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To Observe or Not to Observe: Queuing Game Framework for Urban Parking

Lillian J. Ratliff, Chase Dowling, Eric Mazumdar, Baosen Zhang

Abstract— We model parking in urban centers as a set of
parallel queues and overlay a game theoretic structure that
allows us to compare the user-selected (Nash) equilibrium to
the socially optimal equilibrium. We model arriving drivers as
utility maximizers and consider the game in which observing
the queue length is free as well as the game in which drivers
must pay to observe the queue length. In both games, drivers
must decide between balking and joining. We compare the Nash
induced welfare to the socially optimal welfare. We find that
gains to welfare do not require full information penetration—
meaning, for social welfare to increase, not everyone needs
to pay to observe. Through simulation, we explore a more
complex scenario where drivers decide based the queueing
game whether or not to enter a collection of queues over a
network. We examine the occupancy—congestion relationship,
an important relationship for determining the impact of parking
resources on overall traffic congestion. Our simulated models
use parameters informed by real-world data collected by the
Seattle Department of Transportation.

I. INTRODUCTION

An efficient transportation system is an integral part of a
well-functioning urban municipality. Yet there is no shortage
of news articles and scientific reports showing these systems,
sometimes decades old, are being stressed to their limits [1],
[2]. In recent years, congestion of surface streets is becoming
increasingly severe and is a major bottleneck of sustainable
urban growth [3]. In addition to lost productivity, there are
significant health and environmental issues associated with
unnecessary congestion [4], [5].

A significant amount—up to 40% in U.S. cities—of all
traffic on arterials in urban areas stems from drivers circling
while looking for parking [6], [7]. This creates an unique
opportunity for municipalities to mitigate congestion. Con-
sequently, the problem of smart parking has received signif-
icant attention from both academia and government organi-
zations. Numerous forecasting models have been developed
to predict parking availability at various timescales [8]—[11]
and different control stategies have been proposed to keep
parking occupancy at target levels [8]-[11].

Pricing, both static and dynamic, is the main tool used
to incentivize drivers and control the parking system. A
major difficulty in developing effective pricing strategies is
the asymmetry of information between parking managers
and drivers. Municipal planners do not know the complex

L. J. Ratliff, C. Dowling, and B. Zhang with Department Electrical
Engineering, University of Washington, Seattle, WA, USA {ratliffl,
cdowling, zhangbao}@uw.edu

Eric Mazumdar is with the Department of Electrical Engineering and
Computer Sciences at the University of California, Berkeley, Berkeley, CA,
USA mazumdar@eecs.berkeley.edu

This work is supported by NSF FORCES (Foundations Of Resilient
Cyber-physical Systems) CNS-1239166

preferences of drivers, and drivers do not known the state
of the system. Therefore price signals are often ignored by
the drivers, leading to inefficiencies on both sides [12]. A
case in point is the parking pilot study, SFpark, conducted
by the San Francisco Municipal Transportation Agency [13].
In this study drivers changed their behavior only after the
second price adjustment because of a spike in awareness
of the program [14]. It is also interesting that as coin-fed
meters are replaced by smarter meters and smartphone apps,
people are actually less cognizant of the cost of parking [15],
[16]. This motivates a key focus of this paper: in contrast
to considering pricing as the main incentive, we study how
information access impacts behaviors of drivers.

We model parking as system of parallel queues and impose
a game theoretic structure on them. Each of the queues
represents a street blockface along which drivers can park.
The queue itself is abstractly modeled as the roadways and
circling behavior is the process of queueing. The parking
spots along blockfaces are the servers in the queue model.
Drivers are modeled as utility maximizers deciding whether
to park based on the reward for parking versus its cost. We
consider two game settings: in the first, drivers observe the
queue length and thus, make an informed decision as to
whether they should join the queue to find parking or balk,
meaning they opt-out of parking and perhaps choose another
mode of transit. In the second case, drivers do not observe
a priori the queue length and thus choose to balk, join with
out observing, or pay to observe the queue after which they
join or balk as in the setting of the first game.

