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Abstract— We consider a non-atomic congestion game where
each decision maker performs selfish optimization over states
of a common MDP. The decision makers optimize for their
own expected cost, and influence each other through congestion
effects on the state-action costs. We analyze the sensitivity of
MDP congestion game equilibria to uncertainty and perturba-
tions in the state-action costs by applying an implicit function
type analysis. The occurrence of a stochastic Braess paradox
is defined and analyzed based on sensitivity of game equilibria
and demonstrated in simulation. We further analyze how the
introduction of stochastic dynamics affects the magnitude of
Braess paradox in comparison to deterministic dynamics.

I. INTRODUCTION

Markov decision process (MDP) congestion games have
been successfully used to model distributions of selfish
decision makers when competing for finite resources [1].
In particular, MDP congestion games introduce stochastic
dynamics in congestion games by mapping user inputs to
probabilistic outcomes. An equilibrium concept similar to
Wardrop equilibrium of routing games [2], MDP Wardrop
equilibrium describes steady-state population behaviour at
which no players can optimize their expected state-action
costs through further changes in their decision strategies.

In modelling a physical process as a game, the game
equilibrium approximates the true steady-state of the physical
process; this is because models inherently cannot predict the
physical process to full accuracy. The underlying assumption
is that the modelling errors cause negligible deviations of
prediction from physical equilibrium. However, this is false
if the steady-state distribution is sensitive to changes in the
modelling parameters. This motivates our study of sensitivity
of MDP congestion game to state-action costs.

In this paper, we quantify sensitivity for the occurrence
of stochastic Braess paradox, and relate the paradox to
its deterministic counterpart. We also define and derive
conditions for MDP dynamics and state-action costs under
which our sensitivity analysis is valid. Finally we bound the
sensitivity of a stochastic MDP congestion game in terms of
the sensitivity of its deterministic counterpart.

Here we’d also like to emphasize why we consider the
sensitivity of Wardrop equilibrium to the state-action cost
parameters. In utilizing MDP congestion game models to
forecast steady-state behaviour of a physical system, state-
action costs are often parameterized by experimental data,
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which has uncertainty. When this uncertainty is bounded, it
is natural to consider bounding the resulting deviation of true
equilibrium from the predicted equilibrium. Secondly, the
sensitivity of game equilibrium is highly relevant to Stack-
elberg games for the leader, who may utilize the sensitivity
information to derive an optimal action sequence for its own
objective [3]. Finally, when a game designer with a certain
‘budget’ for changing the cost function attempts to alter an
existing game equilibrium to maximize an external objective,
it’s important to know the optimal change with respect to
designer’s alternative objective.

We review existing literature on sensitivity and MDP con-
gestion games in section II. In section III, MDP congestion
game and related concepts are defined. Sensitivity results
and stochastic Braess paradox characterizations are given
in section IV. We analyze stochasticity’s effect on paradox
sensitivity in section V. Finally, simulations demonstrating
stochastic Braess paradox and the sensitivity analysis is
shown in section VI.

II. RELATED WORK

MDP congestion games [1], [2] combine features of non-
atomic routing games [4]–[6], i.e. where decision makers
influence each other’s edge costs through congestion effects
over a network—and stochastic games [7], [8]—i.e. where
each decision maker solves an MDP.

Our analysis resembles sensitivity work on Wardrop equi-
libria in traffic assignment literature [9]–[11], where ex-
tensive research exist on both the sensitivity of Wardrop
equilibria and a related problem of network design with
respect to optimal user equilibrium [12], [13]. Efficiency
of Wardrop equilibria leads to a paradoxical phenomenon
known as Braess paradox [14], whose occurrence is linked
to the underlying network of system dynamics [15].

