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On Resilience Analysis and Quantification for Wide-Area Coftrol of
Power Systems

Yueyun Lu, Chin-Yao Chang, Wei Zhang, Laurentiu D. Mariraindand Antonio J. Conejo

Abstract— Wide-area control is an effective mean to reduce
inter-area oscillations of large power systems. Its deperahce
on communication of remote measurement signals makes the
closed-loop system vulnerable to cyber attacks. This paper
develops a framework to analyze and quantify resilience of
a given wide-area controller under disruptive attacks on ce
tain communication links. Resilience of a given controlleris
measured in terms of closed-loop eigenvalues under the wars
possible attack strategy. The computation of such a resiliece
index is challenging especially for large-scale power syans
due to the discrete nature of the attack strategies. To addss
the challenge, we propose an optimization-based formulain
and a convex relaxation approach to facilitate the computadon.
Conditions under which the relaxation is exact are derived
and an efficient algorithm with guaranteed convergence is
also developed. The proposed framework and the algorithm
allow us to quantify resilience for given wide-area controlers
and also provide sufficient conditions to guarantee closetbop
stability under all possible communication attacks. Simuhtions
are performed on the IEEE 39-bus system to illustrate the
proposed resilience analysis and computation framework.

|I. INTRODUCTION

ric. The main control objective is inter-area oscillation
damping, for which various metrics have been proposed.
In the design of supplementary damping controller (SDC)
using Linear Parameter Varying (LPV) model [5], the met-
ric is given by the signal amplification from disturbance
to output. To design FACTS (Flexible AC Transmission
Systems)-based control facilitated by an aggregate méglel |
the metric is defined on the closed-loop transient response
of inter-area oscillation modes. A mixeH./H., output
feedback control design is studied in [7] where the metric
is concerned with geometric measures of modal control-
lability/observability. Another control objective is ‘abe
stability. For the automatic scheduling and coordinatién o
voltage control devices [8], [9], [10], the metric is compds

of several terms regarding switching cost, penalty on gelta
violations and penalty on circular VAR flow. Typically, the
controllers are designed for a fixed structure, that is tqo say
the communication network has a pre-specified structure.
There has been a recent interest in incorporating communi-
cation structure into the design. Due to the fact that most

With the power grid increasingly working close to itSgptimal control formulations result in controllers wittou

lightly damped, which easily results in instability [1]. ¢al

a sparsity-promoting optimal control scheme is proposed

decentralized controllers, such as power system staislizqn [11] where the/; regularization term in the objective
(PSSs), are designed to suppress local oscillations. Tlagy Mpccounts for the structural design.

interact in an adverse way, if not carefully tuned, that aggr

Another body of literature is concerned with delays and

vates inter-area oscillations. Motivated by the advancemeaijlyres arising in the communication network of WAMS.
in the Wide-Area Measurement System (WAMS) technologyfo deal with network delays, a predictor-based, control
recent research efforts have been focusing on wide-argasign strategy is discussed in [4] to account for a de-

control (WAC) problems [2], [3], [4]. The goal of WAC

layed arrival of feedback signals. Furthermore, an artiitna

is to ach.ievef better C!osed-loop performance, such as-intefpproach is proposed in [12] to exploit the flexibility of
area oscillation damping, by the use of remote measurememmunication network so that the designed controllers are
signals via the Phasor Measurement Units (PMUs) installgf sync with network delays, making the closed-loop system

across the grid.

delay-aware, rather than just delay-tolerant. To counteha

‘One important class of literature on WAC is concemegnpact of communication failures on the closed-loop system
with optimal control design under certain performance mey framework proposed in [13] utilizes a hierarchical set of

Y. Lu, C.-Y. Chang are with the Department of Electrical anmh@®uter
Engineering, The Ohio State University, Columbus, OH 43218A

W. Zhang is with the Department of Electrical and Computegi&eering,
The Ohio State University, Columbus, OH 43210, USA, with mtj@ap-
pointment in the Electricity Infrastructure Group, Paclfiorthwest National
Laboratory, Richland, WA 99354, USA

L. D. Marinovici is with the Electricity Infrastructure Guop, Pacific
Northwest National Laboratory, Richland, WA 99354, USA

A. J. Conejo is with the Departments of Electrical and Coraput
Engineering and the Department of Integrated Systems Eadig, The
Ohio State University, Columbus, OH 43210, USA

This work was funded by Laboratory Directed Research anc&bDpment
funding under the Control of Complex Systems Initiative atifc North-
west National Laboratory, which is operated for the US Depant of En-
ergy by Battelle Memorial Institute under Contract DE-ACDERL01830.

