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On Resilience Analysis and Quantification for Wide-Area Control of
Power Systems

Yueyun Lu, Chin-Yao Chang, Wei Zhang, Laurentiu D. Marinovici and Antonio J. Conejo

Abstract— Wide-area control is an effective mean to reduce
inter-area oscillations of large power systems. Its dependence
on communication of remote measurement signals makes the
closed-loop system vulnerable to cyber attacks. This paper
develops a framework to analyze and quantify resilience of
a given wide-area controller under disruptive attacks on cer-
tain communication links. Resilience of a given controlleris
measured in terms of closed-loop eigenvalues under the worst
possible attack strategy. The computation of such a resilience
index is challenging especially for large-scale power systems
due to the discrete nature of the attack strategies. To address
the challenge, we propose an optimization-based formulation
and a convex relaxation approach to facilitate the computation.
Conditions under which the relaxation is exact are derived
and an efficient algorithm with guaranteed convergence is
also developed. The proposed framework and the algorithm
allow us to quantify resilience for given wide-area controllers
and also provide sufficient conditions to guarantee closed-loop
stability under all possible communication attacks. Simulations
are performed on the IEEE 39-bus system to illustrate the
proposed resilience analysis and computation framework.

I. I NTRODUCTION

With the power grid increasingly working close to its
operation limit, inter-area oscillation becomes ever more
lightly damped, which easily results in instability [1]. Local
decentralized controllers, such as power system stabilizers
(PSSs), are designed to suppress local oscillations. They may
interact in an adverse way, if not carefully tuned, that aggra-
vates inter-area oscillations. Motivated by the advancement
in the Wide-Area Measurement System (WAMS) technology,
recent research efforts have been focusing on wide-area
control (WAC) problems [2], [3], [4]. The goal of WAC
is to achieve better closed-loop performance, such as inter-
area oscillation damping, by the use of remote measurement
signals via the Phasor Measurement Units (PMUs) installed
across the grid.

One important class of literature on WAC is concerned
with optimal control design under certain performance met-
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ric. The main control objective is inter-area oscillation
damping, for which various metrics have been proposed.
In the design of supplementary damping controller (SDC)
using Linear Parameter Varying (LPV) model [5], the met-
ric is given by the signal amplification from disturbance
to output. To design FACTS (Flexible AC Transmission
Systems)-based control facilitated by an aggregate model [6],
the metric is defined on the closed-loop transient response
of inter-area oscillation modes. A mixedH2/H∞ output
feedback control design is studied in [7] where the metric
is concerned with geometric measures of modal control-
lability/observability. Another control objective is voltage
stability. For the automatic scheduling and coordination of
voltage control devices [8], [9], [10], the metric is composed
of several terms regarding switching cost, penalty on voltage
violations and penalty on circular VAR flow. Typically, the
controllers are designed for a fixed structure, that is to say,
the communication network has a pre-specified structure.
There has been a recent interest in incorporating communi-
cation structure into the design. Due to the fact that most
optimal control formulations result in controllers without
any sparsity pattern and require centralized implementation,
a sparsity-promoting optimal control scheme is proposed
in [11] where theℓ1 regularization term in the objective
accounts for the structural design.

Another body of literature is concerned with delays and
failures arising in the communication network of WAMS.
To deal with network delays, a predictor-basedH∞ control
design strategy is discussed in [4] to account for a de-
layed arrival of feedback signals. Furthermore, an arbitration
approach is proposed in [12] to exploit the flexibility of
communication network so that the designed controllers are
in sync with network delays, making the closed-loop system
delay-aware, rather than just delay-tolerant. To counteract the
impact of communication failures on the closed-loop system,
a framework proposed in [13] utilizes a hierarchical set of
wide-area measurements for feedback and employs channel
switching based on mathematical morphology identification.

Existing works on WAC resilience mostly focus on com-
munication delays or failures. There has been limited discus-
sion on resilience under adversaries. Due to the increasing
threat on cyber security [14], [15], remote signal transmission
via communication channels is prone to cyber attacks. As
WAC relies heavily on the availability of remote signals,
the integrity of communication network plays a crucial role
in the closed-loop performance. In this paper, we consider
the adversary has disruptive resources [15] that can resultin
unavailability of the signals transmitted over communication
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channels. Such an attack model is commonly referred to
as Denial of Service (DoS) attack [16]. To launch a DoS
attack, the adversary can jam the communication channels,
compromise devices and prevent them from sending data,
attack the routing protocols, flood network traffic, among
others. Our goal is to develop a framework to analyze and
quantify resilience under DoS attacks. In particular, we aim
to design effective ways to determine whether a given wide-
area controller is resilient, and how resilient it is under cer-
tain attack strategy. To achieve this, we use network-reduced
linearized power system model under linear feedback control.
Such a model is widely used in the literature on WAC
problems [5], [10], [6], [17], [7]. We first define resiliencein
terms of closed-loop spectral abscissa (the largest real part
of eigenvalues) under the worst possible attack strategy. The
direct computation of such a resilience metric is challenging,
especially in large-scale network due to its combinatorial
nature. We then propose an equivalent optimization-based
formulation and a convex relaxation approach to facilitate
the computation. On the theoretic side, we derive a condition
under which the relaxation is exact. On the practical side, we
develop an efficient algorithm for the relaxed problem with
guaranteed convergence. The algorithm not only provides
resilience criterion but also reveals structural vulnerabilities.
These results contribute new perspectives to WAC with an
emphasis on resilience under DoS communication attacks.
They also allow us to systematically analyze resilience
properties of a given wide-area controller.