To incorporate randomness in the traffic assignment
model, a variety of probabilistic models were analyzed.
Approximation algorithms have been derived for networks
where uncertainty exists in user demand [16], in user dy-
namics as logit model [17], and in perceived cost function
as normal error distribution [18]. Sensitivity of other net-
work games to modelling parameters have also been studied
in [19]. Our work is fundamentally different from previous
work due to our assumption: we consider exclusively on
uncertain dynamics, and instead of modelling uncertainty
with explicit probability distributions, we describe dynamics
with MDPs, which can be interpreted as a discretization of
an arbitrary probability distribution. The addition of MDP
dynamics then requires additional treatment as described in
later sections.
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III. PRELIMINARIES

We introduce MDP congestion game framework from an
individual decision maker’s perspective and define a varia-
tional inequality-style game equilibria. From a system-level
perspective, MDP congestion game is formulated as a poten-
tial game with a hypergraph structure. The set {1, . . . , N} is
denoted by [N ] and the vector [1, . . . 1] ∈ RN by 1N .

A. MDP Congestion game

In an archetypal finite MDP problem, each decision maker
solves a finite-horizon MDP [20] with horizon length T , state
space [S], and action space [A] given by

min
xsa

∑
s∈[S]

∑
a∈[A]

xsacsa

s.t.
∑
s

∑
a

xsa = 1,∑
a

xsa =
∑
s′∈[S]

∑
a∈[A]

Pss′a, ∀ s ∈ [S],

xsa ≥ 0, ∀ s ∈ [S], a ∈ [A],

(1)

where the objective is to minimize the expected average cost
over an infinite time horizon with a finite set of actions
[A] and a finite set of states [S]. The optimization variable
x ∈ RSA+ defines a state-action distribution of an individ-
ual decision maker, such that xsa/

∑
a′∈[A] xsa′ denotes a

decision maker’s probability of taking action a at state s.
The probability kernel P ∈ RS×SA+ has form

P =


Ps1s1a1 Ps1s1a2 . . . Ps1s2a1 . . . Ps1sSaA
Ps2s1a1 Ps2s1a2 . . . Ps2s2a1 . . . Ps2sSaA

...
Psns1a1 Psns1a2 . . . Psns2a1 . . . PsnsSaA

 ,

where Pss′a denotes the transition probability from state s′

to s when taking action a. P is column stochastic and defines
the transition dynamics.

In a non-atomic MDP congestion game, an infinite number
of decision makers each solves an MDP on the same state-
action space. The total population distribution is described
by y ∈ RSA+ .

Assumption 1 (Mean Field Assumption). In the limit where
the number of decision makers approaches to infinity, the
total population becomes a continuous distribution y ∈ RSA+
with total mass M > 0, where ysa denotes the portion of
population who chooses action a at state s.

The population distribution y relates to individual state-
action distribution by y =

∑
k αkx(k),

∑
k∈K αk =

M, αk > 0, ∀ k ∈ K, where K is the index set of feasible
distributions with respect to MDP (1), and αk corresponds
to the portion of population that chooses distribution x(k).

Assumption 1 results in a non-atomic nature of MDP
congestion games: each decision maker’s state-action distri-
bution is infinitesimal with respect to the population distri-
bution, and changes in an individual x does not affect y.

In an MDP congestion game, the state-action costs csa
are population dependent functions, i.e., csa = `sa(ysa),

where `sa : R+ → R. We denote ` : RSA+ → RSA as
the vector of state-action costs. The population dependency
of ` reflects congestion effects: the greater the population
in a given state-action pair, the greater the cost of taking
that state-action for all decision makers. This assumption is
consistent with practical networked interactions in traffic and
telecommunications [21] where, e.g., the cost of traversing
a road increases for each driver when the number of cars on
the road increases.

Assumption 2. The state-action costs ` : RSA+ → RSA are
continuously differentiable and ∇y` is positive definite.

In an MDP congestion game, all decision makers achieve
their optimal expected cost when the population distribution
is at MDP Wardrop equilibrium.

Definition 1 (MDP Wardrop Equilibrium [2]). A population
distribution y? which satisfies Assumption 1 is a Wardrop
equilibrium when each decision maker’s probability x?(k)
satisfies∑

s∈[S]

∑
a∈[A]

`sa(y?sa)(x?(k)sa − xsa) ≤ 0, ∀k ∈ K.

Definition 1 defines optimality in terms of expected cost:
an individual decision maker deviating from its current
strategy will not achieve a more optimal expected cost.