We characterize the Nash equilibrium in both cases to the
socially optimal solution and show that there are inefficien-
cies. We develop a simulation tool that investigates how dif-
ferent parameter combinations such as network topology and
utilization (occupancy) can impact wait time (congestion)
and welfare of drivers[ﬂ In particular, we show that in the
information limited game, the Nash equilibrium can be very
far from the social optimal, especially when the utilization
factor is high (e.g. a busy downtown district). This suggests
that significant improvements in waiting time and congestion
levels can be achieved.

The remainder the paper is organized as follows. In
Section[[T} we outline the basic queuing framework applied to
urban parking. In Sections [[TI] and we describe the free
observation and costly observation queuing game, respec-
tively. In the former, we examine congestion—limited balking
rates and the impact on social welfare and in both sections,
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we discuss on-street versus off-street parking. We present a
queue—flow network model in Section [V| and show through
simulations the utilization and wait time for different Nash
and socially optimal equilibria. We present a comparative
analysis for a variety of parameter combinations. Finally, in
Section |VI, we make concluding remarks and discuss future
directions.

II. QUEUEING FRAMEWORK

We use an M/M/c/n queue to represent a collection of
block faces that collectively have an on-street parking supply
of ¢ > 1 (for background on queues see e.g. [17]). The num-
ber n represents the maximum number of customers in the
system including those customers being served (i.e. parked)
and those circling looking for parking. We make the follow-
ing assumptions: The arriving customers form a stationary
Poisson process with mean arrival rate A > 0. The time that
a customer parks for is assumed to be exponential, which
we model as the ¢ > 1 parking spots serving customers with
mean service rate ;1 > 0. Waiting customers are severed in
the order of their arrival.

Using a standard framework for an M/M/c/n queue, we
can calcuate the stationary probability distribution for the
queue length. Define the traffic intensity p = ﬁ and let
Qn(t) be the number of customers in the system at time
t. Then {Q,(t)}+>0 is a continuous time, ergodic Markov
chain with state space {0, ...,n}. The stationary probability
distribution of having k customers in the system is given by

pr(n) = setg, 0 <k <n, ()
where .
(po)” 0<k<c—1
d = kL. - = 2)
k { (pcc!) e k> e

We sometimes refer the number of the customers in the queue
as the state of the system. Let Z;, = X + Y; be a random
variable that measures the time spent in the system when the
state of the system is k and where X is a random variable
representing the service time and Yj is a random variable
representing the time that the customer spends in the queue.
The random variables X and Y} are independent, X has an
exponential distribution with density f(t) = pe **, and Y
(for k > s) has a gamma distribution with density [18]

gi(t) =
If h(t) is the waiting cost to a customer spending ¢ time units
in the system, then the expected waiting cost to a customer
who arrives and finds the system in state k is given by
E[h(Z)]. While we can consider non-linear waiting cost
functions, for simplicity we will assume that it is a linear
function with constant waiting cost parameter C,, > 0,
ie. h(t) = Cyt.

In the following two sections, we consider two game
theoretic formulations overlaid on the queuing system. First,
we consider the game in which arriving customers can view
the queue length and then decide whether or not to join or
balk. We refer to this game as the free observation queue

th-cemcnt, (3)

game. This setting represents a ideal situation where the
entire state state information is available to all of the users,
which is not currently achievable in practice. But this game
is easy to analyze and serves as a useful comparison to the
second game.

In the second game, we consider the setting where arriving
customers do not a priori know the queue length. Instead,
they choose to either balk, join without knowing the queue
length, or pay a price to observe the queue after which they
balk or join. We refer to this game as the costly observation
queue game. In both these games, we study the impact of the
maximum number of customers in the system on efficiency
and examine the difference between the socially optimal and
the user-selected equilibrium.

III. FREE OBSERVATION QUEUING GAME

We first consider the observable queue game in which
arriving customers know the queue length and choose to join
by maximizing their utility which is a function of the reward
for having parked and the cost of circling and paying for
parking. The nominal expected utility of an arriving customer
to the system in state k£ is a, = R — wy where R > 0 is the
reward for parking. The fotal expected utility of a customer
arriving to the system in state k is given by

B =y, — G =R - Gt G (4)
where C,, is the cost for parking. If the customer balks, the
expected utility is zero.

