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ISS-Lyapunov Functions for Output Feedback Sliding Modes

Andrea Aparicio, Denis Efimov, Leonid Fridman

Abstract— In this paper we revisit the problem of stabilizing
a triple integrator using a control that depends on the signs of
the state variables. For a more general class of linear systems
it is shown that the stabilization by sign feedback is possible,
depending on some properties of the system’s matrix. The
conditions for the stability are established by means of linear
matrix inequalities. For the triple integrator, the domain of
stability is evaluated. Also, the control law is augmented by
a linear feedback and the stability properties for this case,
checked. The results are illustrated by numerical experiments
for a chain of integrators of third order.

I. INTRODUCTION

In the last three decades the sliding mode controllers have
gained a lot of attention from the control community due to
their robustness and finite-time convergence properties [2],
[6], [8]. The benchmark problem consists in the stabilization
of a chain of integrators. In the well-known case of a single
integrator, ẋ = u+w(t), it can be finite-time stabilized by a
sign controller of the type u =−k sign(x), where the gain k
is chosen adequately [9]. For the second order system, ẋ1 =
x2, ẋ2 = u+w(t), the Twisting controller (u =−k1sign(x1)−
k2sign(x2)) was introduced in [5] with the same properties.
The only knowledge of the system necessary to implement
any of these controllers is the sign of their state variables.
This makes them a suitable alternative in systems where
a state feedback is not feasible due to uncertainties in the
sensors and where the only truthful information available is
precisely the sign of the state variables. In the design of
practical applications this is beneficial because it reduces
the sensor requirements and therefore diminishes the costs
and complexity of the implementation. A natural step to
develop the mentioned results would be the establishment
of conditions for the stability of a third order chain of
integrators using only the signs of its state variables and,
further on, a generalization to a system of an arbitrary
order. Therefore, some works can be found in the control
literature, which investigate this matter for the third order,
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with different approaches. For example, in [1] it is proposed
to switch between two different controllers that use only
the signs of the state variables, following a specific logic.
This scheme was later generalized for any order in [4].
In [7] it was proven that, for certain initial conditions, the
trajectories of the triple integrator, in closed loop with the
triple sign controller, and an appropriate choice of gains, will
converge in finite time to an equilibrium point different from
the origin. Consequently, there is a structural obstruction
for sign controllers application for the systems of the order
three and higher. The main contribution of this paper is
to present an alternative way to design a 3-sign controller
that makes the trajectories of a triple integrator converge
to the origin. The work is organized as follows. Section II
includes the notation used throughout this paper. In Section
III we present a Lyapunov based methodology to check the
stability of a class of arbitrary order systems dependent
on signs of the state variables. This class of systems is
composed by a linear feedback of all the state variables,
and their signs. The stability proof is endowed with linear
matrix inequalities (LMIs). This result is used in Section
IV to prove the convergence of the trajectories of an third-
order integrator chain to the origin, when it is in closed
loop with a sign controller of the same order as the plant.
The difference of this controller with the ones mentioned
before is that the control law does not depend on the signs
of the state variables, but on the sign of a set of linear
functions of them. These functions are determined by a state
transformation defined in the same section. The main results
are gathered in a theorem that establishes the conditions to
ensure the convergence to the origin when the solutions of
the system have their initial conditions inside a region of
the third dimensional space, followed by a corollary that
establishes a condition to guarantee the global asymptotic
convergence. In the same section it is considered the case
when a measurement of the state is available and thus, a
controller that contains a linear feedback is possible. An
academic example is provided in Section V, along with some
numerical simulations and a discussion of the possibility of
achieving a finite-time convergence of the system’s solutions.
Finally, Section VI contains some conclusions of this work.