wide-area measurements for feedback and employs channel
switching based on mathematical morphology identification
Existing works on WAC resilience mostly focus on com-
munication delays or failures. There has been limited discu
sion on resilience under adversaries. Due to the increasing
threat on cyber security [14], [15], remote signal transiois
via communication channels is prone to cyber attacks. As
WAC relies heavily on the availability of remote signals,
the integrity of communication network plays a crucial role
in the closed-loop performance. In this paper, we consider
the adversary has disruptive resources [15] that can rigsult
unavailability of the signals transmitted over commurimat
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channels. Such an attack model is commonly referred tohere with slight abuse of notation, represents the de-
as Denial of Service (DoS) attack [16]. To launch a Do%iation of state variables from the nominal operating point
attack, the adversary can jam the communication channel$;; captures the linearized coupling between busemd
compromise devices and prevent them from sending data,(4;; = 0 if there is no coupling), andB;u; is an
attack the routing protocols, flood network traffic, amongntroduced wide-area control action that reacts to desti
others. Our goal is to develop a framework to analyze arflom the nominal operating point based on both local and
guantify resilience under DoS attacks. In particular, wa ai remote state information. We consider wide-area contyol

to design effective ways to determine whether a given widée be composed of local component;,. that depends on
area controller is resilient, and how resilient it is under-c local state information and wide-area component,. that
tain attack strategy. To achieve this, we use network-reducdepends on remote state information in the following form:
linearized power system model under linear feedback cbntro

Such a model is widely used in the literature on WAC Ui = Uiloc + Uiwae = Kii®i + Z Kijzj,  (2)
problems [5], [10], [6], [17], [7]. We first define resiliende JEN j#i

terms of closed-loop spectral abscissa (the largest raal pa o _

of eigenvalues) under the worst possible attack strategg. TWhere Ki; € R4, j € N are feedback gains. The
direct computation of such a resilience metric is challaggi 0¢@l component; i, is an additional correction on top of
especially in large-scale network due to its combinatoridPcal controllers, which can be set to zero if there is no such

nature. We then propose an equivalent optimization-basEH”eCtion- Note that the sparsity pattern of feedback gain

formulation and a convex relaxation approach to facilitat@ajrg[theS theAstrucjt\}Jre of communication network. Defiide
Zi:l my;. Let z = [x{’ Ce ,CC]]\-}]T c R”

the computation. On the theoretic side, we derive a comuitiod~i—1 "> mT: Ao

under which the relaxation is exact. On the practical sice, wANd = [u1,---,uy]" € R™. The overall system can be
develop an efficient algorithm for the relaxed problem witf€scribed by

guaranteed convergence. The algorithm not only provides
resilience criterion but also reveals structural vulnditas.

These results contribute new perspectives to WAC with Ahere A —
emphasis on resilience under DoS communication attaclﬁnxm -
They also allow us to systematically analyze resilience
properties of a given wide-area controller.

i(t) = (A+ BK)x(t), (3)

[Aijli<ij<n € R™" B = diag{B, }1<j<n €

K = [Kijli<ij<n € R™*™ are in block form.
Wide-area control is prone to cyber attacks due to its
dependence on remote measurement signals that can be
Il. PROBLEM FORMULATION compromised by a malicious adversary. In this paper, we

In this paper, we consider a network-reduced power syste r;?der_ DOIS ?ttacks_t[tlg] that fsn r?ts UItk 'g urrw]avallallblh\t/)\/l
model commonly used in the literature [18], [12], [5], [10],0 € signais transmitted over the attacked channels. Ve

i NXxN
[6], [17], [7]. The overall power system is represented b)gescnbe arattack strategyoy o € {0, 1} where entry

an interconnected dynamical system defined on a géagh a;j = 1 means the chan_ne_l from subsystgrto i is mtacF
(V,€), where A’ 2 {1,---, N} denotes the set of busesWhereaSO‘ij = 0 means it is under attack. By assumption,

and & denotes the set of transmissions lines between buséé! :" 1d’ vie N .ttThke set of 3". p(éssf_lbled atts?lckéstrategms
Let z;(t) € R™ be the state variables associated with bu called (pure) attack spacend is defined asiy = {a €

NXN . P ;
i. Depending on the level of details used in the generat 1} t ai = 1,i € N}. The consequence of DoS

model, z; can represent generator phase angle, frequen@},taCk is modeled by infinite delay gf feedback S|.gnals.
guadrature-axis internal emf, state variables of PoweteBys We assume that an attack strategimpacts the wide-area