It can be easily verified that the sequence {ay, } is decreas-
ing and as is {8 }. Furthermore, the optimal strategy for a
customer finding the queue in state k and deciding whether
or not to join by maximizing their expected utility is to join
the queue if and only if 5; > 0. In this case, if the decision
to join the queue depends on the customer optimizing their
individual utility, then the system will be a M/M/c/n;, where

my = | R | 5)

is the balking level and is determined by solving 3,,_1 >
0 > By,. Let x denote the strategy of an arriving customer
and suppose =z € {j,b} where j represents joining and
b represents balking. Hence, the equilibrium strategy for

customers is )
Js

xTr =
{ b,

The socially optimal strategy, on the other hand, is deter-
mined by maximizing social welfare. For a M/M/c/n queue,
the total expected utility per unit time obtained by the
customers in the system is given by

Usw( ) AZk Opk( ) k (7)

0<k<mny
otherwise

(6)

Theorem 1 ( [19, Theorem 1]): There exists ng, maxi-
mizing Uy, (n) and ns, < nyp so that Usy, (np) < Usy (nso).
A consequence of the above theorem is that the socially
optimal utility per customer is greater than the selfishly



obtained one and equality only holds because the function
Usw(n) is defined over R>¢. Ideally we would like to adjust
the utility of customers to close the gap between the social
optimum and the user-selected equilibrium. In order to obtain
the socially optimal balking rate n,, we can adjust the price
for parking C,, = C), + AC,.

Proposition 1: The pricing mechanism ép that achieves
the socially optimal balking level ng, is determined by
solving a,,., < Cp/p < a1

Proof: The goal is to find AC), such that n,, is the
balking rate. Let the reward under the new price of parking
C, =C,+ AC, be

B=R— ngcc-&-l) _ Cp-&-MACp ®)

We know that ns, will be the balking rate if and only if
Bnyo—1 = 0> By, . Hence,

Cp+AC,

3 — R _ Culneo-1) _ .
Bn5071 =R e m >0 (9)
> R — Gulse CptACy (10)
He 7
Rearranging, we get o, < ép/u < ., 1. -

A. Congestion—Limited Balking Rate

Instead of adjusting the price of parking to close the
gap between the socially optimal solution and the user—
selected equilibrium, consider the problem of designing the
balking rate to achieve a particular level of parking-related
congestion. For many municipals, congestion would be the
main objective.

In order to meet this objective, we can adjust the price of
parking by selecting AC), in our game theoretic framework
so that the balking level ny, being the number of cars in the
queuing system after which arriving customers decide to balk
instead of join, is set to be the desired number of vehicles
equaling 10% of the total volume over the period of interest
which we denote by n;.

Proposition 2: The pricing mechanism C’p that achieves
the congestion—limited balking level n.; is determined by
solving a,., < Cp/p < 1.

The above proposition is proved in the same way as Propo-
sition [T} hence, we omit it.

Note that the value of n., may not be equal to n,
since the objectives that produce these values may not be
aligned. Thus, designing the price of parking to maintain
a certain level of congestion in a city may not be socially
optimal. Similar results have been shown in the classical
queuing game literature with regards to designing a toll that
maximizes revenue (see, e.g., [19, Section 6]).

Proposition 3: Whether or not ny < ng, Or g > Ngo,
Usw(ne) < Usgy(nso). Furthermore, if ny < ng,, then
Usw (ncl) = Usw (nso)~
The proof of the above proposition is due to the fact that
Ngo 1S the maximizer of Us,,. It tells us that selecting the
balking rate to limit congestion may result in a decrease in
social welfare.

Proposition 4: If n. < ny, where ny is the user-selected
balking rate, then Ugy,(np) < Ugy(ne) and vice versa.

Proof: The result is implied by the fact that that Us,, (n)
is unimodal, i.e. Ugy(n) — Ugy(n — 1) < 0 implies that
Usw(n + 1) — Usw(n) < 0. Barring a little algebra, this is
almost trivially true since {fj} is a decreasing sequence;
indeed,

Usw(n +1) = Usw(n) :pg:: (Usw(n) = Usw(n — 1))
— 5= (Bo1 — Bn) (1n
Since Ugyy(n) — Ugyy(n — 1) < 0 by assumption and {f} is
decreasing, Uy, is unimodal. ]

The preceding propositions tell us that we can design the
balking level by adjusting the price to match a particular
desired level of congestion, we must be careful about how
this level of congestion is selected since will impact social
welfare. In particular, selecting n.; will result in a decrease
in the social welfare as compared to the socially optimal
balking rate; on the other hand, it can result in an increase
in social welfare if selected to be less than the user-selected
balking rate ny.