II. PROBLEM FORMULATION

In this paper, we consider a network-reduced power system
model commonly used in the literature [18], [12], [5], [10],
[6], [17], [7]. The overall power system is represented by
an interconnected dynamical system defined on a graphG =
(N , E), whereN , {1, · · · , N} denotes the set of buses
andE denotes the set of transmissions lines between buses.
Let xi(t) ∈ R

ni be the state variables associated with bus
i. Depending on the level of details used in the generator
model, xi can represent generator phase angle, frequency,
quadrature-axis internal emf, state variables of Power System
Stabilizer (PSS) or other local controllers. Typically, local
dynamics and local controllers can be described by linear
systems subject to nonlinear coupling terms due to power
exchange with neighboring buses. The overall system can be
written is the following form:

ẋi = Aiixi + ci +
∑

(i,j)∈E,j 6=i

h(xi, xj),

where Aii ∈ R
ni×ni is the system matrix that has in-

corporated local controls,ci is a constant term regarding
mechanical power input andh(xi, xj) is a nonlinear function
representing the power flow between busesi and j. By
linearization at a stationary operating point, we arrive ata
distributed control system of the following form:

ẋi = Aiixi +
∑

j∈N ,j 6=i

Aijxj +Biui, i ∈ N , (1)

where with slight abuse of notation,xi represents the de-
viation of state variables from the nominal operating point,
Aij captures the linearized coupling between busesi and
j (Aij = 0 if there is no coupling), andBiui is an
introduced wide-area control action that reacts to deviations
from the nominal operating point based on both local and
remote state information. We consider wide-area controlui

to be composed of local componentui,loc that depends on
local state information and wide-area componentui,wac that
depends on remote state information in the following form:

ui = ui,loc + ui,wac = Kiixi +
∑

j∈N ,j 6=i

Kijxj , (2)

whereKij ∈ R
mi×nj , i, j ∈ N are feedback gains. The

local componentui,loc is an additional correction on top of
local controllers, which can be set to zero if there is no such
correction. Note that the sparsity pattern of feedback gains
captures the structure of communication network. Definen ,
∑N

i=1 ni,m ,
∑N

i=1 mi. Let x = [xT
1 , · · · , x

T
N ]T ∈ R

n

andu = [uT
1 , · · · , u

T
N ]T ∈ R

m. The overall system can be
described by

ẋ(t) = (A+BK)x(t), (3)

whereA = [Aij ]1≤i,j≤N ∈ R
n×n, B = diag{Bj}1≤j≤N ∈

R
n×m,K = [Kij ]1≤i,j≤N ∈ R

m×n are in block form.
Wide-area control is prone to cyber attacks due to its

dependence on remote measurement signals that can be
compromised by a malicious adversary. In this paper, we
consider DoS attacks [16] that can result in unavailability
of the signals transmitted over the attacked channels. We
describe anattack strategyby α ∈ {0, 1}N×N where entry
αij = 1 means the channel from subsystemj to i is intact
whereasαij = 0 means it is under attack. By assumption,
αii = 1, ∀i ∈ N . The set of all possible attack strategies
is called (pure) attack spaceand is defined asA0 , {α ∈
{0, 1}N×N : αii = 1, i ∈ N}. The consequence of DoS
attack is modeled by infinite delay of feedback signals.

We assume that an attack strategyα impacts the wide-area
control in the following way:

ui = Kiixi +
∑

j∈N ,j 6=i

αijKijxj .

This corresponds to the case where the controller will ignore
the componentKijxj if the measurement signal ofxj does
not arrive within a certain time period. Such a reaction
scheme is natural and commonly used in the literature [12].
Now we can write the post-attack closed-loop system under
attack strategyα ∈ A0 as

ẋ = (A+BK ◦ α)x, (4)

whereK ◦ α , [Kijαij ]1≤i,j≤N denotes the elementwise
multiplication between entries ofα (scalar) and subblocks
of K (matrix). DefineA(α) , A + BK ◦ α. To write the
elementwise multiplication◦ as a matrix multiplication, we



consider the following transformation:

K̃ = diag{K̃[j]}1≤j≤N ∈ R
n×nN , where

K̃[j] =
[

Kj1 Kj2 · · · KjN

]

nj×n
,

α̃ =
[

α̃[1] α̃[2] · · · α̃[N ]

]T

∈ R
nN×n, where

α̃[k] = diag{αkjInj
}1≤j≤N ∈ R

n×n.

