of control function

φǫn may not make the incentivized action uniquely optimal

for the agent. As a result, the principal may not be able to

control the agent’s actions by offering such incentives.

We need the following technical lemma to state the main

result.

Lemma 1: There exists a policy π̃∈argmin
π∈Ξ(M

′
) f0(π)

such that ξπ̃(s, a)<∞ for all s∈Sr and a∈A(s).

Proof (Sketch): The problem of synthesizing a policy π̃ such

that π̃∈argmin
π∈Ξ(M

′
) f0(π) can be recast as a stochastic

shortest path (SSP) problem with dead ends and zero-cost

loops. Specifically, the dead ends are the states S0 and

zero-cost loops are formed by states Sr. The existence of

stationary policies for such SSP problems can be established

by slightly modifying the statement of Theorem 1 in [13].

Since any stationary policy π∈Ξ(M
′
) is guaranteed to reach

the set B ∪ S0 with probability 1 within finite number of

stages, the result follows. �

Theorem 1: For any given ǫ>0, there exists ǫ>0 such that

min
π∈Ξ(M

′
)
fǫ(π) ≤ min

π∈Ξ(M
′
)
f0(π) + ǫ.

Proof: For any policy π∈Ξ(M
′
) such that ξπ(s, a)<∞ for

all s∈Sr and a∈A(s), we have

fǫ(π) = f0(π) +
∑

s∈Sr

∑

a∈A(s)

ξπ(s, a)ǫ. (11)



Now, for a given ǫ>0, we evaluate both sides of the above

equation at π∈argmin
π∈Ξ(M

′
) f0(π), which satisfies the

condition ξπ(s, a)<∞ due to Lemma 1. Choosing

ǫ =
ǫ∑

s∈Sr

∑
a∈A(s) ξ

π(s, a)
> 0

and taking the minimum of the left hand side of (11) over

the set Ξ(M), we conclude the result. �

We conclude this section by noticing a remarkable prop-

erty of the proposed incentive design. Specifically, to imple-

ment the proposed design (10), the principal should use only

a simple switch mode which offers the same incentives until

the agent reaches the set B∪S0 and shifts all incentives to

zero after the agent either satisfies the principal’s objective

or fails to satisfy it.

V. COMPUTATION OF AN OPTIMAL INCENTIVE DESIGN

In the previous section, we developed a method to syn-

thesize an ǫ-optimal incentive design which require us to

solve a constrained cost minimization problem given in (8).

Specifically, to solve the incentive design problem (4a)-(4d),

one should synthesize a stationary deterministic policy π̃
such that

π̃ ∈ arg min
π∈Ξ(M

′
)
E
π
s0

[ ∞∑

t=1

φǫ(St,At)
]

(12)

In this section, we develop a method to solve the above

optimization problem. For the ease of notation, we consider

an scLTL formula of the form ϕ=♦p. The incentive design

for general scLTL formulae is discussed in Section VI.

A. Construction of the feasible policy space

To solve the problem (12), we first represent the set

Ξ(M
′
) of feasible policies as a set of policies that maximizes

the expected total reward with respect to a specific reward

function.

For a given MDP M, we partition the set of states into

three disjoint sets B, S0, and Sr as explained in Section

IV, and make the states s∈B∪S0 absorbing to form the

modified MDP M
′
. For the modified MDP, we define a

reward function r:S×A→R≥0 such that

r(s, a) =

{∑
s′∈B Ps,a,s′ if s ∈ Sr

0 otherwise.

By making use of the known results, e.g., Theorem 10.100 in

[10], it can be easily shown that for any s∈S and π∈Π(M′),

E
π
s

[ ∞∑

t=1

r(St,At)
]
= Prπ(s |= ϕ)

where ϕ=♦p, p∈AP , and {p}⊆L(s′) if and only if s′∈B.