B. Example: Off-Street vs. On-Street Parking

Suppose customers have two alternatives. They can either
choose on-street parking by selecting to enter a M/M/c/n
queue as above with service time 1/ or they can choose off-
street parking which we model as a M/M/oco queue (infinitely
available spots) with expected service time per customer 1/ .
We assume the reward R is the same for both cases. The
utility for off-street parking is

C,
Uopy = R— =

12)
where C,ry is the cost for off-street parking per unit time.
The utility for joining the on-street parking queue is

U (k’) —R— Con _ Cu(k+1)
on m o

13)
where C,,, is the cost per unit time for on-street parking, C',
is the cost per unit time for waiting in the queue (circling
for parking), and k is the state of the queue. In essence,
we consider that, when a customer balks, they choose off-
street parking which represents the outside option. Hence,
we can determine the rate at which people choose off-street
in the same way as we determined the balking rate above. In
particular, we find the off-street balking level n, ¢ for which
Uon(nops —1) > Usps > Usn(nogys). Hence, we have that

_ Corr—Con
Noff = \‘CTJ .

In the sequel we will explore this example in more detail.

(14)

IV. COSTLY OBSERVATION QUEUING GAME

We now relax the above framework so that arriving
customers do not observe the queue length without paying
a price. More specifically, suppose now that we have a
M/M/c/n queue and that when customers arrive they can
either balk, join, or pay a cost to observe the queue length
after which they decide to balk or join. For on-street parking
where there is an smart phone app to which a customer can
pay a subscription fee to gain access to information or choose



not to, this model makes sense. We take the theoretical model
from [20].

Assume that each customer chooses to observe the queue
with probability P, at a cost C,, balks without observing
with probability P,, and joins with out observing with
probability P;. We use the notation P = (P,, P, Pj) € A(3)
for the strategy of arriving drivers where Ay = {P =
(P, Py, P;)| P, > 0,i € {0,b,5}, P,+ P;j+ P, =1} is the
strategy space, i.e. the 2—simplex. The effective arrival rate
for this queue is then

T (].—.Pb))\7 k < ny
A= { P k> (15)
where k is the queue length and n, = L%J is the

selfish balking level for the observable case. of course, as
before, we assume that n; > 1 to avoid the trivial solution
where P, = 1 is a dominant strategy. In addition, we assume
n > np > c since if ¢ < n < ny then users would be forced
to balk n and we would just replace n; in the above equations
with n. The only other case is n < ¢ < n; and it is non-
sensical since c is the number of servers. We remark that if
C, = 0, then the game reduces to the observable game since
P, = 1. Hence, we investigate the case when C, > 0.

The stationary probability distribution is as before (see
(1)) except we use the effective traffic intensity p = %ﬂ In
particular, we write the balance equations

(1= Py)A\py (k+ Dpppyq, 0<k<c (16)
(1 =Py py = cuppyq, c<k<my (17)
Pidpg = cppir, e <k <n (18)
and we let n = Pjp, £ = (1 — Py)p. Then,
cteh
o P0 s 0<k<c

pR=9q S, c<k<m (19)

N e Spy, np <k <n

cl( nb 1C£k

so that
Ny 1_pn—1-"np -1
Py = ( 5 C!C 771777 )
(20)

Note that we now use the more compact notation py(n) = U
and similarly, we use the notation U(n) = U™ for utilities.

Once the customer knows the queue length then their
reward is the same as in the observable case, i.e. B =
R — wy, — C,,/ 1. However, since they do not know a priori
the queue length, the customer must make the decision as to
joining, balking, or observing by maximizing their expected
utility.

The utility for observing the queue is given by

Uy (P) = 3% v — C.
=5 (n-) 4 o )
o (mh 2o 4 e sew)] g,
(22)

21

the utility for joining without observing is given by

UP(P) = Y320 i B (23)
=i [ (R-G) (Sim 5 + it <5
ik e ) - (mh S
Ty S ) e S|
(24)

and the utility for balking is U]'(P) = 0.