Then, K ◦ α = K̃α̃. Furthermore,α̃ can be written as
the linear combination of a collection of constant matrices
{Mij ∈ R

Nn×n : 1 ≤ i, j ≤ N} with entries ofα as linear
coefficients, i.e.,

α̃ =
∑

1≤i,j≤N

αijMij , where

Mij(p, q) =















1, if p− q = (i− 1)n+
∑j−1

k=1 nk,

andq ∈ {1, 2, · · · , nj}

0, otherwise

.

Now, the closed-loop system matrixA(α) can be written in
the following form that is affine in entries ofα.

A(α) , A+BK ◦ α = A+
∑

1≤i,j≤N

BK̃Mijαij . (5)

We consider a wide-area controller to be resilient if
it can survive all possible (pure) attack strategies on the
communication channel.

Definition 1. A controllerK is calledresilient if system (4)
is stable for allα ∈ A0. Conversely, it is callednot resilient
if there exists anα ∈ A0 under which system (4) is unstable.

In what follows, we will analyze and quantify the re-
silience notion given in Definition 1. The first problem to
address is under what condition the resilience of a given
controller is guaranteed. We aim to derive conditions in terms
of optimization problems whose structure can facilitate the
analysis. A further problem is concerned with the degree
of resilience. We want to define a resilience index as a
normalized factor to quantify how resilient a given con-
troller is to certain attack strategies. For the practical aspect,
the goal is to develop an efficient algorithm to check the
proposed resilience conditions as well as identify structural
vulnerabilities.

III. A M OTIVATING EXAMPLE

WAC makes use of state information from remote buses to
improve the closed-loop performance under local decentral-
ized controllers. One may naturally think that a loss of part
of remote measurement signals will only gracefully degrade
closed-loop performance without causing instabilities. How-
ever, such an intuition is unfortunately not true in general. In
fact, a wide-area controller can become destabilizing under
a loss of a small subset of communication links. We now
use a simple hypothetical example to illustrate this fact.

Consider a networked system in the form (3) withN =
3 subsystems and each of which has two states and two

control inputs. For simplicity, we assume there is no physical
coupling among the three subsystems. Assume thatA11 =
A22 = 1

2E2, A33 = E1, B1 = B2 = B2 = I2, 2K11 =
−K13 = K21 = − 1

2K23 = −K31 = K33 = E1, K12 =
2K22 = K32 = E2, where

E1 =

[

−3 −1

12 2

]

andE2 =

[

−3 1

−12 2

]

.

Let Ac and Ad be the closed-loop system matrices under
controllerK and its full distributed realization, respectively.

Ac , (A+BK) =









E1 E2 −E1

E1 E2 −2E1

−E1 E2 2E1









,

Ad , A+BK ◦ I6 =









E1 0 0

0 E2 0

0 0 2E1









.

It is easy to check that bothAc andAd are stable. Now con-
sider the attack strategyα that targets at the communication
channel from subsystem 3 to 2, i.e.α23 = 0. The post-attack
closed-loop system matrix is

Aa , A+BK ◦ α =









E1 E2 −E1

E1 E2 0

−E1 E2 2E1









.

As Aa has eigenvalues5.1596, 0.6968,−0.8631,−1.3561±
6.5185i,−6.2811, two of which are on the right half of
the plane, the system is no longer stable. We can see
that controllerK is vulnerable under the attack on the
communication channel3→ 2.

IV. RESILIENCE ANALYSIS AND QUANTIFICATION

In this section, we develop a Lyapunov-based framework
to analyze and quantify resilience under DoS communication
attacks as formulated in Section II.

A. Resilience Conditions

A system is stable if and only if all its eigenvalues have
negative real part, and conversely it is unstable if and only
if at least one of its eigenvalues has positive real part. Given
a square matrix, we call the maximum among the real part
of its eigenvalues thespectral abscissa. One direct approach
for resilience condition is to first seek for the attack strategy
that results in the largest spectral abscissa of closed-loop
system matrix and then determine the sign of the largest
spectral abscissa. For the case where it is negative, the system
remains stable under all attack strategies; while for the case
where it is positive, there exists at least one attack strategy
that drives the system unstable. The direct formulation of
resilience condition takes the following form:

P0 γ∗
0 , max

α∈A0

Re(λmax(A(α)))

If γ∗
0 < 0, then wide-area controllerK can survive all

possible attacks on the communication channels, otherwiseit



inherits structural vulnerabilities. The optimization problem
P0 exhibits several main challenges: i) It is an unsymmetric
eigenvalue problem for which the spectral theorem does not
apply and thusλmax does not have an explicit expression.
ii) The objective is essentially nonconvex due to the max-
imization of the largest real part of eigenvalues. Typically,
eigenvalue optimization problems are formulated as the min-
imization of the largest eigenvalue or the maximization of the
smallest eigenvalue, both of which are convex. However, this
is not the case forP0. iii) The decision variable is binary
and not continuous, making the problem combinatorial in
nature. To address the above challenges, we next reformulate
the problem via Lyapunov stability theory.