Let x⋆s:=max
π∈Π(M

′
) Prπ(s |= ϕ). Then, the problem (12)

can be rewritten as

min
π∈Π(M

′
)

E
π
s0

[ ∞∑

t=1

φǫ(St,At)
]

(13a)

subject to: E
π
s0

[ ∞∑

t=1

r(St,At)
]
= x⋆s0 . (13b)

B. Synthesis of an optimal stationary deterministic policy

Using Lemma 1, one can formulate the problem (13a)-

(13b) as a linear optimization problem and synthesize

an optimal stationary policy. First, we compute the max-

imum probability of satisfying the specification ϕ, i.e.,

x⋆s0=max
π∈Π(M

′
) Prπ(s0 |= ϕ), by solving a linear program

(LP) [10] (see Chapter 10). Then we solve the following LP

minimize
λ(s,a)

∑

s∈Sr

∑

a∈A

λ(s, a)φǫ(s, a) (14a)

subject to:
∑

s∈Sr

∑

a∈A

λ(s, a)r(s, a) = x⋆s0 (14b)

∀s ∈ Sr,
∑

a∈A(s)

λ(s, a)−
∑

s′∈Sr

∑

a∈A(s)

Ps′,a,sλ(s
′, a) = α(s)

(14c)

∀s ∈ Sr, a ∈ A(s), λ(s, a) ≥ 0 (14d)

where α:S→{0, 1} is a function such that α(s0)=1 and

α(s)=0 for all s∈S\{s0}. The variable λ(s, a) denotes

the expected residence time in the state-action pair (s, a)
[1], [14]. The constraint (14b) ensures that the probability

of satisfying the specification ϕ is maximized, and the

constraints (14c) represent the balance between the “inflow”

to and “outflow” from states.

For each s∈Sr and a∈A(s), let λ⋆(s, a) be optimal de-

cision variables in (14a)-(14d). An optimal stationary policy

π⋆={d⋆, d⋆, . . .} that solves the problem (13a)-(13b) is then

given by

d⋆(s, a) :=

{
λ⋆(s,a)∑

a∈A(s) λ
⋆(s,a) if

∑
a∈A(s) λ

⋆(s, a) > 0

arbitrary otherwise (15)

for s∈Sr, and d⋆(s, a)=1 for an arbitrary a∈A(s) for s 6∈Sr.

We note that a policy constructed through (15) is ran-

domized in general. One can argue that choosing one of

the actions a∈A(s) such that d⋆(s, a)>0 deterministically

yields an optimal stationary deterministic policy. However,

the following example illustrates that such an approach may

result in an infeasible policy for the problem (14a)-(14d).

Example 1: Consider the MDP given in Fig. 2, where the

cost of control φǫ is such that φǫ(s1, a2)=1 and φǫ(s, a)=0
otherwise. Suppose that the specification is ϕ=♦s2, i.e.,

r(s1, a2)=1 and r(s, a)=0 otherwise. For the LP (14a)-

(14d), a set of optimal decision variables is given by

λ⋆(s0, a1)=2, λ⋆(s1, a1)=1, and λ⋆(s1, a2)=1. Therefore,

an optimal policy synthesized through (15) is d⋆(s0, a1)=1,

d⋆(s1, a1)=1/2, and d⋆(s1, a2)=1/2. Clearly, if we consider

s0 s1 s2

a1, 0

a1, 0

a2, 1
a1, 0

Fig. 2: An MDP example for which arbitrarily choosing one

of the optimal actions and taking it deterministically yields

an infeasible policy.



a deterministic policy such that d(s1, a1)=1, the proba-

bility of satisfying the specification ϕ under this policy

is zero. Hence, choosing an arbitrary action a∈A(s) such

that d⋆(s, a)>0 deterministically violates the constraint and

yields an infeasible policy.⊳
As Example 1 illustrates, a structured approach is required

to synthesize an optimal deterministic policy from the solu-

tion of the LP (14a)-(14d). Let υ⋆ be the optimal value of

the LP in (14a)-(14d). To synthesize an optimal deterministic

policy, we first solve the following LP,

minimize
λ(s,a)