Proposition 5: A symmetric, mixed Nash equilibrium ex-
ists for the game (Uy', Uy, U}').

Proof: The above proposition is a direct consequence
of Nash’s result for finite games [21] that states for any finite
game there exists a mixed Nash equilibrium. [ ]
On the other hand, if we were to consider a queue where
n — oo (i.e. with an infinite number of players), then Nash’s
result would no longer hold. This framework is explored in
the working paper [20].

Customers are assumed to be homogeneous and thus, we
seek a symmetric equilibrium which means that it is a best
response against itself. Intuitively, depending on the relative
values of the utility functions U",U;" and U;', we can say
that an equilibrium (P,, P;, P,) will satisfy the following:

P,=1,P,=P; =0, U">max{ P Uy (25a)
Py=1,P,=P; =0, Up>max{U]},U'} (25b)
P;j=1,P, =P =0, U>max{U},U'} (25¢)
P,=0,0<P;,P, <1, Up=0r>U0p (25d)
P;=0,0< P, P <1, Uy =Uy>Up (25¢)
P,=0,0< P;,P, <1, up =0y >U (25%)
0< P, P;,P, <1, Uy =07 =Uy (25g)

We adapt the best response algorithm in [20] to the case
where the utility of the outside option Up—which may be
balking to other modes of transit or selecting off—street
parking—is not necessarily non-zero. In particular, we use
the above equations to create an algorithm that allows us to
compute the best response (see Algorithm 1). In Algorithm 1,
g,0 >0and v € (0,1). Ase,d — 0, the algorithm converges
to a Nash equilibrium since its out put will approach the
solution to (25g). We conjecture that the Nash equilibrium is
unique and empirically observe this in the simulations. This
conjecture is true when the number of players is infinite and
Uy, =0 [20].

On the other hand, the socially optimal strategy
(Py°, P, Pi°) € Ag is determined by maximizing the
social welfare which is given by

Ui(P) = P;UM(P) + P,U}(P) + P,UJ'(P) (26)
= PIAY o PRB + PoX (ZZ“’ o PrBE — Co) :
(27)

As we stated in the previous section, it is well known that,
in general, the social welfare is not maximized by the Nash
equilibrium and the Nash induced welfare is generally less



Algorithm 1 Best Response Algorithm

1: function GETBESTRESPONSE(P,, P, P;, €, 6, )
2 while |P; — P,| + |P} — Ps| < ¢

3 Uj<_UJn(Pj,Po)’Uo<_UgL(P]':Po)

4 if U, > max{U;,Us} + ¢:

5: (P:,P;,P;)%(L0,0)
6:
7
8

elif U; > max{U,,Us} + ¢
(Pz;kan*vP;) <_(O7071)

: elif U, > max{U,,U;} +¢
9: (P;’Pb*7PJT*)<_(()717())

10: elif |U, — Up| < ¢ & min{U,,Up} > U; + ¢

11: (Pgapb*vpj)<_(PO/(PO+PB)7P5/(PO+PI7)7O)
12: elif |U; — Up| < ¢ & min{U,;,Up} > U, + ¢

13: (P;,P,:,Pf) +— (0, Py, 1 — P)

14: elif |U; — U,| < e & min{U;,U,} > e+ U,

15: (P;,Pb*,P;)F(PO,O,l—Po)

16: elif any two {|U; —Uy| < ¢, |Us—Us| < €, |U;—U,| < €}:
17: (Pr, P, P})  (Po, Py, P;)

18: end if

19:  end while
20: if |P; — Po|+ |Py — Py > 6:

21: Pr «— (1 —%)P: ++P,
22: P (1—=7)P +~P
23: P« (1—7)P; + P
24: (Poapbypj)e(P;7Pb+an+)

25: end function

than the social welfare. For the unobservable queueing game,
we compare these the Nash and the social welfare solutions
for various parameters combinations including parameters
from real-world data obtained from the Seattle Department
of Transportation. In Figure [Ib} we show an example of how
the socially optimal welfare changes as a function of the cost
of observing C, while the Nash-induced welfare stays the
same roughly the same. However, both the Nash equilibrium
and the socially optimal equilibrium vary (Fig. [Ta)