1) A Lyapunov Formulation:Recall that the post-attack
system (4) is stable if and only if it admits a quadratic
Lyapunov functionV (x) = xTPx for someP � 0. The
condition can be written in the form of SDP: There exists a
P0 � 0 such that

A(α)TP0 + P0A(α) ≺ 0. (6)

Conversely, the post-attack system (4) is unstable if and only
if for all P � 0, we can find a unit directional vector
xP ∈ {z : ‖z‖ = 1}, where the subscript emphasizes the
dependence of the vector onP , such that

xT
P (A(α)

TP + PA(α))xP ≥ 0. (7)

Inspired by the above Lyapunov characterization, we con-
sider the following formulation:

Lya0 γ∗
L0 , max

α∈A0

min
P�0

λmax(A(α)
TP + PA(α))

Theorem 1 (Sufficient and Necessary Condition). A con-
troller K is resilient if and only if γ∗

L0 = −∞, and is not
resilient if and only if γ∗

L0 ≥ 0.

Proof. We partition the pure attack space into two disjoint
sets, i.e.A0 = As

0 ⊔ A
u
0 , whereAs

0 is the set of stabilizing
attack strategies andAu

0 is the set of destabilizing attack
strategies. Letαs ∈ As

0. Then, system (4) underαs is stable,
that is to say there existsP (αs) � 0 dependent onαs such
thatA(αs)TP (αs) + P (αs)A(αs) ≺ 0. Then,

min
P�0

λmax(A(α
s)TP + PA(αs)) ≤

λmax(A(α
s)T cP (αs) + cP (αs)A(αs))→ −∞ asc→∞.

Let αu ∈ Au
0 . Then, system (4) underαu is not asymptoti-

cally stable, which implies that for allP � 0, there exists a
unit directional vectorxP ∈ {z : ‖z‖ = 1} dependent onP
such thatxT

P (A(α
u)TP + PA(αu))xP ≥ 0. Then,

λmax(A(α
u)TP + PA(αu))

= max
‖x‖=1

xT (A(αu)TP + PA(αu))x

≥xT
P (A(α

u)TP + PA(αu))xP ≥ 0, ∀P � 0.

Thus,minP�0 λmax(A(α
u)TP + PA(αu)) ≥ 0.

Now, we want to show the statement for the “resilient”
part. (⇒): AssumeK is resilient. By Definition 1, all the
attack strategies are stabilizing, i.e.A0 = As

0. Thus,

γ∗
L0 = max

α∈As
0

min
P�0

λmax(A(α)
TP + PA(α))

= max
α∈As

0

−∞ = −∞.

(⇐): On the other hand, ifγ∗
L0 = −∞, then for allα ∈ A0,

minP�0 λmax(A(α)
TP+PA(α)) = −∞, i.e.α ∈ As

0. Now
A0 = As

0 and thusK is resilient.
Next, we want to show the statement for the “not resilient”

part.(⇒): AssumeK is not resilient. By Definition 1,Au
0 6=

∅. Let αu ∈ Au
0 be a destabilizing attack strategy. Then,

γ∗
L0 = max

α∈A0

min
P�0

λmax(A(α)
TP + PA(α))

≥min
P�0

λmax(A(α
u)TP + PA(αu)) ≥ 0.

(⇐): On the other hand, ifγ∗
L0 ≥ 0, then there exists an

αu ∈ A0 such thatminP�0 λmax(A(α
u)TP+PA(αu)) ≥ 0.

In other words, there exists a destabilizing attack strategy and
thusK is not resilient.

2) A Lyapunov Relaxation:The optimal value ofLya0
provides an equivalent characterization of resilience as
proved in Theorem 1. However, the development of efficient
algorithm for Lya0 is highly nontrivial due to its binary
decision variables and unbounded optimal value. For the
practical use, we now consider a relaxation ofLya0 by
embedding the binary variables into closed interval[0, 1] and
upper bounding the largest eigenvalue of positive semidef-
inite (P.S.D.) variable. LetA , {α ∈ [0, 1]N×N : αii =
1, i = 1, · · · , N} andP , {P ∈ Sn : 0 � P � λP I} for
some fixedλP > 0.

LyaP γ∗
LP , max

α∈A
min
P∈P

λmax(A(α)
TP + PA(α))

By relaxing the feasible set for the min and constraining the
one for the max,LyaP provides a surrogate certificate to
Lya0, which leads to a sufficient condition for resilience.

Theorem 2. A controller K is resilient if γ∗
LP < 0.

Conversely, it is not resilient only ifγ∗
LP ≥ 0.

Proof. SinceP ⊂ {P � 0} and minimization over smaller
set gives larger optimal value,

g(α) ,min
P∈P

λmax(A(α)
TP + PA(α))

≥min
P�0

λmax(A(α)
TP + PA(α)) , g0(α).