B. Directed Hypergraphs

Similar to stochastic shortest path problems [22], MDP
congestion game is inherently related to hypergraphs [23].
We consider a weighted directed hypergraph G = ([S], E),
where [S] is the set of states considered in MDP congestion
game and E is the set of hyperarcs. A hyperarc (s, a) is
defined for each state-action pair, such that the tail is always
at s, and the head, H(s, a), is the set of states that can be
reached from state s taking action a—i.e., H(s, a) = {s′ ∈
[S] | Ps′sa > 0}.

B

A

C

D

Fig. 1. A directed hypergraph with 4 states. The hyperarcs in red have one
tail but multiple heads, denoting possible states s′ that taking state-action
(s, a) may result in next.

A hypergraph incidence matrix E ∈ RS×|E| has elements
defined as

(E)s′,(s,a) =

{
1 s′ = s,

−Ps′sa s′ 6= s.
(2)

Alternatively the incidence matrix can be written as E =
(IS ⊗ 1TA − P ). In this form, we can see that the difference



in probability density per state (i.e., (IS ⊗1TA)x) before and
after a stochastic transition (i.e., Px) can be written as Ex.
Therefore a stationary distribution x̂ always satisfies Ex̂ = 0.

A directed hypergraph is strongly connected if every non-
empty subset R ⊂ [S] has at least one incoming hyperarc
from the set [S]/R. In the following consider hypergraphs
whose incidence matrix has rank S − 1.

Assumption 3 (Incidence Rank). The hypergraph that cor-
responds to probability transition kernel P is strongly con-
nected, and its incidence matrix E has row rank S − 1.

An MDP congestion game can be stated as an optimization
problem over population distribution y [2], formulated as

min
y

∑
s∈[S]

∑
a∈[A]

∫ ysa

0

`sa(u)du (3a)

s.t. Ey = 0, (3b)

1T y = M, (3c)
y ≥ 0, (3d)

where constraints on y is derived from feasibility conditions
of individual decision makers.

Let ν, λ, µ be Lagrange multipliers corresponding to (3b),
(3c), (3d), respectively. When ` satisfies Assumption 2,
uniqueness of the tuple (y?, λ?, µ?) is guaranteed [2]. How-
ever due to the rank deficiency of ET , ν? must be non-
unique. We show next that the constraint Ey = 0 can be
reduced to a full ranked condition, such that the correspond-
ing optimal Lagrange multiplier ν? is unique.

Lemma 1 (Full Row Rank Incidence Matrix). An MDP
congestion game (3) that satisfies Assumption 3 is equivalent
to

min
y

∑
s∈[S]

∑
a∈[A]

∫ ysa

0

`sa(x)dx

s.t. Ẽy = 0,

1T y = M,

y ≥ 0,

(4)

where E =

[
Ẽ
eT

]
and Ẽ has full row rank.

Proof. Consider removing arbitrary row vector eT from the
incidence matrix E. By Assumption 3, eT is not identically
0. Clearly, Ey = 0 implies Ẽy = 0. To see that the opposite
implication, note that ET1 = 0 from definition leads to
1T Ẽ = −eT . Therefore Ẽy = 0 implies −eT y = 0.

The Karush-Kuhn-Tucker (KKT) conditions of (4) are

H(y?, ν?, λ?, µ?) =


`(y?)− ẼT ν? − λ?1− µ?

Ẽy?

1T y? −M
(µ?)T y?

 =


0
0
0
0

 ,
µ? ≥ 0, y? ≥ 0.

(5)
where ν ∈ RS−1, λ ∈ R, µ ∈ RSA+ are uniquely determined
for a given population distribution y.

IV. SENSITIVITY ANALYSIS

In this section, we derive a sensitivity characterization
of stochastic Braess paradox. To facilitate the analysis, we
introduce perturbation dependent cost functions ` : RSA ×
RSA → RSA that is continuously differentiable in both
inputs, where the additional input represents perturbation to
the cost function. The game itself is played with respect to
a given perturbation ε and a corresponding cost `(·, ε).

