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Privacy and Customer Segmentation in the Smart Grid

Lillian J. Ratliff, Roy Dong, Henrik Ohlsson, Alvaro A. Cárdenas and S. Shankar Sastry

Abstract— In the electricity grid, networked sensors which
record and transmit increasingly high-granularity data are
being deployed. In such a setting, privacy concerns are a natural
consideration. We present an attack model for privacy breaches,
and, using results from estimation theory, derive theoretical
results ensuring that an adversary will fail to infer privat e
information with a certain probability, independent of the
algorithm used. We show utility companies would benefit from
less noisy, higher frequency data, as it would improve various
smart grid operations such as load prediction. We provide
a method to quantify how smart grid operations improve
as a function of higher frequency data. In order to obtain
the consumer’s valuation of privacy, we design a screening
mechanism consisting of a menu of contracts to the energy
consumer with varying guarantees of privacy. The screening
process is a means to segment customers. Finally, we design
insurance contracts using the probability of a privacy breach
to be offered by third-party insurance companies.

I. I NTRODUCTION

Increasingly advanced metering infrastructure (AMI) is
replacing older technology in the electricity grid. Smart
meters send detailed information about consumer electricity
usage over a network every half-hour, quarter-hour, or in
some cases, every five minutes. This high-granularity data
is needed to support energy efficiency efforts as well as
demand-side management. However, improper handling of
this information could also lead to unprecedented invasions
of consumer privacy [1], [2].

Given that smart grid operations inherently have privacy
and security risks [2], it would benefit the utility company,
to know the answer to the following questions: How do con-
sumers in the population value privacy? How can we quantify
privacy? How do privacy-aware policies impact smart grid
operations? In this paper we address these questions as well
as expose new directions for future research on privacy and
customer segmentation in the smart grid.

Using our results on the fundamental limits of non-
intrusive load monitoring [3], we are able to come up
with probabilities for the success of an attack by an ad-
versarial agent independent of the algorithm. Then using
these probabilities we can design a screening mechanism
consisting of a menu of contracts to be offered to consumers.
One set of contracts to be offered by the utility company
assess how the consumer values privacy thereby revealing his
preferences. Based on their valuation of privacy as a good,
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consumers can select the quality of the service contract with
the utility company. Essentially, electricity service is offered
as a product line differentiated according to privacy where
consumers can select the level of privacy that fits their needs
and wallet. The screening process is a way to do customer
segmentation the result of which can lead to targeting.

In particular, using knowledge of consumer preferences,
the utility company could then incentivize consumers based
on their preferences to choose a low privacy setting which
helps increase the granularity of data for use by the utility
company for programs like demand response, direct load
control, etc. In addition, third-party insurance companies can
design insurance contracts. Insurance allows the consumerto
protect himself in the event of a privacy breach, i.e. she will
be compensated for any experienced loss.

The paper is organized as follows. In Section II we review
the problem of non-intrusive load monitoring (NILM) and
show how NILM leads to our novel privacy metric. We
show in an example that the probability of an adversary
successfully implementing a privacy breach decreases witha
decrease in sampling rate. We discuss the impact of sampling
rate on smart grid operations in Section III. In Section IV
we use the privacy metric to design a screening mechanism
that consists of privacy contracts between the consumer
and the utility company. Similarly, in Section V we use
the privacy metric to design insurance contracts. Finally,
in Section VI we summarize the results and discuss future
research directions.

II. PRIVACY GUARANTEES

In this section, we discuss our metric for privacy, and
guarantees of privacy under this metric. For this paper, we
restrict the scope of our analysis to data collection policies.
Another important aspect of privacy is how data retention
policies can alter privacy and smart grid performance. Such
a topic is reserved for future research.

A. Nonintrusive Load Monitoring

Our formulation of privacy builds on recent research
into nonintrusive load monitoring (NILM) algorithms, first
proposed by Hart [4]. The goal of NILM is to use the aggre-
gate power consumption signal, which can be measured by
metering infrastructures without the placement of additional
sensors inside the home, and make inferences on the load
profile. For example, the problem of energy disaggregation
is to recover the power consumption signals of individual
devices [5]. Another example would be to detect when
devices switch on and off, which is often referred to as event-
based NILM [6].
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There are many approaches to the design of NILM algo-
rithms, including but not limited to hidden Markov models
(HMMs) [7], [8], [9], sparse coding methods [10], and
dynamical systems approaches [11]. These methods vary in
the prior information required; some are completely unsuper-
vised and nonparametric, while others require a large amount
of disaggregated data to build a dictionary. However, in our
recent work, we provided a unifying framework for modeling
all of these algorithms [3].

To the best of our knowledge, every approach to energy
disaggregation gives devices a certain kind of model, be it
an HMM, dictionary, or dynamical system. Most of these
approaches have an input space: for HMMs, the input is a
sequence of latent state transitions; for the sparse approaches,
it is a sparse vector corresponding to the most representative
elements in the dictionary, and in dynamical systems, it is
an input signal to the systems.

In all these approaches, a fixed input yields a probability
distribution on the device’s power consumption; this distribu-
tion is often assumed to be Gaussian. Finally, note that in all
the mentioned frameworks, recovering the input is almost the
same as recovering the device’s power consumption signal.

Other NILM formulations also can fall into this frame-
work. For example, in event-based NILM, if the task is to
determine whether or not the air conditioner is in use, we can
consider the probability distribution across aggregate power
consumption signals when the air conditioner is on and when
the air conditioner is off. In this case, whether or not the air
conditioner is on serves as an input.