II. PRELIMINARIES

A. Notation

• The element-wise application of an operator • to a
vector x is indicated by ~•(x);

• In denotes the Identity matrix of n dimension;
• diag(A) represents a matrix where the main diagonal is

the same as that of matrix A and every other element is



equal to zero;
• ~a(n×s), for a constant a represents a matrix of dimension

n× s, whose every element is equal to a;
• A[i] denotes the ith column of a matrix A;
• Aint

n represents a square matrix of size n whose every
element is equal to zero, except for the diagonal above
the main one, which is composed of ones;

• λmin(A) and λmax(A) represent the minimal and the
maximal eigenvalues of a matrix A, respectively;

• |a| represents the absolute value of a scalar a;
• ‖v‖ denotes the Euclidean norm of a vector v ∈ Rn,
‖v‖1 = ∑

n
i=1 |vi| and ‖v‖∞ = max1≤i≤n |vi|;

• ‖A‖ represents the induced norm of a matrix A ∈Rn×s,
while ‖A‖1 = max1≤i≤s ‖A[i]‖1 and ‖A‖∞ = ‖AT‖1;

• For a matrix A ∈Rn×s the following norm equivalences
hold [3]

1√
n
‖A‖1 ≤ ‖A‖ ≤

√
s‖A‖1. (1)

• The set of all functions endowed with the (essential)
supremum norm ‖w‖∞ = (ess)supt≥0 ‖w(t)‖ ≤W < ∞,
is denoted by Lm

∞

III. STABILITY OF AN n-DIMENSIONAL SYSTEM WITH n
SIGNS

A stability proof for a class of n-dimensional systems,
whose dynamics consist of the sum of a purely linear part
and the signs of the state variables, will be developed in this
section. This kind of systems can be written in the following
form

ẋ = A0x+A1 ~sign(x), (2)

where x ∈ Rn is the state vector, ~sign(x) ∈ Rn is a col-
umn defined as ~sign

T
(x) :=

[
sign(x1) . . . sign(xn)

]
and

A0,A1 ∈Rn×n are real constant matrices. The stability check
will be performed by establishing a sufficient LMI condition
to construct a Lyapunov function for (2). To this end, the
matrices P = PT ∈Rn×n, G ∈Rn×n, R ∈Rn×n, r ∈Rn×n and
M ∈Rn×n, and a constant µ must be defined in the following
manner:

G :=


g1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 gn

 R := 2AT
1 P+GA0, (3)

r := diag(R), M := r+ | ~R− r|, µ := max{M~1(n×1)}

for some real constants gi, i = 1, . . . ,n. The following the-
orem establishes the LMI conditions that the above defined
parameters should satisfy in order to construct a Lyapunov
function for (2).

Theorem 1: Let the origin be the only equilibrium of (2),
and the following pair of LMIs be satisfied

AT
0 P+PA0 =−Q, M~1(n×1) ≤ 0,

for

P = PT > 0, Q = QT > 0, G≥ 0, GA1 = 0.

Then, a function V : Rn→ R defined as

V (x) := xT Px+
n

∑
i=1

gi|xi| (4)

is a Lyapunov function for system (2), with a derivative
estimate

V̇ ≤−xT Qx.

Proof Since the matrix P is positive definite and G is
positive semidefinite, then V is also positive definite and
radially unbounded. The function V is locally Lipschitz
continuous, then by Rademacher’s theorem it is differentiable
almost everywhere in Rn, and the derivative of V along the
trajectories of (2) is

V̇ = xT (AT
0 P+PA0)x+ ~sign

T
(x)(AT

1 P+
1
2

GA0)x

+xT (PA1 +
1
2

AT
0 G) ~sign(x) (5)

= xT (AT
0 P+PA0)x+ ~sign(x)T Rx.

The Lyapunov equation AT
0 P+PA0 =−Q can be solved for

P = PT > 0, with Q = QT > 0 if and only if A0 is a stable
matrix. From the second part of (5) we have that

~sign(x)T Rx =
n

∑
i=1

[
xi

n

∑
k=1

(
sign(xk)Rk,i

)]

≤
n

∑
i=1

[(
Ri,i +

n

∑
k 6=i,k=1

|Rk,i|

)
|xi|

]
and with M = r+ | ~R− r|, as defined above, we get

R(i,i)+
n

∑
k 6=i
|R(k,i)| ≤ 0, ∀1≤ i≤ n⇔MT~1(n×1) ≤ 0.

Thus,
V̇ ≤−xT Qx,

and if the conditions of Theorem 1 are satisfied, the function
V is positive definite for all x, and its derivative along the
trajectories of (2) is negative definite.