The KKT conditions (5) can also be viewed as an implicit
characterization of optimal population y? as parameterized
by ε. We define a point-to-set mapping given by

Q : ε 7→ {(y, ν, λ, µ)| H(ε, λ, ν, y, µ) = 0, µ ≥ 0, y ≥ 0} .
(6)

The point-to-set mapping, Q(ε), generalizes local differen-
tiability of y? as a function of ε [24]. For an ε, if the
optimal distribution y? and corresponding optimal Lagrange
multipliers are unique, Q(ε) is a single valued set mapping;
in this case we denote the optimal population distribution
by y?(ε). Unless otherwise stated, Assumption 2 holds from
now on.

Consider an MDP congestion game played with costs
`(y, 0) and its optimal solution y?(0). When Q(ε) is a single
valued set mapping for ε in an open set containing zero, the
Jacobian ∇εy?(0) exists. We call ∇εy?(0) the sensitivity of
MDP Wardrop equilibria—i.e.,how y?(0) changes when cost
` is perturbed by ε.

We restrict our attention to MDP congestion games whose
unique equilibrium satisfies y?(0) > 0.

Assumption 4 (Positivity Condition). The optimal popula-
tion distribution of the unperturbed MDP congestion game
satisfies y? > 0.

Assumption 4 is not restrictive in the following sense:
when state-action costs satisfy Assumption 2, Assumption 4
will always be satisfied for some total mass M > 0. Consider
cost functions that satisfy `sa(0) = bsa ∈ R. If a hyperarc
is not optimal, i.e. has no mass, then bsa must be at least
maxa′∈[A] `sa′(y

?
sa′ , 0). However, all other state action costs

must increase as total mass M increases, therefore a total
mass threshold exists for which maxa′∈[A] `sa′(y

?
sa′ , 0) ≥

bsa, past which (s, a) will become optimal.

Proposition 1 (Perturbation Map). If an MDP congestion
game (3) satisfies Assumptions 2 and 3 with costs `(·, ε),
and y?(ε) satisfies Assumption 4, then the mapping Q(ε) (6)
is a single valued mapping at ε.

Proof. From Assumptions 2 and 4, there exists a unique
y?(ε) > 0 solving the KKT conditions (5) for costs `(·, ε).
Lagrange multiplier µ? = 0 from complementary slackness.
The other optimal solutions can be determined by solving
(y?)T (`(y?) − ẼT ν? − λ?1) = 0, which implies λ? =
(y?)T `(y?)/M . Furthermore, unique y? and λ? implies Ẽν?

is unique. Since ẼT has full rank, ν? is unique.

Proposition 1 implies that when ` is continuously differ-
entiable at y? and ε = 0, there exists a continuously differen-
tiable and invertible function of the optimal distribution y in



terms of ε. We note that similar sensitivity results which do
not consider stochastic congestion effects exist for routing
games [9]. However, our results for MDP congestion games
are less restrictive due to the lack of the dual route/link space.

Theorem 1 (MDP Congestion Game Flow Sensitivity).
Consider an MDP congestion game with costs `(y, ε), such
that ` is a continuously differentiable function of (y, ε)
and satisfies Assumption 2, and the associated hypergraph
satisfies Assumption 3. If the optimal population distribution
y?(ε?) > 0, the sensitivity of the MDP Wardrop equilibrium
is given by

∇εy? = G−1N(NTG−1N)−1NTG−1J −G−1J.

Moreover, the sensitivity of optimal state-action costs is

∇ε`(y?, ε?) = N(NTG−1N)−1NTG−1J,

where N =
[
ẼT 1

]
, Ẽ as given by Lemma 1, G =

∇y`(y?(ε?), ε?), and J = ∇ε`(y?(ε?), ε?).

Proof. From Proposition 1, the game with costs `(·, ε) has
associated single valued mapping Q(ε) in a neighborhood
of ε?, then H(Q(ε), ε) = 0 implies the total derivative
dH(Q(ε), ε)/dε = 0 for ‖ε− ε?‖ ≤ δ. Let w =

(
y ν λ

)
and f(y, ν, λ, ε) =

`(y, ε)− ẼT ν − λ1Ẽy
1T y −M

. Like H , f is

continuously differentiable in w, and is equal to 0 at y?(ε)
and corresponding optimal Lagrange multipliers. From the
implicit function theorem [24, Sec.1B], when ∇wf(w, ε?) is
invertible, ∇εw? =

(
∇wf(w?, ε?)