A. Example: On-Street vs. Off-Street Parking

We now consider that the balking option is to select off-
street parking as we did in Section [[II-B] In particular, we
define U' = Uysp = R — Coypy/p. The Nash equilibrium
can be computed using Algorithm [T] using Uj' = U,y =
R — Cyypy/p instead of U’ = 0. On the other hand, the
social welfare is now given by

UL(P) = PUJ(P) + RUS(P) + RUN(P)  (@28)
= P00k + Po (55" piBi - Co)
Co
+ P (R - ). (29)

In Figure 2] we show the Nash equilibrium and the socially
optimal strategy as well as the welfare as a function of C,
for both cases for an example on-street vs. off-street game.

V. QUEUE-FLOW NETWORK SIMULATIONS

In this section, we present a queue-flow network model
over which the games of the previous two sections are
impose. Further, we show the results of simulating queue-
flow networks with different parameters.
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Fig. 1. (a) Nash and socially optimal equilibria for on-street vs. other

modes of transit balk, join, observe game. (b) Social welfare and Nash-
induced welfare. We vary C, between —1.85 and 1.85 (negative values of
C, mean the drivers are incentivized to observe) and all other parameters
have the following values: A = 1/5, ¢ = 30, p = 1/120, Cp = 0.05,
R =175.0, n =100, Cy, = 1.5.

A. Queue-Flow Simulator

Our simulator is written in Python and is freely available to
download and tesﬂ Requirements and basic instructions are
available on Github. The simulator constructs a syncrhonized
list of blockface (drivers in service) and street (drivers wait-
ing/circling) timers linked according to the street topology.
For simplicity the simulator treats streets and blockfaces
independently: once a driver reaches the end of their drive
time on a street, they immediately check the entire blockface
they’ve arrived at for availability. If no parking is available,
the driver chooses a new destination uniformly at random
based on the blockfaces currently accessible to them accord-
ing to the street topology. High timer resolution is maintained
to diminish the likelihood of events occurring simultaneously
and curbing potential arguments over available parking (e.g.
a driver circling the block arriving at the same blockface as
a new, exogenous arrival from outside the system).

In our current experimental setup, drive times between
blockfaces are fixed, but could potentially be congestion
limited, where drive time would be a function of the number

Zhttps://github.com/cpatdowling/net—-queue
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Fig. 2. (a) Nash and socially optimal equilibria. (b) Nash induced welfare
vs. maximum social welfare (under socially optimal strategy). For both plots,
the game we consider is on-street parking vs. off-street parking and we
varied p = CA by keeping © = 1/120 and ¢ = 30 constant and allowing
X € [0.025,0.225]. The other parameter values are Cp, = 0.05, C, =
3.85, R =195, Cy = 1.5, n = 100, Cyy5 = 0.962.
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Fig. 3. Average wait time (proxy for congestion) with respect to the
exogenous arrival rate A € [0.6,1.3] and fixed service rate per blockface
(¢ * p = 1.0) plotted against the average block face utilization (proxy
for occupancy) for a three node queue—flow network with arrivals injected
at all three nodes (green) and only at two nodes (blue). There is a distinct
difference in the occupancy vs. congestion curves depending on the network
structure and average waits grow unboundedly as p — 1.

of cars driving on a street between blockfaces. We consider a

3 block face system with 10 parking spaces each, completely
connected by two-way streets. Although each blockface can
be considered to have its own exogenous arrival rate, to
facilitate the game strategies, we have a single source with
arrival rate A. Drivers who do not immediately choose to balk
arrive at a uniformly random blockface where they either
observe or join directly.