∑

s∈Sr

∑

a∈A

λ(s, a) (16a)

subject to:
∑

s∈Sr

∑

a∈A

λ(s, a)r(s, a) = x⋆s0 (16b)

∑

s∈Sr

∑

a∈A

λ(s, a)φǫ(s, a) = υ⋆ (16c)

∀s ∈ Sr,
∑

a∈A(s)

λ(s, a)−
∑

s′∈Sr

∑

a∈A(s)

Ps′,a,sλ(s
′, a) = α(s)

(16d)

∀s ∈ Sr, a ∈ A(s), λ(s, a) ≥ 0. (16e)

From the optimal decision variables λ⋆(s, a) of (16a)-(16e),

an optimal policy π⋆={d⋆, d⋆, . . .} can be generated as

follows. Let A⋆(s):={a∈A(s) : λ⋆(s, a)>0}. If A⋆(s)6=∅,

we choose d⋆(s, a)=1 for an arbitrary a∈A⋆(s), and if

A⋆(s)=∅, we choose d⋆(s, a)=1 for an arbitrary a∈A(s).
Proposition 1: A stationary deterministic policy generated

from the optimal decision variables λ⋆(s, a) of (16a)-(16e)

is a solution to the problem (13a)-(13b).

A proof of Proposition 1 can be found in Appendix I.

Intuitively, the LP in (16a)-(16e) computes the minimum

expected time to reach the set B with probability x⋆s0
with the cost of υ⋆. Therefore, if λ⋆(s, a)>0, by taking

the action a∈A(s), the agent has to “get closer” to the

set B with nonzero probability. Otherwise, the minimum

expected time to reach the set B would be strictly decreased.

Consequently, by choosing an arbitrary action a∈A⋆(s), the

agent is guaranteed to reach the set B with the desired

probability.

VI. INCENTIVE DESIGN FOR GENERAL SCLTL

SPECIFICATIONS

In previous sections, we have developed methods to syn-

thesize ǫ-optimal incentive designs for reachability specifi-

cations ϕ=♦p. For such specifications, the principal induces

the desired agent behavior by sharing only the incentive se-

quences with the agent. In other words, the principal does not

have to inform the agent explicitly about the specification. In

this section, we show that for general scLTL formulae, the

problem (4a)-(4d) may not have a feasible solution, in which

case the principal must share its objective with the agent to

induce the desired behavior.

To solve the problem (4a)-(4d) for general scLTL formu-

lae, one needs to utilize the techniques from automata theory

[10]. In particular, we use the fact that for any scLTL formula

ϕ built up from AP , we can construct a deterministic finite

automata (DFA) Aϕ=(Q, q0, 2
AP , δϕ,F) where Q is a finite

set of memory states, 2AP is the alphabet, δϕ:Q×2AP→Q is

a transition function and F⊆Q is the set of accepting states

[11]. Then, after forming the expanded MDP M for a given

MDP M and a decision horizon N as explained in Section

IV-B, one can construct the product MDP which is defined

as follows.

Definition 7: Let M=(S, s0,A,P ,AP ,L) be an expanded

MDP and Aϕ=(Q, q0, 2AP , δϕ,F) be a DFA. The product

MDP Mp=(Sp, s0p ,A,P,AP ,Lp,Fp) is a tuple where

• Sp=S×Q,

• s0p = (s0, q) such that q = δ(q0,L(s0)),

• P((s, q), a, (s′, q′))=

{
Ps,a,s′ if q′ = δ(q,L(s′))

0 otherwise,
• Lp((s, q)) = {q},

• Fp=S ×F .