Furthermore,A ⊃ A0 and maximization over larger set gives
larger optimal value,

γ∗
LP = max

α∈A
g(α) ≥ max

α∈A0

g(α) ≥ max
α∈A0

g0(α) = γ∗
L0. (8)

For the “if” part, assumeγ∗
LP < 0. By relation (8),γ∗

L0 < 0.
It then follows from Theorem 1 thatK is resilient. For the
“only if” part, assumeK is not resilient. By Theorem 1,
γ∗
L0 ≥ 0. Then,γ∗

LP ≥ 0 by relation (8).



Recall that for a symmetric matrixM ∈ S, the largest
eigenvalue ofM can be written asλmax(M) = min{t :
M � tI}. Since the inner problem ofLyaP is the min-
imization of the largest eigenvalue, it can be equivalently
formulated in the form of SDP program. Letg : A → R

be the optimal value of the inner minimization (overP ) of
LyaP defined as

g(α) , min
P∈P

λmax(A(α)
TP + PA(α)). (9)

Then for any fixedα ∈ A, g(α) is the optimal value of the
following SDP:

g(α) = min t

s. t. A(α)TP + PA(α) � tI

P ∈ P

(10)

Consider the following optimization problem.

LyaD γ∗
LD , min

α∈A
t

s. t. A(α)TP + PA(α) � tI

P ∈ P

Note that the first constraint inLyaD is a Bilinear Matrix
Inequality (BMI) in decision variablesP, α andt. Next, we
will show that the dual problemLyaD is equivalent to the
primal problemLyaP.

Theorem 3. γ∗
LD = γ∗

LP .

Proof. Let α∗
P be the optima ofLyaP. Then,γ∗

LP = g(α∗
P ),

for which there existsP ∗
P ∈ P such thatA(α∗

P )
TP ∗

P +
P ∗
PA(α

∗
P ) � γ∗

LP I. For the “≤” part, it follows from the
triple (α∗

P , P
∗
P , γ

∗
LP ) being a feasible solution ofLyaD.

For the “≥” part, consider the BMI constraint ofLyaD.
For α∗

P ∈ A, there existsP ∈ P such thatA(α∗
P )

TP +
PA(α∗

P ) � γ∗
LDI. By the equivalent characterization ofg(α)

given in SDP (10),g(α∗
P ) ≤ γ∗

LD and thusγ∗
LD ≥ γ∗

LP .

To take one step further, a natural question to ask is
when the relaxed problemLyaP is “exact” in terms of
resilience. In other words, whether there are cases for which
solvingLyaP results insufficient and necessarycondition.
The answer is yes under some assumption. We first define
Lyapunov spacePα ⊆ P for each pure attack strategy
α ∈ A0 as

Pα , {P ∈ P : A(α)TP + PA(α) � 0, P 6= 0}. (11)

To ensure the exactness of the relaxed problemLyaP, we
require the intersection of Lyapunov spaces of any two pure
attack strategies to be nonempty.

Assumption 1. For anyα1, α2 ∈ A0, Pα1
∩ Pα2

6= ∅.

The above assumption ensures the sign preserving prop-
erty of the functiong defined in (9) in the sense that ifg is
strictly negative on the vertex setA0, it is strictly negative
on the convex hull ofA0, i.e. the relaxed attack spaceA.
On the other hand, ifg fails to be strictly negative onA, it
fails to be strictly negative onA0.

Lemma 1. Under Assumption 1, ifg(α) < 0, ∀α ∈ A0, then
g(α) < 0, ∀α ∈ A; and conversely, if∃α ∈ A s.t. g(α) ≥ 0,
then∃α0 ∈ A0 s.t. g(α0) ≥ 0.

Proof. SinceA is a polytope with vertex setA0, it is enough
to show the claim that for anyα1, α2 ∈ A0, θ ∈ [0, 1], there
existsκ1, κ2 > 0 such that

g(θα1 + (1− θ)α2) ≤ κ1g(α1) + κ2g(α2).

Assume that the claim holds. Considerαθ ∈ A whereαθ =
∑

αk∈A0
θkαk for someθk ∈ [0, 1],

∑

k θk = 1. If g(αk) <
0, ∀αk ∈ A0, theng(αθ) < 0. On the other hand, ifg(αθ) ≥
0, theng(αk) ≥ 0 for someαk ∈ A0. Now we are left to
show the claim.

For the ease of notation, letf(α, P ) , λmax(A(α)
TP +

PA(α)) in the rest of the proof. Letα1, α2 ∈ A0, θ ∈
[0, 1], Pk = argminP∈P f(αk, P ), k = 1, 2. Considerαθ =
θα1 +(1− θ)α2. Recall thatA(α) defined in (5) is affine in
α. Then,A(αθ) = θA(α1)+(1−θ)A(α2). By the convexity
of λmax(·) : Sn → R,

f(αθ, P ) ≤ θf(α1, P ) + (1 − θ)f(α2, P ) , hθ(P ).