)−1∇εf(w?, ε?). We wish

to show that ∇wf(w?, ε?) =

(
G −N
NT 0

)
is non-singular.

The Schur complement of ∇vf(Q?(ε), ε?) with respect to
the lower block diagonal component 0 is NTG−1N . From
Assumptions 3 and 2, NT has full row rank and G � 0.
Therefore NTG−1N is positive definite and non-singular
and equivalently, ∇wf(w?, ε?) � 0 and non-singular.

The partial gradient of f(w?, ε?) with respect to ε is

∇εf(w?, ε?) =

(
J 0
0 0

)
.

We use Gaussian elimination to invert ∇wf(w?, ε?) and get

(∇Q(ε)f(Q?(ε), ε?))−1 =

(
A B
C D

)
.

where A = G−1 − G−1N(NTG−1N)−1NTG−1, B =
−G−1N(NTG−1N)−1, C = BT , D = (NTG−1N)−1.

We decompose w to its components and solve for ∇εy?,

∇ε

y?ν?
λ?

 = −
(
G−1(J −N(NTG−1N)−1NTG−1J) 0

−(NTG−1N)−1NTG−1J 0

)
,

where the first row corresponds to ∇εy?(ε?) and the second
row corresponds to ∇ε

[
ν? λ?

]T
. The first block corre-

sponds to ∇εy?(ε?). Note that because y?(ε?) > 0, we can

express the optimal cost as

`? =
[
ẼT 1

] [ν?
λ?

]
= N

[
ν?

λ?

]
.

The sensitivity of the costs `? with respect to perturbation is

∇ε`? = N∇ε
[
ν?

λ?

]
= N(NTG−1N)−1NTG−1J.

A. Stochastic Braess Paradox

In the routing game literature, a well-known phenomenon
that is related to the sensitivity of optimal routes is Braess
paradox [14]. The phenomenon refers to the paradoxical ef-
fect that occurs when costs of traversing edges are decreased,
resulting in an increase in player’s average cost. We show
that a similar behaviour exists in MDP congestion games, and
its occurrence can be linked to the underlying hypergraph
structure through sensitivity analysis. Consider the social
cost of an MDP congestion game, J(y, `) = yT `(y).

Stochastic Braess paradox can be defined by the sensitivity
of the social cost of MDP congestion games.

Definition 2 (Stochastic Braess Paradox). For two MDP
congestion games (3) satisfying Assumption 2 defined on the
same hypergraph, their respective costs ` and ¯̀ satisfies

`(y)− ¯̀(y) ≥ 0, ∀{y | Ey = 0, 1T y = M, y ≥ 0}.

Let the optimal population distribution be y? and ȳ?, respec-
tively. A stochastic Braess paradox occurs when the social
cost satisfies J(y?, `) < J(ȳ?, ¯̀).

When ` and ¯̀ are instantiated by different ε values of the
same continuously differentiable function `(·, ε), the exis-
tence of Braess paradox suggests that there is a perturbation
which increases the state-action costs from ¯̀ to ` such that
J(y?, `) < J(ȳ?, ¯̀).

Corollary 1 (Sufficient Conditions for stochastic BP). Con-
sider a feasible MDP congestion game (3) which satisfies
Assumptions 2 and 3 with an optimal population distribution
y? > 0. Its social cost sensitivity can be defined as

∇εJ =(G−1N(NTG−1N)−1)−1NTG−1 −G−1)`(y?)

+N(NTG−1N)−1NTG−1y?.
(7)

Then, ∇εJ /∈ R|S||A|+ is a sufficient condition for the
occurrence of stochastic Braess paradox.