Stabilizer (PSS) or other local controllers. Typicallycéd control in the following way:
dynamics and local controllers can be described by linear
systems subject to nonlinear coupling terms due to power
exchange with neighboring buses. The overall system can be

written is the following form: This corresponds to the case where the controller will ignor
. the componenfs;;z; if the measurement signal af; does
i = Ao+ _ Z _h(xi’xj)’ not arrive withinjaj certain time period. Such 6'17 reaction
(44) €8 34 scheme is natural and commonly used in the literature [12].
where 4;; € R™*™ js the system matrix that has in- Now we can write the post-attack closed-loop system under
corporated local controls;; is a constant term regarding attack strategyv € Ag as
mechanical power input arf{z;, ;) is a nonlinear function

u; = K“ZCZ + E OéinijZCj.
JEN j#i

representing the power flow between buseand j. By = (A+ BK o a)z, (4)
linearization at a stationary operating point, we arriveaat R .
distributed control system of the following form: where K o o = [Kjja5]1<4, j<n denotes the elementwise

. , multiplication between entries at (scalar) and subblocks
@ = Ay + Z Ajjzj+ B, i€N, (1) of K (matrix). DefineA(a) £ A + BK o . To write the
JEN j#i elementwise multiplicatiom as a matrix multiplication, we



consider the following transformation: control inputs. For simplicity, we assume there is no phajsic

S - ‘ nxnN coupling among the three subsystems. Assume that=
K = diag{K}; }1<j<n €R , where Agp = %Ez,A&% = Ey, Bi = By = By = Iy, 2Ky, =

f([j] = [Kjl ‘ K ‘ ‘ KjNi| ) —Ki3 = Koy = —%Kgg = —K31 = K33 = Ey, K12 =
" 2K30 = K39 = E», Where

o) 1 nXxXn E = an E — .

app = diag{ag;In; hi<j<n € R™" 1 19 9 2 9

Then, K o o = Ka. Furthermore,@ can be written as Let A, and A, be the closed-loop system matrices under
the linear combination of a collection of constant matricesontroller K and its full distributed realization, respectively.
{M;; € RNn>n .1 <4 j < N} with entries ofa as linear

coefficients, i.e., E, E -E
A = p—
a= Z aijMij7 where Ac B (A + BK) B El E2 2E1 ?
1<i,j<N —F, Ey 2F;
1, fp—g=(—-Dn+>I""n, Eir 0 0
M;j(p,q) = andg € {1,2,--- ,n;} - Ag2 A+ BKolg=|0 E, 0
0, otherwise 0 0 2F

Now, the closed-loop system matrik(«) can be written in It is easy to check that both,. and A, are stable. Now con-
the following form that is affine in entries af. sider the attack strategy that targets at the communication

N B . channel from subsystem 3 to 2, i®3; = 0. The post-attack
A@)2A+BKoa=A+ 3 BKMjai. (8) closed-loop system matrix is

1<i,j<N
We consider a wide-area controller to be resilient if Ey  Ey, —Ey
it can survive all possible (pure) attack strategies on the A2 A+BKoa=|E Ey, 0
communication channel.
—-E, By, 2B,

Definition 1. A controller K is calledresilientif system [(4)
is stable for alla € Ag. Conversely, it is calledot resilient
if there exists amx € Ay under which systeni{4) is unstable.

As A, has eigenvalues.1596, 0.6968, —0.8631, —1.3561 +

6.51857, —6.2811, two of which are on the right half of

the plane, the system is no longer stable. We can see

that controller K is vulnerable under the attack on the
In what follows, we will analyze and quantify the re-communication channel — 2.

silience notion given in DefinitioRl1. The first problem to

address is under what condition the resilience of a given ] )
controller is guaranteed. We aim to derive conditions imger !N this section, we develop a Lyapunov-based framework

of optimization problems whose structure can facilitate tht® analyze and quantify resilience under DoS communication
analysis. A further problem is concerned with the degrettacks as formulated in Sectipi II.

of resilience. We want to define a resilience index as A. Resilience Conditions

normalized factor to quantify how resilient a given con-
troller is to certain attack strategies. For the practicqlext,
the goal is to develop an efficient algorithm to check th
proposed resilience conditions as well as identify stnatu
vulnerabilities.

IV. RESILIENCE ANALYSIS AND QUANTIFICATION

A system is stable if and only if all its eigenvalues have
negative real part, and conversely it is unstable if and only
% at least one of its eigenvalues has positive real parteiv

a square matrix, we call the maximum among the real part
of its eigenvalues thepectral abscissaOne direct approach
[1l. A M OTIVATING EXAMPLE for resilience condition is to first seek for the attack stggt