By assumption,Pα1
∩ Pα2

6= ∅. Let P0 ∈ Pα1
∩ Pα2

.
Since the Lyapunov space (11) is defined by Linear Matrix
Inequality (LMI), the setsPαk

, k = 1, 2 are convex and
so is their intersectionPα1

∩ Pα2
. Then,∃t1 ∈ (0, 1) s.t.

P ′
1 = t1P1 + (1 − t1)P0 ∈ Pα2

. Similarly, ∃t2 ∈ (0, 1)
s.t. P ′

2 = t2P2 + (1 − t2)P0 ∈ Pα1
. As P0 ∈ Pα1

, we
havef(α1, P0) ≤ 0. By the convexity off(α, P ) in P for
any fixedα, f(α1, P

′
1) ≤ t1f(α1, P1)+(1− t1)f(α1, P0) ≤

t1f(α1, P1). Similarly,f(α2, P
′
2) ≤ t2f(α2, P2). Notice that

the functionhθ : P → R parameterized byθ ∈ [0, 1] is
the sum of two convex functions and thus is also convex.
ConsiderP = βP ′

1 + (1− β)P ′
2 for someβ ∈ [0, 1]. Then,

hθ(P ) ≤ θβf(α1, P
′
1) + θ(1− β)f(α1, P

′
2)+

(1− θ)βf(α2, P
′
1) + (1− θ)(1 − β)f(α2, P

′
2).

SinceP ′
1 ∈ Pα2

, P ′
2 ∈ Pα1

by construction,f(α1, P
′
2) ≤

0 and f(α2, P
′
1) ≤ 0. We prove the claim thatg(αθ) ≤

κ1g(α1) + κ2g(α2) whereκ1 = θβt1 andκ2 = (1− θ)(1−
β)t2.

With Lemma 1, it is easy to obtain the following sufficient
and necessary condition.

Theorem 4 (Sufficient and Necessary Condition II). Under
Assumption 1, a controllerK is resilientif and only if γ∗

LP <
0, and it is not resilientif and only if γ∗

LP ≥ 0.

B. Resilience Index

The conditions derived in Section IV-A allow us to de-
termine whether a given wide-area controller is resilient to
all possible attack strategies. A natural additional question is
how resilient the controller is to certain attack strategies. This
calls for a proper definition of a normalized index to quantify
the degree of resilience. Denoted byrK : A0 → [0, 1] the
resilience index of controllerK on the pure attack space.
We considerrK to be normalized with respect to the nominal



condition. In particular,rK needs to satisfy the following two
conditions: i) It takes value 1 under the nominal condition
whenK is intact, i.e.rK(1N×N ) = 1; ii) It takes value 0
under destabilizing attack strategies, i.e.rk(α) = 0 for all
α ∈ A0 under which system (4) is unstable.

Recall thatg : A → R defined in (9) is the optimal
value of the inner minimization (overP ) of the relaxed
problemLyaP. In fact, the mappingg defines a performance
metric for stability in the sense that for anyα ∈ A, g(α)
is the fastest decreasing rate a Lyapunov function candidate
could achieve along the trajectory ofA(α). This naturally
leads to a definition of resilience index satisfying the above
two conditions. Guaranteed by the design objective, the
system under the nominal condition has better stability
performance than the one under attack. Since the nominal
condition corresponds toα = 1N×N , we have i)g(1N×N) ≤
g(α), ∀α ∈ A0. On the other hand, we know from the
proof of Theorem 1 that ii)g(α) ≥ 0 for any destabilizing
α ∈ A0. Based on i) and ii), we define resilience index
rK : A0 → [0, 1] of controllerK on the pure attack space
A0 as follows.

rK(α) =

{

0 if g(α) ≥ 0

g(α)/g(1N×N ) if g(α) < 0
(12)

The definition in (12) captures stability degradation of con-
troller K under different attack strategies. It is easy to
see that the smaller the indexrK(α) is, the less resilient
controllerK is to attack strategyα, or in other words, the
more disruptionα will incur on K. For the two boundary
cases, ifrK(α) = 0, controllerK can be destabilized byα,
while if rK(α) = 1, α has no effect on controllerK.