Proof. J is bilinear and therefore continuously differentiable
in `? and y?. From Theorem 1, there exists a neighbourhood
‖ε‖ ≤ δ within which J is continuously differentiable in ε,
and the Jacobian is given as

∇εJ(`?, y?) = ∇y?J∇εy? +∇`?J∇ε`?.

For any ∇εJ /∈ R|S||A|+ , there exists ε ∈ R|S||A|+ such that
‖ε‖ ≤ δ and εT∇εJ < 0. We then consider the MDP
congestion game with costs ¯̀ and equilibrium ȳ?, where ¯̀

is defined by
¯̀= `+ ε.



By the mean value theorem, there exists k ∈ (0, 1] where

J(ȳ?, ¯̀?) = J(y?, `?) + (kε)T∇εJ.
Since kεT∇εJ(δ) < 0, J(ȳ?, ¯̀) < J(y?, `?) holds.

V. ROLE OF STOCHASTICITY

In this section, we consider the deterministic counterpart
of MDP congestion games to evaluate how the introduction
of stochasticity influences social cost sensitivity.

A. Cycle Game
A directed primal graph [25] Gd = ([S], Ed) can be

derived from a hypergraph G = ([S], E), by considering the
same set of states and define edge set Ed defined by

e = (s1, s2) ∈ Ed if ∃ (s1, a) s.t. Ps2s1a > 0.

Its incidence matrix D ∈ RS×Ed is given by

[D]ie =


1, if edge e starts at state i,
−1, if edge e ends at state i,

0, otherwise.

An MDP congestion game (3) can be played on Gd for a
given cost `. The constraint Dy = 0 implies that any feasible
population distribution must be a combination of cycles of
Gd [26]. Therefore, we call a deterministic MDP congestion
game where all state-action pairs lead to deterministic out-
comes, a cycle game [2].

The edge set of a primal graph dictates allowable transi-
tions over state space [S], where as a hyperarc corresponds
to a discrete set of particular probability distributions as-
signments to these allowable transitions as given by Ed.
We consider a transformation T ∈ R|Ed|×|E|+ between the
incidence matrix of a hypergraph E and its host graph D,
such that E = DT . Columns of T denote how an action a
distributes mass over edges adjacent to s of the primal graph,

T(s1,s2),(s,a) =

{
Ps2as, s1 = s,

0, otherwise.
(8)

In addition to being element-wise non-negative, T is also
column stochastic—i.e.,∑

e∈Ed

Te,(s,a) =
∑
s′∈S

Ps′as = 1.

An example is given in Fig. 2 in which labeled edges
are defined between states {A,B,C}. The incidence and
transformation matrices corresponding to Fig. 2 is given by

D =

 0 −1 0 1
1 1 −1 0
−1 0 1 −1

 , T =


0.4 0 0 0
0.6 1 0 0
0 0 1 0
0 0 0 1

 .
The eigenvalues of T characterize the amount of stochas-

ticity introduced by the MDP dynamics. When T = I , the
MDP congestion game is itself a cycle game with no stochas-
ticity. When each state-action pair uniformly distributes the
probability over available edges, T has a block diagonal
structure with eigenvalues less than 1 if a state has two or
more actions available. Fig. 2 also provides an example of a
feasible transformation T that is invertible.

Fig. 2. Example graph structure of a cycle game.

B. Effects of Stochasticity

When the incidence matrix of a hypergraph is related to
the incidence matrix of the corresponding primal graph by
an invertible transformation T , there is a direct relationship
between the equilibria of the MDP congestion game and
cycle game played on these graphs.

Assumption 5 (Invertible Transformation T ). A directed
hypergraph G = ([S], E) can be induced from its directed
primal graph Gd = ([S], Ed), such that |E| = |Ed|, and the
incidence matrices, E and D, of the two graphs, respectively,
are related by an invertible transformation T .

E = DT, T ∈ R|Ed|×|E|+ , 1TT = 1T .

Proposition 2 (Equilibria Relationship). If the graph G of
an MDP congestion game satisfies Assumption 5, y? > 0
is an MDP Wardrop equilibrium if and only if Ty? is an
equilibrium of the cycle game defined on Gd with costs `e
on its edges where

`e(·) = T−T `sa ◦ T−1(·).