The incentive design problem (4a)-(4d) can now be solved

on the product MDP Mp in three steps. First, we partition

the states of Mp into three disjoint sets. Let B:=Fp, S0 be

the set of states that have zero probability of reaching the

set B, and Sr:=Sp\B ∪ S0. Second, we form the modified

product MDP M′
p by making all states B ∪ S0 absorbing.

Finally, we apply the methods developed in Section IV to

synthesize an ǫ-optimal incentive sequence on M′
p.

Note that the incentive sequence is designed on the product

MDP Mp. Therefore, the principal must share the DFA

structure, i.e., it’s objective, with the agent to be able to use

the computed design. However, for the existence of a solution

to the problem (4a)-(4d), the incentive sequence should be

designed on the MDP M. The following example illustrates

that the problem (4a)-(4d) may have no feasible solution,

even though the existence of an ǫ-optimal incentive sequence

on Mp is guaranteed.

Example 2: Consider the MDP given in Fig. 3, where

the numbers next to actions ai represent the transition

probabilities, e.g., Ps0,a1,s1=0.4, and the letters next to state

numbers represent labels, e.g., L(s0)=A. Let the agent’s

decision horizon be N=3, and the reward function R be such

that R(s0, a1)=1 and R(s, a)=0 otherwise. Additionally, let

the principal’s objective be expressed by the scLTL formula

ϕ=♦(B∧♦C), i.e., first visit state B and then state C.

The maximum probability of satisfying ϕ is x⋆0=0.5, which

can be computed by solving an LP [10]. The value x⋆0 is

attainable if and only if the agent takes the action a2∈A(s0)
with probability 1 after visiting state s2.

The principal should decide on which actions to incen-

s0, A

s1, A

s2, B

s3, C

a1, 0.2

a1, 0.4

a1, 0.4
a2, 1

a1, 1

a1, 1

a1, 1

Fig. 3: An MDP example for which there exists no feasible

incentive design for the scLTL specification ϕ=♦(B∧♦C).



tivize in the first three stages t=1, 2, 3 since the agent’s

decision horizon is N=3. Clearly, the action a1 should be

incentivized for t=1, 2 so that the agent visits state s2. At

t=3, the agent will be in state s0 with nonzero probability.

Now, if the principal incentivize a1, the agent will take action

a2∈A(s0) with probability less then 1 after visiting state

s2. On the other hand, if a2 is incentivized, then the agent

cannot satisfy the specification with probability higher than

0.46. Consequently, no incentive design on the given MDP

can guarantee the satisfaction of the specification ϕ with

maximum probability. ⊳
We now present a sufficient condition on the structure of

the MDP M which guarantees the existence of an ǫ-optimal

incentive design on M.

For the product MDP Mp and a policy π∈Π(Mp), let

Mπ
s,t:={q∈Q:

∑
a∈A µ

π
t ((s, q), a)>0} be the set of occupied

memory states when the agent is in state s∈S at stage t∈N.

Theorem 2: For an MDP M and a decision horizon N , let

S be the finite set of states for the expanded MDP. There

exists an ǫ-optimal incentive design on M if there exists an ǫ-
optimal incentive design on Mp such that the agent’s optimal

policy π∈Π(Mp) under the provided incentives satisfies

|Mπ
s,t|≤1 for all s∈S and t∈N.

Proof: Let Γ be an ǫ-optimal incentive design on Mp with

the desired property. Note that the function in (10) is a

mapping from the expanded MDP M to the MDP M that

preserves ǫ-optimality of the incentive design. Therefore, in

what follows, we construct an incentive mapping from Mp

to M that preserves ǫ-optimality of the incentive design Γ,

and conclude the result.

An ǫ-optimality-preserving mapping ψ such that

Γ′={γ′1, γ
′
2, . . .}:=ψ(Γ) where Γ={γ1, γ2, . . .} is given as

follows. For a given t∈N,

• if |Mπ
s,t|=0, γ′t(s, a):=γt((s, q), a) for an arbitrary q∈Q

and for all a∈A(s),
• if |Mπ

s,t|=1, γ′t(s, a):=γt((s, q), a) for q∈Mπ
s,t and for

all a∈A(s). �

The following corollary follows from the fact that the

principal can induce a stationary deterministic agent policy

on the product MDP through the methods explained in

Section V.