V. A PATH-FOLLOWING PRIMAL -DUAL ALGORITHM

The goal of this section is to solve the relaxed problem
LyaP. Notice thatLyaP takes scalar continuous decision
variablesαij , i 6= j and P.S.D. matrix variableP . By the def-
inition of g given in (9),LyaP is actually the maximization
of g on the polytopeA. A natural attempt is to apply gradient
ascent algorithm. The key step of gradient-based algorithm
is to compute the subgradient of the objective, that is∂g for
the case here. Letfα(x, P ) , xT (A(α)TP + PA(α))x.

g(α) = min
P∈P

max
‖x‖=1

fα(x, P ). (13)

Notice that i)x 7→ fα(x, P ) is concave and continuous for
eachP and ii) P 7→ fα(x, P ) is convex (actually affine) for
eachx. By the general minimax theorem, the min and the
max in (13) can be swapped, i.e.,

g(α) = max
‖x‖=1

min
P∈P

fα(x, P ) = max
‖x‖=1

gx(α), where

gx(α) , min
P∈P

xT (A(α)TP + PA(α))x

Observe thatg is the pointwise supremum ofgx andgx(α)
is convex inα (actually affine) for eachx. By the weak
rule for pointwise supremum, a subgradient ofg at α is any
element in∂gx∗(α)(α) wherex∗(α) = argmax‖x‖=1 gx(α).
Now, let’s focus on computing the subgradient ofgx∗ . Let

P ∗(α) = argminP∈P λmax(A(α)
TP + PA(α)), which

depends only onα, not onx. Let X∗ = x∗x∗T . Then,

gx∗(α) = 2 trace(P ∗A(α)X∗)

= 2 trace(X∗P ∗(A+
∑

1≤i,j≤N

BK̃Mijαij)).

Since gx∗ is affine in α, the subgradient ofgx∗ coincides
with the gradient taking the following form:

∂ijgx∗(α) = ∇ijgx∗(α) = 2 trace(X∗P ∗BK̃Mij).

We are now ready to introduce the primal-dual gradient
ascent algorithm.

Algorithm 1 Primal-dual gradient ascent algorithm
1: Inputs:

System matrices:A,B,K
2: Initialize:

αk−1 ← 1N×N , step sizes, toleranceǫ,
γk = −∞, γk−1 = 0

3: while γk < 0 or γk − γk−1 > ǫ do
4: Pk ← optimality of LyaD with α = αk−1 ⊲

Update dual variableP : SDP with LMI constraints
5: xk ← eigenvector associated with the largest eigen-

value ofA(αk−1)
TPk + PkA(αk−1), Xk ← xkx

T
k

6: ηij ← trace(XkPkBK̃Mij), η ← η/‖η‖F ⊲
Compute gradient∇g(αk−1)

7: αk ← αk−1 + sη ⊲ Update primal variableα:
gradient ascent

8: αk ← ΠA(αk) ⊲ Projectαk onto relaxed attack set
9: γk−1 ← γk, γk ← xT

k (A(αk)
TPk + PkA(αk))xk ⊲

Compute objective
10: αk−1 ← αk

11: end while
12: Outputs:

optimality γk, αk

Let {γk}k∈N be the sequence of optimal value and
{αk}k∈N be the sequence of optima returned by Algorithm 1.

Theorem 5. A controller K is resilient if γk ↑ γ∗ < 0.
Conversely, it is not resilient only ifγk ↑ 0.

Proof. Givenαk−1, Pk is the optima ofLyaD for α = αk−1

s.t.Pk = P ∗(αk−1), where

P ∗(α) = argmin
P∈P

λmax(A(α)
TP + PA(α)).

Now givenαk−1 andPk, xk is the eigenvector associated
with the largest eigenvalue ofA(αk−1)

TPk + PkA(αk−1).

xk = argmax
‖x‖=1

xT (A(αk−1)
TPk + PkA(αk−1))x.

To evaluate the subgradient ofg, we define a collection of
functionsgx : A → R parameterized byx ∈ {z : ‖z‖ = 1}.

gx(α;P
∗(α)) , xT (A(α)TP ∗(α) + P ∗(α)A(α))x.

Observe thatg(·) is the pointwise maximum ofgx(·; ·) where
the second variable is determined by the first variable and



is uniform in x. By the weak rule for pointwise supremum,
a subgradient ofg at α is any element in∂gx∗(α) where
x∗ is such thatg(α) = gx∗(α). For α = αk−1, we have
g(αk−1) = gxk

(αk−1;Pk) and thus

∂g(αk−1) ∋ ∂gxk
(αk−1;Pk).

Due togx(·; ·) is affine in the first variable,∂gx = ∇gx. Let
η = ∇gxk

(αk−1;Pk) ∈ R
N×N . Then,η ∈ ∂g(αk−1). By

the property of subgradient, fors > 0 small enough,

g(αk) = g(αk−1 + sη) ≥ g(αk−1) + s〈η,ΠTA(αk−1)(η)〉,

where TA(α) denotes the tangent cone ofA at α and
ΠM(·) denotes the projection operator ontoM. For α ∈
int(A), ΠTA(α)(η) = η, ∀η ∈ R

n. For α ∈ ∂(A), 0 ≤
〈η,ΠTA(αk−1)(η)〉 < ‖η‖

2. Thus,

γk = g(αk) ≥ g(αk−1) = γk−1, ∀k ∈ N.

Now that the sequence{γk}k∈N is increasing and upper
bounded by 0, the rest of the proof follows from Theo-
rem 2.