IV. STABILITY OF A TRIPLE INTEGRATOR GOVERNED BY
A 3-SIGN CONTROLLER

One of the canonical representations of a linear system’s
dynamics is through a chain of integrators with a control
input u in the last channel. For the third order that would be

ẋ1 = x2, ẋ2 = x3, ẋ3 = u. (6)

As mentioned in the introduction, the stabilization of such
system using only the signs of the states variables, i.e. when
the control input is defined as

u =−k1sign(x1)− k2sign(x2)− k3sign(x3), (7)

is a problem that has interested the control community for
a long time. Numerous efforts have been dedicated to solve
this problem, even for different orders, although the global
convergence of the solutions to the origin has only been
proven for orders one and two. It is easy to see that this



closed loop would represent a special case of the system (2)
when A0 = Aint

3 and A1 is composed of only zeros except for
its the last row, which contains the gains of the controller
−k1, −k2 and −k3. In the following paragraphs we will
present a way of designing a 3-sign controller for the chain
of integrators (6) that depends on some linear combinations
of the state x, i.e.

u =−k1sign( f1(x))− k2sign( f2(x))− k3sign( f3(x)). (8)

It will be shown how to construct each of the functions
f1, f2, f3 exactly from the available state measurements.
By the introduction of a state transformation, it will be
shown that system (6) with the above mentioned controller
is also equivalent to a special form of (2) and thus, the result
presented in the previous section can be used to prove the
stability of the closed loop. That means that the trajectories
of the third order integrator can be proved to converge to the
origin, only using a triple sign controller.

Remark 1: It has been mentioned that the triple integrator
in closed loop with the controller (7) is a special case of the
more general system (2), as well as the closed loop of (6)
and (8) when a state transformation is applied. Therefore,
through a similar procedure, the approach presented in the
last section could be applied to other classes of systems for
which a suitable transformation is found.

A. State transformation to a new set of coordinates

For the chain of integrators (6) let’s define the state
transformation z := T x with invertible T given by

T =

1 0 0
1 1 0
1 2 1

 (9)

In the new coordinates the system has the form

ż1 =−z1 + z2

ż2 =−z2 + z3

żn = C̄T z+u,

where C̄ :=
(
(TAint

3 T−1)T
)[3]

=
[
c1 c2 c3

]T . If for the
above system the control law is selected as

u =−k1sign(z1)− k2sign(z2)− k3sign(z3), (10)

and defining vectors B, C ∈ R3 as

B =

0
0
1

 , C =

 c1
c2

c3 +1

 , (11)

it can be written in the form

ż = A0z+A1 ~sign(z)+BCT z, (12)

where

A0 =

−1 1 0
0 −1 1
0 0 −1

 , A1 =

 0 0 0
0 0 0
−k1 −k2 −k3

 .
(13)

Remark 2: Note that each variable z1, z2, z3 is equivalent
to a linear combination of x1, x2, and x3 of (6) given by
the transformation z := T x, so the functions f1, f2 and f3 of
controller (8) should be constructed as

f1(x) = x1

f2(x) = x1 + x2

f3(x) = x1 +2x2 + x3.
If C = 0 in (12), then the transformed system corresponds to
a special form of (2), and the term BCT z can be interpreted
as a Lipschitz perturbation.

B. Convergence to the origin of a 3-signs controller

In the previous section a new set of coordinates z was
defined. Note that each of the state variable z1, z2, z3, is
equivalent to a linear combination of the states x of (6),
given by z1 = x1, z2 = x1 + x2, and z3 = x1 + 2x2 + x3. The
following theorem uses this set of coordinates to define a
3-sign controller for the chain of integrators (6), and also
establishes conditions to guarantee the convergence to the
origin of the closed-loop system.

Theorem 2: If for the chain of integrators (6) a control
law is selected as (10), then every solution of the closed
loop starting in the set

Ω =
{

z ∈ R3 : ‖z‖< κ
}
,

where

κ :=
1

2λmax(P)

√3g2
max +4λmax(P)λmin(P)

µ2

α2 −
√

3gmax

 ,
α := λmin(Q)−2λmax(P) ~max{C},

gmax := max{g1,g2,g3}

and the matrices P, Q, G = diag(g) and µ := max{M~1(3×1)}
come from Theorem 1 for the nominal system (2), will
asymptotically converge to the origin provided that the
constants k1, k2, and k3 are strictly positive and they satisfy

µ < 0, k1 < k3.
Corollary 1: If, additionally,

max{C} ≤ λmin(Q)

2λmax(P)
,

then every solution of the closed-loop system will asymptot-
ically converge to the origin.