Corollary 1: For an MDP M, there exists an ǫ-optimal in-

centive design if Ps,a,s′∈{0, 1} for all s, s′∈S and a∈A(s).
Finally, we provide a sufficient condition on the agent’s

decision horizonN that ensures the existence of an ǫ-optimal

incentive design on M.

Proposition 2: For an MDP M, there exists an ǫ-optimal

incentive design if the agent’s decision horizon is N=1.

Proof (Sketch): There is a one-to-one correspondence be-

tween the paths of the product MDP Mp and the MDP M
[10]. Therefore, the principal can observe the path followed

by the agent on M, and provide the incentives according to

the corresponding path on Mp at each stage. Because N=1,

the principal knows the memory state occupied by the agent

at each stage. Consequently, it becomes possible to map the

incentives from Mp to M at each stage. �

VII. NUMERICAL SIMULATIONS

In this section, we demonstrate the proposed incentive

design methods on two simple motion planning examples.

Considering the availability of off-the-shelf solvers, e.g.,

Gurobi [15], MOSEK [16], that can efficiently solve large-

scale linear optimization problems, we restrict our attention

to small scale examples to better emphasize the properties of

the proposed methods. We synthesize the incentive sequences

for the following examples through the use of MOSEK [16]

solver together with CVXPY [17] interface.

A. Incentives for reachability objectives

In this example, we consider a 5×5 grid world envi-

ronment, shown in Fig. 4, and an agent with decision

horizon N=1. At each state, the agent has four actions, i.e.,

A={left, right, up, down}, and a transition to the chosen

direction occurs with probability 1. If the adjacent state in

the chosen direction is the boundary of the environment, the

agent stays in its current state. A reward function for the

agent is generated by choosing all rewards R(s, a) from the

set {0, 1, . . . , 9} uniformly randomly.

The agent starts from the bottom left corner, i.e., Start

state in Fig. 4, and aims to maximize its immediate reward

at each stage. The principal provides incentives to the agent

so that the agent reaches the top right corner, i.e., Target

state in Fig. 4.

In the absence of incentives, i.e., γt(s, a)=0 for all t∈N,

the agent’s optimal path is shown by blue arrows in Fig. 4.

Under its optimal policy, the agent cycles between two states

infinitely often. Through the methods explained in Section

IV-V, we synthesize an incentive sequence for the agent so

that it reaches the target state with probability 1. The agent’s

optimal path under the provided incentives is shown by red

arrows in Fig. 4. The total cost to the principal is computed

as 9+10ǫ units of resources (UR) where ǫ>0 is an arbitrarily

small constant.

As can be seen from Fig. 4, under the provided incentives,

the agent follows the lowest cost path rather than the shortest

Start

Target

Fig. 4: The motion of an agent on a grid world. The

agent’s decision horizon is N=1, and it starts from the

Start state. The principal’s objective is to induce an agent

policy that reaches the Target state with probability 1. Blue

arrows indicate the agent’s optimal policy in the absence of

incentives, and red arrows indicate the agent’s optimal policy

under the provided incentives.



one to the target state. Specifically, the shortest path would

take 8 stages to reach the target state and cost 12 UR to the

principal, whereas the lowest cost path takes 10 stages to

reach the target and cost 9 UR. Quantitatively, the proposed

incentive design allows the principal to save 25% of the

resources that would be paid to the agent if it was to follow

the shortest path.