WAC makes use of state information from remote buses f&/at results in the largest spectral abscissa of closegl-loo
improve the closed-loop performance under local decentralyStem matrix and then determine the sign of the largest
ized controllers. One may naturally think that a loss of pargPectral abscissa. For the case where it is negative, thEnsys

of remote measurement signals will only gracefully degradé€mains stable under all attack strategies; while for treeca
closed-loop performance without causing instabilitieswH Where it is positive, there exists at least one attack glyate
ever, such an intuition is unfortunately not true in gendral that drives the system unstable. The direct formulation of

fact, a wide-area controller can become destabilizing und&esilience condition takes the following form:

a loss Qf a small sub_set of communi(_:ation Iinks_. We now PO~ 2 max Re(Amax(A()))
use a simple hypothetical example to illustrate this fact. a€Ao
Consider a networked system in the formh (3) with= If 75 < 0, then wide-area controlleK” can survive all

3 subsystems and each of which has two states and twaossible attacks on the communication channels, otheitvise



inherits structural vulnerabilities. The optimizatioroptem Now, we want to show the statement for the “resilient”
PO exhibits several main challenges: i) It is an unsymmetripart. (=>): AssumeK is resilient. By Definition 1L, all the
eigenvalue problem for which the spectral theorem does nattack strategies are stabilizing, i.dy = A§. Thus,

apply and thus\,,., does not have an explicit expression.
PRy P ’ Yo = max min Apax(A(@)? P + PA(a))

ii) The objective is essentially nonconvex due to the max- aEAs P20
imization of the largest real part of eigenvalues. Typigall _ _

. . . . = Imax —o0 = —0OQ.
eigenvalue optimization problems are formulated as the min Q€A

imization qf the largest elgenvalge or the maximizationhaf t «): On the other hand, i, = —oo, then for alla € Ao,
smallest eigenvalue, both of which are convex. Howeves, thi . T . R
) . : o minpso Amax(A(@)* P+ PA(a)) = —o0, i.e.a € A5. Now
is not the case foP0. iii) The decision variable is binary = . I,
. : ; -7 Ap = A§ and thusK is resilient.
and not continuous, making the problem combinatorial in B .
Next, we want to show the statement for the “not resilient

nature. To address the above challenges, we next refornulat . - L "
the problem via Lyapunov stability thge]zory. part. (=): AssumekK is not resilient. By Definitiof 11,44 #

. . Let o* € AY be a destabilizing attack strategy. Then,
1) A Lyapunov Formulation:Recall that the post-attack 0 o € Ag g 9y

system [(#) is stable if and only if it admits a quadratic Yio = max min Apay (A(a)” P 4+ PA(a))
Lyapunov functionV (z) = z” Pz for some P > 0. The a€A0 P20 .
condition can be written in the form of SDP: There exists a 2 Wil Amax (A(a")" P + PA(a")) 2 0.

P, > 0 such that
(«<): On the other hand, ify;, > 0, then there exists an

A(OL)TPO + POA(O[) < 0. (6) a® € Ag such thatninpto /\maX(A(a“)TP-i-PA(a“)) > 0.
In other words, there exists a destabilizing attack styategl
Conversely, the post-attack systdm (4) is unstable if amgl onthys K is not resilient. 0

if for all P = 0, we can find a unit directional vector . _
ap € {z : |z|| = 1}, where the subscript emphasizes the 2) A Lyapunov RelaxationThe optimal value ofLya0

dependence of the vector df, such that provides an equivalent characterization of resilience as
proved in Theorermll. However, the development of efficient
z5(A(a)"P + PA(a))zp > 0. (7) algorithm for LyaO is highly nontrivial due to its binary

. o decision variables and unbounded optimal value. For the
Inspired by the above Lyapunov characterization, we COfpractical use, we now consider a relaxation Infa0 by

sider the following formulation: embedding the binary variables into closed intefgal] and
N . T upper bounding the largest eigenvalue of positive semidef-
Lya0 g, = BRE i Amax(A(@)” P + PA(a)) inite (P.S.D.) variable. Letd £ {a € [0,1]V*N : a; =

lLi=1,---,NyandP £ {P € S":0= P =< \pl} for
Theorem 1 (Sufficient and Necessary Conditionh con-  some fixed\p > 0.
troller K is resilientif and only if v;, = —oo, and is not

- . . « * A . T
resilientif and only if v}, > 0. LyaP 7pp = maxmin  Amax(A(a)” P+ PA(a))

Proof. We partition the pure attack space into two disjoinBy relaxing the feasible set for the min and constraining the
sets, i.e Ay = Aj U Ag, where Aj is the set of stabilizing one for the maxLyaP provides a surrogate certificate to
attack strategies andly is the set of destabilizing attack 1,ya0, which leads to a sufficient condition for resilience.
strategies. Letv® € A5. Then, systen{4) under is stable, ) . )

that is to say there exis®(a®) = 0 dependent om® such 1heorem 2. A controller K is resilient if vjp < 0.
that A(a®)T P(a®) + P(a®)A(a®) < 0. Then, Conversely, it is not resilient only i} , > 0.