Proof The term BCT z in (12) can be considered as a pertur-
bation to the nominal one (2). Therefore, first, the stability of
the system for the case C = 0 will be shown and, second, the
set of invariance for C 6= 0 will be evaluated. For the first
part of the proof we will check the existence of a unique
equilibrium at the origin for the nominal system. To this end

the matrix A0 can be divided as A0 =

[
Au

0 ∈ R2×3

Al
0 ∈ R1×3

]
, where

the last line has been separated since the signs appear for ż3
only. Now, let us define a column vector β T =

[
β1 β2 β3

]
,

representing the coordinates of a possible equilibrium, and



look for the values of βi, i = 1,2,3 which annihilate Au
0, that

is
Au

0β =

[
−β1 +β2
−β2 +β3

]
=

[
0
0

]
For the above to hold, either

β3 = 0 ⇒ β1 = β2 = 0 (14)

or
β3 6= 0 ⇒ β1 =−β2 6= 0. (15)

In the case of (14), the equilibrium point is at the origin.
The case of (15) implies that all signs in the last equation
for ż3 are some constants and, under the theorem conditions,
in such a case ż3 6= 0. Therefore, it has been proven that the
only equilibrium point is at the origin. Now we will check
the boundedness, the region of attraction and stability of the
solutions of the nominal system. To this end, consider the
Lyapunov function (4) satisfying AT

0 P+PA0 <−Q, P=PT >
0, Q = QT > 0, and GA1 = 0 (see Theorem 1 for the details).
From the following expression,

λmin(P)‖z‖2 ≤V (z)≤ λmax(P)‖z‖2 +gmax‖z‖1,

we can see that since P is positive definite, V (z)> 0 ∀ x 6= 0,
and that the function is radially unbounded, i.e. V (z)→ ∞

as ‖z‖→∞. Using inequality (1), the derivative of (4) along
the nominal part of (12) can be expressed as

V̇ =−zT Qz+ ~sign
T
(z)Rz

≤−λmin(Q)‖z‖2 +µ‖z‖1,

where µ has been defined in (3). Since µ < 0, which is
equivalent to establishing a strict inequality for the condition
on M in Theorem 1, the derivative of the Lyapunov function
can be expressed as

V̇ ≤−λmin(Q)‖z‖2−|µ|‖z‖1

≤−λmin(Q)‖z‖2−|µ|‖z‖.

It is evident that in this case, V̇ < 0 for all z 6= 0. From
section III we have that M = r + | ~R− r|, so µ is equal to
the maximum of all the column sums of M. Since A0 is a
Metzler matrix, then the first condition of theorem 1 can be
solved for a diagonal P, then M, for k1,k2,k3 > 0 has the
form

M =

−g1 g1 −2k1P3,3
0 −g2 g2−2k2P3,3
0 0 −2k3P3,3

 .
The last element of the product MT

[
1 1 1

]T is

|g2−2k2P3,3|+2k1P3,3−2k3P3,3.

Choosing g2 = 2k2P3,3, µ can be made negative by satisfying

k1 < k3

and 0 < g1 < g2. This also satisfies the LMI restriction G≥ 0
of Theorem 1. The last restriction, GA1 = 0 is achieved
by simply choosing g3 = 0. Thus, the nominal system (2)
with C = 0 has the only equilibrium at the origin, and

LMIs of Theorem 1 are satisfied, then the system is globally
asymptotically stable. For the perturbed case, when C 6= 0,
assuming that µ < 0 the derivative of (4) along (12) is

V̇ (z) = −zT Qz+ zT (CBT P+PBCT )z

+ ~sign
T
(z)Rz+ ~sign

T
(z)GBCT z

≤ −λmin(Q)‖z‖2 +2λmax(P) ~max{C}‖z‖2

−|µ|‖z‖1

≤ α‖z‖2−|µ|‖z‖.