Proof. Consider an MDP Wardrop equilibrium y? that satis-
fies Assumption 4, then there exists primal variable solution
y? and dual variables ν?, λ? that satisfy the KKT condi-
tions (5) with µ? = 0. We can re-write H(y, ν, λ, µ) = 0
from (5) with transformations DT = E and z? = Ty?, and
µ? = 0,

T−T `(T−1z?)−DT ν? − λ?T−T1 = 0,

Dz? = 0,

1TT−1z? −M = 0.

(9)

Since T is element-wise non-negative, and y? > 0, Ty? =
z? > 0. By construction, T−1 is column stochastic, there-
fore T−T1 = 1. Therefore (9) is equivalent to the KKT
conditions of a game with cost T−T ◦ ` ◦T−1, deterministic
incidence matrix D, and optimal population distribution z?.

We note that T−T (∇`)T−1 is positive definite, and while
an individual state-action cost (T−T ◦ ` ◦ T−1)sa requires
multiple hyperarcs’ population distribution to define the
congestion cost at (s, a), it defines a potential game [1]
consistent with Assumption 2. This implies that (9) coincides
with the KKT conditions of a cycle game formulation with
costs T−T ◦`◦T−1, incidence matrix D, and mass M . Since
z? > 0 satisfies the KKT conditions of this cycle game, z? is
the cycle game’s unique optimal population distribution.

The relationship between the equilibria of the deterministic
game and the equilibria of the game allows for a direct



comparison between the sensitivity of the social cost in the
two games. We show next that the social cost sensitivity of
a MDP congestion game can be directly bounded by the
eigenvalues of T , ie the amount of stochasticity introduced.

Theorem 2 (Effects of Stochasticity). We consider an MDP
congestion game (3) and a cycle game (Section V-A) whose
graphs satisfy Assumption 3. Let the social cost of the cycle
game be Jc, and the social cost of the MDP congestion game
be J , the sensitivity of the cycle game can be bounded by

‖∇εJc‖2 ≤ ‖T‖2 ‖∇εJ‖2 .

Proof. Let Nc =
[
D̄T 1

]
, where D̄ is D with any one row

removed. From Assumption 3, the removed row cannot be
identically zero as that would ensure rank(D) ≤ S−2, then
Nc is related to N =

[
ĒT 1

]
by TTNc = N where Ē has

the same row removed.
Since z? = Ty?, the sensitivity of the cycle game social

cost Jc = (z?)TT−T `(T−1z?) can be evaluated at (y?, `?),

∇εJc
(

y?

`(y?)

)
=

(
T−TATTT 0

0 TB

)(
y?

`(y?)

)
.

where A = N(NTG−1N)−1NTG−1 and B = G−1 −
G−1N(NTG−1N)−1)−1NTG−1. In comparison, the sen-
sitivity of the MDP congestion game’s social cost is

∇εJ
(

y?

`(y?)

)
=

(
A 0
0 B

)(
y?

`(y?)

)
.

We can compare the social cost sensitivity Jacobian for the
cycle game and the MDP congestion game, denoted by Mc

and M respectively.

‖Mc‖2 = σmax{T−TATTT, TB}
≤ ‖T‖2 ‖M‖2 .

(10)

Theorem 2 states that given equivalent Wardrop equilibria,
the sensitivity of the social cost in the deterministic cycle
game is always bounded by the sensitivity of the MDP
congestion game and the amount of stochasticity introduced.
Since ‖T‖2 ≤ 1, Theorem 2 states that introducing stochas-
ticity increases effects of Braess paradox.

VI. SIMULATIONS

In this section, we use the results of sensitivity analysis
on a hypergraph derived from a directed Wheatstone graph.
Wheatstone structure is known to induce Braess paradox for
non-atomic routing games [15], we analyze its behaviour
under stochastic transitions and show that not only does
stochastic Braess paradox also occur, but we can avoid the
paradox by our sensitivity analysis. We demonstrate Theo-
rem 1 by cost perturbations in both the negative and positive
directions of the social cost sensitivity, and validating the
predictions with simulated results.