Proof. Since? C {P = 0} and minimization over smaller

: s\T s
Pro Amax(A(0%)7 P + PA(e”)) < set gives larger optimal value,

P>
)\max(A(aS)TCP(as) + cP(a®)A(a®)) = —oc0 asc — 0. 9() 2 Irgnelg )\max(A(a)TP + PA(a))
Let o € AY. Then, system{4) under" is not asymptoti- > min Amax(A(a)T P + PA(a)) £ go(e).
cally stable, which implies that for alP = 0, there exists a Pz0
unit directional vectorrp € {2z : ||z|| = 1} dependent o”  FurthermoreA > A, and maximization over larger set gives
such thatrL(A(a*)T P + PA(a*))zp > 0. Then, larger optimal value,
Amax(A(@)T P + PA(a™)) ~vip = max g(a) > max g(a) > max go(a) =79. (8)
acA acAp acAy
= max z7 (A(a")TP + PA(a"))x . .
z||=1 For the “if” part, assume; , < 0. By relation [8),77, < 0.
>25(A(@")T P + PA(a*))zp >0, VP = 0. It then follows from Theoreriil1 thak™ is resilient. For the

“only if” part, assumeK is not resilient. By Theorerfi 1,
Thus, minpsg Amax(A(@®)T P + PA(a%)) > 0. vio = 0. Then,v; p > 0 by relation [(8). O



Recall that for a symmetric matri/ € S, the largest
eigenvalue ofM can be written as\yax(M) min{¢ :
M =< tI}. Since the inner problem dLyaP is the min-

imization of the largest eigenvalue, it can be equivalentl

formulated in the form of SDP program. Let: A — R
be the optimal value of the inner minimization (ov@} of
LyaP defined as

9(e) £ min Amax(A(0)" P + PA()).

9)
Then for any fixedx € A, g(«) is the optimal value of the
following SDP:
=min ¢
s.t. A(@)"P+ PA(a) < tI
PeP

Consider the following optimization problem.

g(a@)
(10)

LyaD ~ip 2 miﬁ t
ac
s.t. A(@)TP+ PA(a) < tI

PeP

Note that the first constraint ikyaD is a Bilinear Matrix
Inequality (BMI) in decision variable®, o andt. Next, we
will show that the dual probleriyaD is equivalent to the
primal problemLyaP.

Theorem 3. v5 p =7} p-

Proof. Let o}, be the optima oLyaP. Theny; » = g(a}),
for which there existsPj;, € P such thatA(ap)? Pp +
PiA(ap) = v;pl. For the <" part, it follows from the
triple (ap, Pp,~vip) being a feasible solution oLyaD.
For the >" part, consider the BMI constraint df.yaD.
For a}, € A, there existsP € P such thatA(a})” P +
PA(a}) = ;i pl. By the equivalent characterization gffcv)

given in SDP[(ID)g(ap) < ~v;p and thusy; p, > ~ip. O

To take one step further, a natural question to ask i

when the relaxed problerhyaP is “exact” in terms of

resilience. In other words, whether there are cases fortwhic

solving LyaP results insufficient and necessagondition.

Lemma 1. Under Assumptioll1, if(«) < 0, Vo € Ay, then
g(a) < 0,Va € A; and conversely, ila € A s.t. g(a) > 0,
then3ag € Ay S.t. g(ao) > 0.

Proof. SinceA is a polytope with vertex sed, it is enough
to show the claim that for any;, s € Ay, 0 € [0, 1], there
existsk1, ko > 0 such that

g(Baq + (1 — O)az) < kig(aq) + raglas).

Assume that the claim holds. Consides € A whereay =
> ared, Oray for somedy, € [0,1],>°, 0 = 1. If g(ax) <
0,Vay, € Ay, theng(ap) < 0. On the other hand, if(ay) >
0, theng(ay) > 0 for someqy € Ay. Now we are left to
show the claim.

For the ease of notation, g, P) £ \pax(A(a)T P +
PA(a)) in the rest of the proof. Letv;,as € Ag,0 €
[0,1], P, = argminpcp f(ag, P), k = 1,2. Considerag =
By + (1 — 0)as. Recall thatA(«) defined in [(b) is affine in
a. Then,A(ag) =0A(a1)+(1—0)A(az). By the convexity
of Amax(*) : 8™ = R,

f(ag, P) < 0f(ar, P)+ (1 —0)f(az, P) £ he(P).

By assumption,P,, N Py, # 0. Let Py € Py, N Pa,.
Since the Lyapunov spack {11) is defined by Linear Matrix
Inequality (LMI), the setsP,,,k = 1,2 are convex and
so is their intersectiorP,, N P,,. Then,3t; € (0,1) s.t.