Note that in the above expression, the term GBCT = 0, since
by construction GA1 = 0 and BCT has the same structure as
A1. First, consider the case when α > 0, and define the set

Ω1 :=
{

z ∈ R3 : V̇ ≤ 0
}
=

{
z ∈ R3 : ‖z‖ ≤ |µ|

α

}
,

and V̇ < 0 in the interior of the set Ω1 for all z 6= 0. To find
an invariant set inside Ω1, recall the definition of V from
which we have that

λmin(P)‖z‖2 ≤V (z)≤ λmax(P)‖z‖2 +
√

3gmax‖z‖,

and note that in order to have z∈Ω1 the following inequality
has to be satisfied:

V (z)≤ λmin(P)
µ2

α2 ,

which is true if

λmax(P)‖z‖2 +
√

3gmax‖z‖ ≤ λmin(P)
µ2

α2 .

Solving the last inequality with respect to ‖z‖ we obtain

‖z‖ ≤ κ,

then Ω= {z∈R3 : ‖z‖< κ}⊂Ω1 and every solution starting
in Ω will remain inside in Ω for all t ≥ 0, in addition

V̇ < 0 ∀z ∈Ω\{0},

therefore, all trajectories will converge to the origin for the
initial conditions in Ω. Theorem 2 is proven. For the case
when α ≤ 0, it is easy to see that V̇ (z) ≤ 0 for all z, and
V̇ (z) = 0 only at the origin, so in this case the perturbed
system is globally stable. For this, the following inequality
has to be satisfied

max{C} ≤ λmin(Q)

2λmax(P)
,

which proves Corollary 1.

C. Convergence to the origin of a 3-sign controller with an
added linear term

In certain control application it is possible that the state
of a system is available for measurements and thus, the
design of a controller that contains a linear feedback is also
interesting. This section will explore this case, and consider
a control law that includes the signs of the functions defined
in the previous section, and also a linear combination of the
states z (and, hence, of x also). Such controller is defined in
the following theorem, which also establishes the conditions



for its design that guarantee the convergence of all solutions
of (6) to the origin.

Theorem 3: If for the chain of integrators (6) a control
law is selected as

u =−k1sign(z1)− k2sign(z2)− k3sign(z3)−Cz,

then every solution of the closed-loop system will converge
to the origin asymptotically provided that the constants k1,
k2, and k3 are chosen strictly positive, and the latter satisfy

µ < 0, k1 < k3.

Proof System (6) in closed loop with the controller of
theorem 3 takes the form of system (12) with C = 0. Next,
the proof follows the arguments demonstrated in the proof
of Theorem 2.

V. EXAMPLE AND NUMERICAL SIMULATIONS

For the triple integrator (6), with a matched disturbance,
i.e.

x1 = x2, ẋ2 = x3, ẋ3 = u+w, (16)

the control law was chosen following the conditions estab-
lished in Theorem 2, as

u = −2sign(x1)−2sign(x1 + x2) (17)
−2.5sign(x1 +2x2 + x3).

With initial conditions

x1(0) = 0.5, x2(0) =−0.8, x3(0) = 2, (18)

and a matched disturbance w = 1+ 0.5sin(t), the obtained
simulation results are shown in Fig. 1, for a sampling step of
0.0001s. In [7] it was defined a three dimensional invariant
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Fig. 1. State trajectories of the triple integrator with the control (17), a
matched disturbance with bound ‖w‖= 1, and the initial conditions (18)

set such that if the initial conditions of the triple integrator
are inside it, even with an appropriate set of gains, the
trajectories of the system will converge to an equilibrium
different from the origin. By simple calculations it can
be seen that the trajectories of the 3-integrator chain of
this example start precisely inside this set, for the initial
conditions in (18) and the selected gains of (17). However,
we can see from the simulations, which were ran with a
small sampling step and for a short period of time, that the

trajectories converge to zero. Moreover, from the zooms it
is noticeable that they do this in a finite time even in the
presence of a matched disturbance.
Simulations were also ran for the perturbed triple integrator
(16) with initial conditions outside of the region of attraction:

x1(0) = 5, x2(0) = 9, x3(0) =−8, (19)

in closed loop with the controller (17) with an added linear
term, according to Theorem 3 as