Consider an MDP congestion game defined on hypergraph
shown in Figure 3. We play the MDP congestion game
defined by (3), with a scaled mass M = 1. The cost functions
are defined as `sa(ysa) = Asaysa + bsa.

1
B

A

2

C

45

D

3

6

Fig. 3. Hypergraph structure of MDP congestion game

Asa bsa
`1 9 1
`2 0.1 1
`3 0.1 0
`4 9 1
`5 0.1 0.1
`6 0.1 0

TABLE I
DISTRIBUTION DEPENDENT HYPERARC COSTS

All state-action pairs correspond to hyperarcs, but all
state-action pairs except for hyperarc 3 define deterministic
actions. The stochastic incidence matrix is defined by

E =


1 0 0 0 1 −1
−1 1 1 0 0 0
0 0 −0.9 1 −1 0
0 −1 −0.1 −1 0 1

 .

Note that when a hyperarc has one head state, its correspond-
ing column of incidence matrix E is identical to that of the
cycle game incidence matrix D (Section V-A). Stochastic
hyperarcs are convex combinations of the deterministic edges
that correspond to allowable state transitions originating from
the same tail state.

We simulate each MDP congestion game by solving the
convex optimization formulation given by (3) with cvxpy.
First, we verify in Figure 4 that at given costs `, the optimal
population distribution y? is strictly positive.

2 4 6
State Action Pairs
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Fig. 4. Optimal population distribution at with link costs from table I

We consider perturbing the hyperarc costs modelled by
¯̀(·, ε) = `(·)+ε. Sensitivity of social cost can be analytically
derived from Theorem 1 based on the hypergraph structure as
∇εJ =

(
0.023 0.501 −0.478 0.023 0.454 0.477

)T
.

The sensitivity vector ∇εJ implies that increasing the third
hyperarc cost would result in the most decrease in social cost,
while increasing the second hyperarc cost would result in the
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Fig. 5. Braess Paradox: Perturbing game costs with ε[0, 0, 1, 0, 0, 0],
where ε ∈ R+ increases along x-axis. Right shows the game optimal
population distribution on each hyperarc. Left shows the social cost at
optimal population distribution (blue) and the sensitivity for hyperarc 3
varying with ε (orange).

most increasing in social cost. We verify both scenarios by
successively increasing ε and re-evaluating the social cost at
the optimal population distribution y?(ε), as solved by cvxpy.
The results are shown in Figures 5 and 6.
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Fig. 6. No Braess Paradox: Perturbing the game costs with
ε[0, 1, 0, 0, 0, 0], where ε ∈ R+ increases along x-axis. Right shows
the game optimal population distribution on each hyperarc. Left shows the
social cost at optimal population distribution (blue) and the sensitivity value
for hyperarc 2 at given ε (orange).

A couple conclusions can be drawn from Figures 5 and
6. First, we see that there exists a continuous region around
ε where y?(ε) > 0, and therefore renders this sensitivity
analysis valid. Figure 5 shows a negative sensitivity value for
the third hyperarc as we increase ε, which implies stochastic
Braess paradox. Then as predicted, the social cost decreases
as ε is increased. In contrast, Figure 6 shows a positive
sensitivity value for the second hyperarc as we increase ε,
therefore the social cost should not decrease as ε increases.
This is also confirmed as the social cost obtained from the
output of cvxpy increases with ε. Both Braess paradox and
the absence of Braess paradox is correctly predicted for the
regions where positive mass exists on every hyperarc.

VII. CONCLUSIONS

We derived sensitivity analysis for MDP congestion games
when the optimal population distribution is strictly positive.
From the sensitivity of optimal cost and population distri-
bution to changes in state-action cost, we derived sufficient
conditions for the occurrence of stochastic Braess paradox
defined in terms of network and cost structure. Finally,
we considered effects of stochasticity on the magnitude
of Braess paradox. Our simulations explicitly show the
occurrence of stochastic Braess paradox on MDP congestion
games. Future work include generalizing the analysis to MDP

congestion games whose optimal population distribution is
not strictly positive.
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