B. Incentives for general scLTL specifications

In this example, we consider the same grid world environ-

ment introduced in the previous example with different state

labels. The agent’s decision horizon is N=4, and its objective

is to reach the state labeled as C in Fig. 5. The principal’s

objective is to induce an agent policy that satisfies the scLTL

specification ϕ=♦(A ∧ ♦(B ∧ ♦C)), i.e., the agent should

first visit state A, then B, and then C, with probability 1.

The agent receives the reward of 2 for transitioning to the

top left state and the reward of 5 for transitioning to the top

right state. Its optimal path in the absence of incentives is

shown in Fig. 5 with blue arrows (top path). We synthesize an

optimal incentive sequence under which the agent’s optimal

path is shown in Fig. 5 with red arrows (bottom path).

The total cost of the incentives to the principal is com-

puted as 2+13ǫ units of resources. Specifically, the principal

provides 2+ǫ incentives for the right action in the start state

and then ǫ incentives at each stage for desired actions. An

interesting property of the incentivized (red) path is that the

agent stays in the same state in third stage by taking down
action. This is due to the fact that the state s on the left of the

state labeled as B has value Vn(s)=0 for all n. Therefore,

the principal wants that state to be the agent’s initial state

when it computes its second 4-stage policy. By doing so, the

principal ensures that the states s′ occupied by the agent in

the next 4 stages will always have a value zero, i.e., Vn(s
′)=0

if
∑

a∈A(s′) µ
π
4+n(s

′, a)>0, and therefore the cost of control

will only be ǫ.

Start

A

B

C

Fig. 5: The motion of an agent on a grid world. The agent’s

decision horizon is N=4, and it starts from the Start state.

The principal’s objective is to induce an agent policy that

satisfies the scLTL specification ϕ=♦(A∧♦(B ∧♦C)), i.e.,

first visit A, then B, and then C. The optimal path of the

agent in the absence of incentives is shown by blue arrows

(top path). Red arrows indicate the agent’s optimal path under

the provided incentives (bottom path).

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We considered a principal-agent model and studied the

problem of designing an optimal sequence of incentives that

the principal should offer to the agent in order to induce

a desired agent behavior expressed as a syntactically co-

safe linear temporal logic (scLTL) formula. For reachability

objectives, we presented a polynomial-time algorithm to

synthesize an incentive design that minimizes the cost to the

principal. By providing an example scenario, we showed that

a feasible incentive design may not exists for general scLTL

formulae, and the principal may need to share its objective

with the agent to induce the desired behavior. Furthermore,

we provided sufficient conditions under which the principal

can induce the desired behavior without sharing the scLTL

formula with the agent.

The results that we present in this paper are obtained under

the assumptions that the agent’s reward function and the

length of its decision horizon are known by the principal.

An interesting future direction may be to develop methods

to infer the length of the agent’s decision horizon through

perfect/imperfect observations, or to design an incentive

sequence that does not require the knowledge of the length

of the decision horizon.
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APPENDIX I

PROOF OF PROPOSITION 1

Note that any deterministic policy constructed from the

optimal decision variables λ⋆(s, a) of (16a)-(16e) can only

violate the reachability constraint (14b). In other words, the

constructed policy is guaranteed to minimize the expected

total cost.

We will need the following result to prove Proposi-

tion 1. For a given policy π, let Reachπ(s, s′) denote

the probability of reaching s′ from s under π. Note

that Reachπ(s, s)=
∑

a∈A(s) d(s, a)Reach
π((s, a), s) where

Reachπ((s, a), s) is the probability of reaching state s from

state action pair (s, a) under the policy π. Finally, let

ξπ(s):=
∑

a∈A(s) ξ
π(s, a), and note that for any ξπ(s)<∞,

we have [18]

ξπ(s) =
Reachπ(s0, s)

1−
∑

a∈A(s) d(s)(a)Reach
π((s, a), s)

. (17)

To prove the claim of Proposition 1, we show that any

policy that is constructed by choosing actions a∈A(s) such

that λ⋆(s, a)>0 deterministically is optimal.