B. Congestion vs. Occupancy

The congestion—occupancy relationship is an important
one to understand when it comes to designing the price
of parking or information—e.g. using a smart device with
a subscription fee to observe congestion in various parking
zones—in order to reduce parking-related congestion. Many
municipalities and researchers design pricing schemes to tar-
get a single occupancy level—typically %80—for all block-
faces in a city. Not taking into account the network topology
and node type—source or sink—can be detrimental to a
pricing scheme. In Figure [3] using the queue—flow simulator
for a queue—flow network with three queues, we show that
the congestion—occupancy relationship can be drastically dif-
ferent depending on how many nodes are treated as sources
for injections. In particular, the upper bound for utilization
(before wait time exponentially increases) for the 3-node
injection case is around 88% while the 2-node injection case
is around 65%. The queue—flow modeling paradigm alone
can be a useful tool for designing discriminative pricing or
information schemes, accounting for network topology.

C. Costly Observation Queuing Game Simulations

Coupling the queue-flow network with the game theoretic
models of the previous sections, we simulate the queueing
game and its impact on network flow (average wait time) and
on-street parking utilization (occupancy). Given a queue-flow
network topology, for simplicity, we assume that each of the
queues has the same service rate p. In addition, we suppose
that the total number of parking spots (servers) across all
queues in the network is ¢, the arrival rate to the queuing
network is A, and the capacity of queue-flow network is
n. This allows us to model the whole queuing system as
a M/M/c/n queue to which we apply the costly observation
queuing game for various parameters combinations.

We execute our simulation as follows. First, we determine
the equilibrium of the game—or the socially optimal strategy
depending on which we intend to simulate—and then, we
use the simulator described above to determine the average
waiting time and utilization. The game only effects the arrival
process of the queue—flow network; once arriving drivers
enter the network, the queue—flow simulator determines the
drivers impact on the system and the waiting time they
experience.

Given a strategy (FP,, Py, P;)—either a Nash equilibrium
computed via Algorithm ] or a social optimum computed by
maximizing (27)—we sample from the Poisson distribution
with parameter 1/ to determine the arrival time of the next
driver. Then, we sample from the distribution determined by
(Py, Py, P;) to decide if the arriving driver will balk, join



On-Street Parking vs. Other Modes of Transit Equilibrium
Parameters Type | (Po, Py, Pj) Utilization | Avg. Wait | Welfare
A=1/5,C,=0.25 R=75 C, =0.8,Cp, =0.05 SO (0.00,0.58,0.42) | 33.2% 0.002 2.80

N (0.85,0.13,0.02) | 69.3% 0.359 0.00
A=1/4.85, C, =0.5, R="75, Cy = 0.75, C, = 0.05 SO (0.00,0.56,0.44) | 34.9% 0.002 3.02

N (0.84,0.09,0.07) | 77.9% 0.901 0.00
A=1/45,C, =20, R=75 Cy = 0.5, C, =0.075 SO (0.00,0.4,0.6) 52.3% 0.04 4.27

N (0.55,0.00,0.45) | 88.0% 3.69 2.68
On-Street vs. Off-Street Parking
Parameters Type | Eq.: (Po, Py, P;) | Utilization | Avg. Wait | Welfare
A=1/4.5,Co =3.85, R =65, Cyy = 1.5, U5y = 0.962, SO (0.47,0.19,0.34) | 69.9% 1.99 6.58
Cp = 0.05 N (0.49,0.00,0.51) | 84.0% 7.77 1.85
A=1/4.75, Co, = 3.85, R=65, Cyy = 1.5, Coyy = 0.962, | SO (0.5,0.14,0.36) 70.6% 2.23 9.23
Cp = 0.05 N (0.53,0.00,0.47) | 81.0% 5.96 7.19

TABLE I

QUEUE-FLOW NETWORK GAME SIMULATION RESULTS: FOR EACH OF THE SIMULATIONS WE SET THE TOTAL NUMBER OF PARKING SPACES TO BE
¢ = 30, THE AVERAGE PARKING DURATION IS 120 MINUTES (¢t = 1/120) WHICH IS CONSISTENT WITH THE SEATTLE DEPARTMENT OF
TRANSPORTATION DATA. WE USE THE SHORTHAND SO FOR SOCIALLY OPTIMAL AND N FOR NASH.

without observing, or pay to observe. If the driver balks,
then we discard this arriving car. If the driver joins without
observing, then we determine which node the driver enters by
randomly choosing (using a uniform distribution) a queue in
the network. If the driver pays to observe, then we examine
the length of each queue in the system and the driver joins
the queue with the shortest length as long as it is less than
the balking rate.