P = t1P1 + (1 — t1)Py € Pa,. Similarly, 3t; € (0,1)

St. Py = toPy + (1 — t2)Py € Pqo,- As Py € P,,, We
have f (a1, Py) < 0. By the convexity off(«, P) in P for
any fixeda, f(Oéh Pll) < tlf(ah Pl) + (1 —tl)f(al, PQ) <
ti1f(aq, Py). Similarly, f(az, P3) < t2f (a2, P2). Notice that
the functionhy : P — R parameterized by < [0,1] is
the sum of two convex functions and thus is also convex.
ConsiderP = 8P| + (1 — 3)Py for somef € [0,1]. Then,

ho(P) < 05 f(a, P{) +0(1 — B) f(a1, Py)+
(1= 0)Bf (a2, Pi) + (1 = 0)(1 = B) f (2, P).
Since P| € P,,, P, € Pa, by construction,f (a1, Pj)

0 and f(az, P{) < 0. We prove the claim thag(ap)
k1g(on) + kog(az) wherek; = 65t andke = (1 — )(1

(I VANIVAN

s

The answer is yes under some assumption. We first defi

Lyapunov spaceP, C P for each pure attack strategy With Lemmé&, it is easy to obtain the following sufficient

a € Ay as
Po2{PeP:A()' P+ PA() <0,P#0}. (11)

To ensure the exactness of the relaxed probleggaP, we

and necessary condition.

Theorem 4 (Sufficient and Necessary Condition.llynder
Assumptiofill, a controlleX is resilientif and only if v; p <
0, and it is not resilientf and only if v , > 0.

require the intersection of Lyapunov spaces of any two pure

attack strategies to be nonempty.

Assumption 1. For anyay, as € Ay, Pay N Pa, # 0.

B. Resilience Index

The conditions derived in Sectidn TMFA allow us to de-
termine whether a given wide-area controller is resilient t

The above assumption ensures the sign preserving pragl possible attack strategies. A natural additional qoess

erty of the functiong defined in [[®) in the sense thatgfis

strictly negative on the vertex sety, it is strictly negative
on the convex hull of4,, i.e. the relaxed attack spacé

On the other hand, i fails to be strictly negative o, it

fails to be strictly negative otdy.

how resilient the controller is to certain attack stratsgighis
calls for a proper definition of a normalized index to quantif
the degree of resilience. Denoted by : Ay — [0,1] the
resilience index of controllef on the pure attack space.
We considerk to be normalized with respect to the nominal



condition. In particulary . needs to satisfy the following two P*(a) = argminpep Amax(A(2)? P + PA(a)), which
conditions: i) It takes value 1 under the nominal conditiordepends only omy, not onz. Let X* = z*z*”. Then,

when K is intact, i.e.rg(1yxn) = 1; i) It takes value 0
under destabilizing attack strategies, irg(«) = 0 for all
a € Ag under which systeni{4) is unstable.

Recall thatg : A — R defined in [[®) is the optimal

gu+ (@) = 2trace(P*A(a)X™)

= 2trace(X"P*(A + Z BE M;ju;)).
1<i,j<N

value of the inner minimization (oveP) of the relaxed Since g, is affine in o, the subgradient of,- coincides

problemLyaP. In fact, the mapping defines a performance
metric for stability in the sense that for amy € A, g(a)

is the fastest decreasing rate a Lyapunov function carelidat
could achieve along the trajectory af(«). This naturally
leads to a definition of resilience index satisfying the abova
two conditions. Guaranteed by the design objective, the

with the gradient taking the following form:

Dijga- (@) = Vijga- (o) = 2trace(X*P*BK M,;).

We are now ready to introduce the primal-dual gradient
scent algorithm.

system under the nominal condition has better stabilit}&I

gorithm 1 Primal-dual gradient ascent algorithm

performance than the one under attack. Since the nominal
condition corresponds @ = 1, We have i)g(1yxn) < 1
g(a),Ya € Ap. On the other hand, we know from the
proof of Theorenil that iiy(«) > 0 for any destabilizing
a € Ay. Based on i) and ii), we define resilience index
rr + Ao — [0,1] of controller K on the pure attack space 4
Ap as follows.

2

0
9(a)/g(1nxnN)

if g(e) >0

) (12
if g(a) <0

T () )

The definition in [IR2) captures stability degradation of con 6:

troller K under different attack strategies. It is easy to
see that the smaller the indeX («) is, the less resilient
controller K is to attack strategw, or in other words, the

more disruptiona will incur on K. For the two boundary 8:

cases, ifrx (a) = 0, controller K can be destabilized by, 9:
while if rx(a) = 1, a has no effect on controllek’.