VI. SIMULATION RESULTS

In this section, we illustrate the proposed resilience frame-
work on the IEEE 39-bus system [19]. To obtain the lin-
earized model of the form (3), an object-oriented version of
PST has been used [20]. There areN = 10 buses in the
network-reduced model where bus 1 represents subtransient
salient pole withn1 = 7 states, bus 2-9 represent subtransient
round rotor withni = 8 states fori = 2, · · · , 9 and bus 10
represents subtransient round rotor withn10 = 4 states. Each
bus from 1 to 9 has a scalar wide-area control input, i.e.
mi = 1, i = 1, · · · , 9 and bus 10 has no control, i.e.m10 =
0. The overall system hasn = 75 states andm = 9 control
inputs. The dimension of system matrices are summarized
are follows:A ∈ R

75×75, B ∈ R
75×9,K ∈ R

9×75.
We consider two wide-area controllersK1,K2 ∈ R

9×75

that are relatively centralized as compared with the sparse-
promoting controllerKsp given in [11]. The spectral abscis-
sas (maximal real part of eigenvalues) of closed-loop system
under the three controllers are summarized in Table I. We
can see thatK1,K2 have better closed loop performance
thanKsp since the former two leverage more remote state
information than the latter. However, the better closed-loop
performance comes at the price of exposing vulnerabilities
to cyber attacks. Next, we will analyze the resilience of
K1,K2 under attacks on the communication channels using
the proposed framework.

We first give an overview on the resilience of the two
controllers. In particular, we enumerate all possible single-
and double-channel attack strategies and summarize the
worst attack strategy of each scenario in Table II. We can
see thatK1 is resilient to all the 81 single-channel attack
strategies, among which the worst attack 10→2 still results
in negative spectral abscissa -0.1744. On the other hand,
K2 is not resilient to single-channel attack and there are 2
out of 81 single-channel attack strategies that can destabilize
the system. Furthermore, neitherK1 nor K2 is resilient to

double-channel attack. ButK1 is relatively more resilient
thanK2 asK1 has much less destabilizing double-channel
attack strategies (total of 4) thanK2 (total of 167). Overall,
K1 is more resilient thanK2. In what follows, we quantify
and analyze the resilience under cyber attacks of the two
controllers by first computing their resilience indices and
then identifying critical channels based on the machinery
we developed in this paper.

TABLE I

SPECTRAL ABSCISSA OF CLOSED-LOOP SYSTEM

w/o feedback w/K1 w/ K2 w/ Ksp

maxi Re(λi) -4.9523e-06 -0.19184 -0.19195 -5.8433e-02

TABLE II

SINGLE- AND DOUBLE-CHANNEL ATTACK

total # of destab. worst attack max spec. abs.

1-ch 2-ch 1-ch 2-ch 1-ch 2-ch

K1 0/81 4/3240 10 → 2
5 → 4

6 → 4
-0.1744 0.1268

K2 2/81 167/3240 5 → 4
4 → 1

5 → 4
0.1484 0.6332
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Fig. 1. resilience index under single- and double-channel attack

A. Resilience Index

We compute resilience indices of the two controllers under
single- and double-channel attack using the definition given
in (12) and present them in Fig. 1. The worst three single-
channel attack strategies, corresponding to the smallest three
resilience indices, are highlighted by red dots. We can
see that resilience index ofK1 is larger than that ofK2,
suggestingK1 is more resilient thanK2, as what is expected.
This shows that our resilience index is an effective metric to
quantify resilience.
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Fig. 2. left: convergence of Algorithm 1, right: spectral abscissa under
k-channel attack

B. Identification of Critical Channels

We apply Algorithm 1 to check the resilience criterion
for the two controllers. The sequences of optimal value are
plotted in the left panel of Fig. 2. We can see thatγk ↑ 0
in both cases. By Theorem 5, we know thatK1 and K2

both satisfy the necessary condition for non-resilience. To
identify critical channels, we focus on the optimal relaxed
strategyα∗ obtained at the instancek∗ when the optimal
value firstly reaches 0. We rank the criticality of channels
by the magnitude of their corresponding entry ofα∗, that is
the smallerα∗

ij is, the more critical channelj → i is. We
considerk-channel attacks fork = 1, · · · , 8 generated by
the criticality ranking and plot the resulting spectral abscissa
on the right panel of Fig. 2. Thek-th most critical channel
is labeled on top of the red circle corresponding tok-
channel attack, whose attack set includes the firstk most
critical channels. We can see that the system is driven more
and more unstable under the sequence of criticalk-channel
attack strategy. Therefore, we successfully identify structural
vulnerabilities by the criticality ranking.

VII. C ONCLUSION

This paper proposes a novel framework for resilience
analysis and quantification of wide-area control of power
systems. We formally define the notion of resilience in the
presence of cyber attacks. Resilience conditions are given
in terms of Lyapunov-based optimization problems. A re-
silience index is defined to quantify the degree of resilience.
We develop an efficient numerical algorithm to check the
proposed resilience criterion as well as identify structural
vulnerabilities.
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