In Table [, we show the results of simulations for both the
costly observation game simulations for the costly observa-
tion queuing game and the on-street vs. off-street example.
We explore different parameter combinations and show the
utilization rate, average wait time, social welfare, and the
Nash-induced welfare. The social welfare is always higher
than the Nash welfare, which is to be expected. The utiliza-
tion rate and average wait time are always less under the
socially optimal strategy than the Nash equilibrium.

In Figure[d we show the result of simulating both the Nash
equilibrium and the socially optimal strategy for various
values of the traffic intensity p (holding all other parameters
fixed). These simulations are for the same games depicted
in Figure 2] As the traffic intensity increases, we see that
both the Nash and socially optimal utilization increase al-
most linearly with the Nash utilization remaining greater.
The socially optimal equilibrium in all cases keeps waiting
times for parking—our current surrogate for congestion—
uniformly less than the Nash equilibrium. Intuitively this
makes sense: given a finite resource—parking—the socially
optimal strategy ensures this resource is more freely avail-
able. On the other hand, the Nash strategy more efficiently
utilizes the resource to the extent of its availability. Another
interesting thing to notice is the drop in wait time for the
Nash solution at p = 0.8. If we look at Figure[2b] we see that
the probability for balking P, in the Nash solution suddenly
becomes non-zero at p = 0.8. This is likely to be the cause
of the drop in wait time; however, as p — 1, we expect
the wait time to blow-up so that after the drop, wait time
continues to increase.

Of the two scenarios (costly observation and on-street vs.
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Fig. 4. (a) Average wait time (a) and (b) average blockface utilization

as a function of p = = where ¢ = 30 and p = 1/120 are fixed and
A € [0.025, 0.225] for a three node system. The other parameter values are
Cp = 0.05, Cp = 3.85, R = 95, Cyy = 1.5, n = 100, C,r; = 0.962.
The Nash equilibrium and the socially optimal equilibrium varies with p
and is depicted in Figure [

off-street), the on-street vs. off-street parking more closely
resembles reality in the sense that the off-street option exists.



One might guess then, that a user will maximize their utility
in either the Nash or socially optimal case by frequently
taking advantage of the ability to observe before choosing
where to park, given the nature and travel constraints of the
system. What surprises us is that only partial information
availability amongst the users—as seen in Table [} Figures [1]
and [2] where P, # 1 for the socially optimal solution—is
required to increase social welfare. Moreover, it seems the
socially optimal equilibrium strategy requires less informa-
tion availability.

From a municipality’s perspective, this is a useful result
when designing a socially optimal parking infrastructure. Not
everyone will know information about parking availability
in the first place (e.g. tourists vs. residents). Even from a
more practical point of view, this is a useful result in that
reaching 100% information availability for all drivers is an
economically infeasible task, requiring more resources than
could likely be justified.

VI. DiSCcUSSION AND FUTURE WORK

We presented a framework for modeling parking in urban
environments as parallel queues and we overlaid a game the-
oretic structure on the queuing system. We investigated both
the case where drivers have full information—i.e. observe the
queue length—and where drivers have to pay to access this
information. We show in both cases that the social welfare
is less under the Nash equilibrium than the socially optimal
solution and we show that only partial information is required
to increase social welfare. Finally, through simulations we
connect the queuing game to a flow network model in
order to characterize wait time (congestion) versus utilization
(occupancy).

In future work, by capitalizing on the game-theoretic
model, we aim to use a mechanism design framework to
shift the user-selected equilibrium to a more socially efficient
one by selecting the cost of information and the price of
parking that optimizes social welfare. Furthermore, we plan
to optimize the for the amount parking-related congestion
that contributes to over all congestion; in particular, we
plan to optimize the social welfare as a function of the
capacity of the queue. We plan to relax the homogeniety
assumption by considering players with different preferences
such as walking time to destination and different priority
levels such as disabled placard holders. Furthermore, we
aim to couple the parallel queue game model with classical
network flow models for traffic flow so that we can develop
an understanding of the fundamental relationship between
congestion and parking. We view the work in this paper as
the first steps toward developing a comprehensive modeling
paradigm in which the queuing behavior for parking and
traffic flow are captured.
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