10:

V. A PATH-FOLLOWING PRIMAL-DUAL ALGORITHM 11

The goal of this section is to solve the relaxed problem2
LyaP. Notice thatLyaP takes scalar continuous decision

4:

5:

7.

. Inputs:

System matricesA, B, K

. Initialize:

ap_1 — 1N step sizes, tolerancee,
Yk = —00,Yk—1 =0
while v, < 0 or v, —vx—1 > € do
Py, + optimality of LyaD with o = a1
Update dual variablé®: SDP with LMI constraints
x) < eigenvector associated with the largest eigen-
value OfA(ak_l)TPk + PNkA(ak—l)y X xkx;{
1ij < trace(X, P BKM;;),n < n/|nllr
Compute gradienVg(ay—1)
Qg — Qg1 + SN > Update primal variable:
gradient ascent
ay < I 4(ax) > Projectay onto relaxed attack set
Vi—1 VsV < 2 (A(ow)T Py + PoA(ay))zp >
Compute objective
Qp—1 < O
: end while
: Outputs:
optimality v, a

>

>

variablesw;;, i # j and P.S.D. matrix variabl®. By the def-
inition of ¢ given in [9),LyaP is actually the maximization
of g on the polytoped. A natural attempt is to apply gradient
ascent algorithm. The key step of gradient-based algorith
is to compute the subgradient of the objective, thalgdor
the case here. Lef, (z, P) £ 27 (A(a)T P + PA(a))x.

p). (13)

Notice that i)z — f,(x, P) is concave and continuous for
eachP and ii) P — f.(z, P) is convex (actually affine) for
eachz. By the general minimax theorem, the min and th
max in [I3) can be swapped, i.e.,

= 1 a.
9(0) = il s Jel iy

= ma i P) = ma where
g(a) \fﬁ\flglé%f“(x’ ) \\Iﬁ\iig“(o‘)’

A . T T
gz(a) = min (A(a)” P+ PA())x o
Observe thay is the pointwise supremum af, and g, («)
is convex ina (actually affine) for eache. By the weak
rule for pointwise supremum, a subgradienycdt « is any
element indg,-(q) (o) wherez*(a) = arg max| (=1 g ().
Now, let’'s focus on computing the subgradientgf. Let

Let {vx}ren be the sequence of optimal value and
ina
Theorem 5. A controller K is resilient if v, T v* < 0.
Conversely, it is not resilient only i 1 0.

k Hken be the sequence of optima returned by Algorifim 1.

Proof. Givenay_1, Py is the optima ofLyaD for o = a1

. P, = P*(ay—1), where

P*() = argmin Apax (A(2)T P + PA(a)).
PeP

Now given a1 and Py, x is the eigenvector associated
with the largest eigenvalue of (o, _1)T P + P A(ag_1).

Ty = arg max IT(A(ozk,l)TPk + P A(ag—1))x.
llzll=1

evaluate the subgradient gf we define a collection of

functionsg, : A — R parameterized by € {z : ||z|| = 1}.

gz (a; P*()) & xT(A(a)TP* () + P*(a)A())z.

Observe thay(-) is the pointwise maximum af,.(-; -) where
the second variable is determined by the first variable and



is uniform inz. By the weak rule for pointwise supremum,double-channel attack. Buk’; is relatively more resilient

a subgradient ofy at « is any element idg,«(«) where than K> as K; has much less destabilizing double-channel

x* is such thatg(a) = g.+(). For @« = «ax—1, we have attack strategies (total of 4) thdi, (total of 167). Overall,

glak—1) = gz, (ax—1; Px) and thus K is more resilient thard<,. In what follows, we quantify

5 5 p and analyze the resilience under cyber attacks of the two
9(0k-1) 3 0a, (k-1 P). controllers by first computing their resilience indices and

Due tog.(-;-) is affine in the first variable)g, = Vg,. Let then identifying critical channels based on the machinery

n = Vs, (ak_1; P) € RN*N_ Then,n € dg(ax—_1). By we developed in this paper.

the property of subgradient, far> 0 small enough, TABLE |

g(ak) = g(oékf1 + 577) > g(akq) + 5<77, HTA(ak,g(n)% SPECTRAL ABSCISSA OF CLOSEELOOP SYSTEM

where T4(a) denotes the tangent cone of at o and

ITy(-) denotes the projection operator ontd. For a €

int(A), Ty @) (n) = 7,90 € R™ Fora € d(A), 0 < max; Re()\;) -4.9523e-06  -0.19184 -0.19195 -5.8433e-02
) Ala ) . 1 —