Let π={d, d, . . .} be the stationary randomized policy

constructed from λ⋆(s, a) of LP (16) through the formula

(15). Additionally, let π̃={d̃, d̃, . . .} be a stationary random-

ized policy such that d̃(s⋆, a⋆)=1, and d̃(s)=d(s) for all

s∈S\{s⋆}. Informally, in state s⋆, we choose one of the

active actions deterministically and do not change the rest

of the policy.

We first show that Prπ̃(s0|=ϕ)<x⋆s0 implies

Reachπ̃((s⋆, a⋆), s⋆)=1. Then by showing that

Reachπ̃((s⋆, a⋆), s⋆)=1 cannot be true, we conclude

that Prπ̃(s0|=ϕ)=x⋆s0 .

As for the first claim, suppose for contradiction that

Prπ̃(s0|=ϕ)<x⋆s0 and Reachπ̃((s⋆, a⋆), s⋆)<1. Note that

if Reachπ̃((s⋆, a⋆), s⋆)<1, then Reachπ̃(s⋆, s⋆)<1.

Therefore, Reachπ̃(s, s)<1 for all s∈Sr satisfying

Reachπ̃(s⋆, s)>0. Additionally, as d(s′)=d̃(s′) for all s′

such that Reachπ̃(s⋆, s′)=0, we have Reachπ̃(s′, s′)<1.

Consequently, probability of leaving the set Sr is 1. Since

all actions that are chosen by policy π̃ satisfy x⋆s=Ps,a,s′x
⋆
s′

where x⋆s is the maximum probability of reaching the set B
from the state s (see e.g. Chapter 10 in [10]), probability

of entering the set B must be equal to x⋆s0 . This raises a

contradiction.

As for the second claim, suppose that

Reachπ̃((s⋆, a⋆), s⋆)=1. Then, Reachπ((s⋆, a⋆), s⋆)=1
since π differs from π̃ only in the state s⋆. We now

construct a policy π̂ such that d̂(s)=d(s) for all s∈S\{s⋆},

d̂(s⋆, a⋆)=0, and

d̂(s⋆, ai) =
d(s⋆, ai)∑

a∈A(s⋆)\{a⋆} d(s
⋆, ai)

. (18)

Note that π̂ satisfies Prπ̂(s0|=ϕ)=x⋆s0 . By showing that π̂
attains an objective value in (16) that is strictly smaller than

the policy π, we will conclude that Reachπ̃((s⋆, a⋆), s⋆)=1
cannot be possible.

For the ease of notation, let ai:=d(s
⋆, ai),

Ri:=Reach
π((s⋆, ai), s

⋆), and âi:=d̂(s
⋆, ai), and

R̂i:=Reach
π̂((s⋆, ai), s

⋆). Without loss of generality,

we choose a1=a
⋆. By the construction of π̂, it can be

shown that

ξπ̂(s⋆) = (1− a1)ξ
π(s⋆)−

a1(R1 − 1)(1− a1)

C
(19)

where C:=(1−
∑n

i=1 aiRi)(1− a1 −
∑n

i=2 aiRi)>0. Note

that ξπ̂(s⋆, ai)(1 − a1)=ξ
π(s⋆, ai) due to (18). Then, since

a1>0 and R1=1, we have

ξπ̂(s⋆, ai) ≤ ξπ(s⋆, ai) (20)

for all ai i=2, 3, . . . , n and ξπ̂(s⋆, a1)<ξ
π(s⋆, a1). Conse-

quently, π̂ attains an objective value in (16) that is strictly

smaller than the policy π.

Finally, since Reachπ((s⋆, a⋆), s⋆)=1 cannot be

true, Reachπ̃((s⋆, a⋆), s⋆)=1 cannot be true. If

Reachπ̃((s⋆, a⋆), s⋆)=1 is not true, Prπ̃(s0|=ϕ)<x⋆s0 is

not true. This concludes the proof. �
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