u = −2sign(x1)−2sign(x1 + x2)+ (20)
−2.5sign(x1 +2x2 + x3)− x1 +

+3(x1 + x2)−3(x1 +2x2 + x3),

with the same w = 1+ 0.5sin(t). The obtained simulation
results are shown in Fig. 3, for a sampling step of 0.0001s.
Also the case of a triple integrator with matched and un-
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Fig. 2. State trajectories of the triple integrator with the control (20), an
matched disturbance, and the initial conditions (19)

matched disturbances was tested via simulations, i.e, ẋ1 =
x2+wu, ẋ2 = x3, ẋ3 = u+w, with the same w as in the above
example, and wu = 0.5sin(t), the obtained simulation results
are shown in Fig. 3, for a sampling step of 0.0001s. In this
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Fig. 3. State trajectories of the triple integrator with the control (20), an
unmatched disturbance, and the initial conditions (19)

case, it can be observed that the convergence to the origin is
maintained for large initial conditions, and that the matched
perturbation is still rejected. Even more, in the presence
of an unmatched disturbance, a bounded-input-bounded-state
(BIBS)-like behavior can be appreciated.



VI. CONCLUSIONS

For the well studied system of triple integrator, we have
presented a 3-sign controller that forces the trajectories to
the origin, which is the main contribution of this paper.
The main characteristic of this controller is that it does not
depend on the sign of the state variables, as the ones that
have appeared several times in the control literature, but on
the signs of a set of linear functions of them. This result has
been achieved by the development of some other preliminary
ones. For example, we have proved that the only equilibrium
point of a more general class of non-linear systems is at the
origin, and we have presented a transformation by which
it is shown that the closed loop of a sign controller with
a chain of three integrators is a special case of this class
of systems. This transformation also determines the form of
the set of functions on which the control law depends. The
stability of the mentioned class of systems has been proved
by the Lyapunov method and LMIs. The design conditions,
that must be satisfied in order to guarantee that the closed
loop of the triple integrator converges to the origin have
been established in theorems and their proofs, using the
same Lyapunov function as before. When a measurement
of the state is available for feedback, then a control law that
includes a linear part can be considered, and we have shown
that in this case, the region of attraction of the closed loop
is the whole third dimensional space. In order to illustrate
the results, an example has been provided which considers
a triple integrator in the case where no information, other
than the sign of the transformed coordinates is available. The
shown simulations are consistent with the results previously
obtained. Moreover, even through the proofs we guarantee
only asymptotic convergence to the origin, these simulations
show evidence that the convergence is actually achieved in
a finite time. Also, for the case where a linear feedback
is possible, simulation results show that the convergence is
maintained for rather large initial conditions. Moreover, even
though the theoretical results do not include this, the matched
perturbation is rejected in all cases, and a BIBS-like behavior
can be noticed when unmatched perturbations are present. It
is a direction of our future research to investigate these finite-
time convergence and BIBS properties in order to be able to
characterize them in a formal mathematical way. Another
direction for further investigation would be the extension of
these results for higher orders.

REFERENCES

[1] G. Bartolini, A. Pisano, and E. Usai. On the finite-time stabilization
of uncertain nonlinear systems with relative degree three. Automatic
Control, IEEE Transactions on, 52(11):2134–2141, Nov 2007.

[2] C. Edwards and S. Spurgeon. Sliding mode control: theory and
applications. Taylor and Francis, 1998.

[3] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University
Press, 1990.

[4] M. Kryachkov, A. Polyakov, and V. Strygin. Finite-time stabilization of
an integrator chain using only signs of the state variables. In Variable
Structure Systems (VSS), 2010 11th International Workshop on, pages
510–515, June 2010.

[5] A. Levant. Sliding order and sliding accuracy in sliding mode control.
International Journal of Control, 58(6):1247–1263, 1993.

[6] W. Perruquetti and J. P. Barbot. Sliding Mode Control in Engineering.
Marcel Dekker Hardcover, 2002.

[7] T. Sanchez and J.A. Moreno. On a sign controller for the triple
integrator. In Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on, pages 3566–3571, Dec 2013.

[8] V. I. Utkin. Sliding Modes in Control Optimization. Springer-Verlag,
Berlin, 1992.

[9] Vadim Ivanovitch Utkin, Jrgen Guldner, and Jingxin Shi. Sliding mode
control in electromechanical systems. The Taylor & Francis systems
and control book series. Taylor & Francis, London, Philadelphia, PA,
1999.