(0,174 (o) (m)) < [Inl[. Thus,

i = glag) > glag—1) = Yk—1,Vk € N. TABLE Il
SINGLE- AND DOUBLE-CHANNEL ATTACK

w/o feedback  w/K; w/ Ko w/ Ksp

Now that the sequencéyi}ren iS increasing and upper

bounded by 0, the rest of the proof follows from Theo- total # of destab. worst attack max spec. abs.
remi2. = 1-ch 2-ch 1-ch 2-ch 1-ch 2-ch
VI. SIMULATION RESULTS 54
In this section, we illustrate the proposed resilience am Ky ol 43240 =2y 0.1744 - 0.1268
work on the IEEE 39-bus system [19]. To obtain the lin- 41
earized model of the forni{3), an object-oriented version ofz 281 167/3240 ot ey 0.1484  0.6332
PST has been used [20]. There a¥e= 10 buses in the
network-reduced model where bus 1 represents subtv~rninnt
salient pole withn, = 7 states, bus 2-9 represent subtr K, under single-ch attack . under single-ch attack
round rotor withn; = 8 states fori = 2,--- ,9 and bus ! v
represents subtransient round rotor witly = 4 states. E 0.98 08 (
bus from 1 to 9 has a scalar wide-area control inj 0.6 06 052
m; =1,1=1,---,9 and bus 10 has no control, i.e.¢ 008 10->2 6->7 04
0. The overall system has = 75 states andn = 9 con 5->4
inputs. The dimension of system matrices are sum o ° 051 o
are follows: A € R™5%7 B ¢ R75%9 K ¢ RI*75, 09 o m e R Y T
We consider two wide-area controllefs;, Ko € R”
that are relatively centralized as compared with the K, under double-ch attack K, under double-ch attack
promoting controllet, given in [11]. The spectral ak ' ki '
sas (maximal real part of eigenvalues) of closed-loop 08 08
under the three controllers are summarized in Tabl 06 06
can see thatK;, K5 have better closed loop perfort o4 04
than K, since the former two leverage more remot o o
information than the latter. However, the better clos:

performance comes at the price of exposing vulner 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
to cyber attacks. Next, we will analyze the resilie
K4, Ko under attacks on the communication channels using
the proposed framework.

We first give an overview on the resilience of the twoA- Resilience Index
controllers. In particular, we enumerate all possible lsing  We compute resilience indices of the two controllers under
and double-channel attack strategies and summarize thiegle- and double-channel attack using the definitionmgive
worst attack strategy of each scenario in Tdble Il. We caim (I2) and present them in Figl 1. The worst three single-
see thatk; is resilient to all the 81 single-channel attackchannel attack strategies, corresponding to the smaliesst t
strategies, among which the worst attack-4® still results resilience indices, are highlighted by red dots. We can
in negative spectral abscissa -0.1744. On the other harse that resilience index df; is larger than that ofis,
K5 is not resilient to single-channel attack and there are uggestingy; is more resilient thatk’,, as what is expected.
out of 81 single-channel attack strategies that can déigebi This shows that our resilience index is an effective metric t
the system. Furthermore, neith&f, nor K, is resilient to quantify resilience.

Fig. 1. resilience index under single- and double-chanttatia
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B. lIdentification of Critical Channels

We apply Algorithm[l to check the resilience criterion

left: convergence of Algorithrl 1, right: spectralsalssa under

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

for the two controllers. The sequences of optimal value are

plotted in the left panel of Fid.12. We can see thatt 0
in both cases. By Theorefd 5, we know th& and K,

both satisfy the necessary condition for non-resilienae. Tj12]
identify critical channels, we focus on the optimal relaxed
strategya® obtained at the instanck* when the optimal
value firstly reaches 0. We rank the criticality of channels
by the magnitude of their corresponding entryodf, that is
the smallera;; is, the more critical channgl — 4 is. We
considerk-channel attacks fok = 1,---,8 generated by
the criticality ranking and plot the resulting spectral cibsa
on the right panel of Fid.]2. The-th most critical channel
is labeled on top of the red circle corresponding ite
channel attack, whose attack set includes the firshost
critical channels. We can see that the system is driven mofe,
and more unstable under the sequence of criicahannel
attack strategy. Therefore, we successfully identifycstrral

vulnerabilities by the criticality ranking.

VIl. CONCLUSION

. - gg]
This paper proposes a novel framework for resilienc
analysis and quantification of wide-area control of powel20]

[11]

[15]

[16]

systems. We formally define the notion of resilience in the
presence of cyber attacks. Resilience conditions are given

in terms of Lyapunov-based optimization problems. A re-
silience index is defined to quantify the degree of resienc
We develop an efficient numerical algorithm to check the
proposed resilience criterion as well as identify struaitur

vulnerabilities.
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