In our framework, NILM algorithms are abstracted as
measurable functions operating on the aggregate power con-
sumption signal, and we ask whether or not the algorithms
can successfully distinguish between inputs. For a more
comprehensive treatment of this topic, we refer the reader
to [3].

B. Privacy Metric

Now, we are ready to introduce our metric of privacy.
One of the common theoretical definitions for a privacy

metric is the notion of differential privacy [12], [13]. While
differential privacy has many attractive properties, it ismost
useful when we want to share data via a trusted third party
aggregator, or by injecting noise in the original messages
sent to a third party; however, for many practical, regulatory,
dispute resolution, performance, or business reasons, there
will always be several cases where we need to get access to
the raw data, and in these cases differential privacy will not
help us identify a good security mechanism to prevent raw
data from being compromised.

In contrast, we fix a definition of a privacy breach where
the user has a set of possible inputs, and he wishes to keep
the true input private. For example, the definition of privacy
breach might be whether or not an adversary knows if the
user is doing dishes in the dishwasher, watching TV, or
exercising on a treadmill in the evening. This notion of equiv-
ocation is related to recent work in privacy who measures

privacy not with differential privacy but with equivocation
metrics [14].

We also assume a powerful adversary that knows the
probability distribution of the energy consumption of digital
signals, and their prior probability for being active in an ag-
gregated signal. As an observation, we assume the adversary
has access to the aggregate power consumption signal, but
not the device-level signals, for a building.

More formally, suppose there are two inputsu1 andu2. For
each input, the aggregate power consumption signal follows
distributionsF1 andF2, respectively. In this paper, we assume
these distributions to be Gaussian; however, we consider the
general case in [3].

Suppose the distributions have meansµ1 and µ2, and
both distributions have the same covarianceσ2I . Let a =
σ−2 (µ0− µ1) and b = 1

2σ2

(
‖µ1‖2

2−‖µ2‖2
2

)
. Suppose the

adversary uses any estimator ˆu and suppose the events{u=
u1} and {u = u2} are equally likely. Then, the probability
of our adversary successfully distinguishing two inputs is
bounded by

P(û= u)≤ 1
2

(
1−erf

(
− 1

‖a‖2
(aT µ0+b)
√

2σ2

))
(1)

where erf is the Gauss error function. More details can be
found in [3].

III. SMART GRID OPERATIONS

In Section II, we developed a metric for privacy. If privacy
is the only thing of concern, a trivial solution is to record
nothing transmit nothing. However, the utility company has
other objectives than just preserving the privacy of its con-
sumers. Hence, privacy issues arise because the sensitive data
has other uses. Such polices as noise injection or varying the
sampling rate can be employed to protect against privacy
breaches while still allowing the utility company to operate.

In advanced metering infrastructures, the data is used to
improve the performance of smart grid operations. How
smart grid operations degrade under different metering poli-
cies is an active topic of research; for preliminary investiga-
tions, see [15], [16]. Intuitively, the performance will degrade
as fewer samples are collected or more noise is added. We
attempt to quantify this degradation. In this section, we
develop an direct load control example to demonstrate how
smart grid operations performance is affected by different
sampling rates.

A. Direct Load Control

The problem of direct load control has recently been stud-
ied as viable option to improve smart grid operations [17],
[18].

Generator output is generally determined by two pro-
cesses: unit commitment and economic dispatch.Unit com-
mitmentis done in advance, and sets the generator ramping
schemes.Economic dispatchis done online, and determines
the output levels of generators that are already online to meet
total demand.



When the demand exceeds the output capacity of all online
generators, economic dispatch schemes will use generators
with quick ramp-up times to ensure stability of the power
grid. These generators are very inefficient. One goal of direct
load control (DLC) as an economic dispatch scheme is to
reduce the deviation of actual demand from the forecasted
demand.

Consider the direct load control model:

xk+1 = xk+uk+ µk+dk (2)

Here,xk ∈ R represents the power consumption of a unit at
timek, where a unit can be a household, an HVAC system for
a building, or a sector of the power grid.uk ∈ R represents
the direct load control signal at timek. µk ∈ R represents
the affine term which generates our nominal demands at
time k; if uk ≡ 0 anddk ≡ 0, thenµk creates our forecasted
demand. Finally,dk represents the disturbance at timek. In
this model, disturbances from the nominal demand persist,
and DLC policies must be employed to return the power
consumption to the nominal demand.

Now, consider different sampling rates. That is, we sup-
pose our controller is only able to receive measurements
everyN time steps. However, it is still able to issue control
commands at every time step. We wish to design a controller
that makes use of the available measurements to optimally
issue control commands to a sector of the power grid.

The subsampled system can be modeled in a Markov
jump linear system (MJLS) framework. To define optimality,
we consider theH∞ norm of MJLSs, as defined in [19],
[20]. In our application, theH∞ norm represents a worst
case estimate of how much the true power consumption
will deviate from the power consumption used for unit
commitment. This worst case estimate is a function of the
uncertainty in the load forecast.

Recent results in the analysis of MJLS gives us the optimal
H∞ controller for subsampled scalar systems [16]. Thus,
we can analyze how the performance of direct load control
is affected by different sampling schemes. For example,
Figure 1 gives us the performance for equidistant sampling.
Thus, the formulation allows us to quantify the value of a
higher sampling rate to the utility company.

IV. PRIVACY CONTRACTS

In this section, we discuss how the utility company can
design a screening mechanism in order to assess the con-
sumer’s unknown type. This is a mechanism design problem
with asymmetric information. The utility company designs a
screening mechanism whose contracting device is the privacy
setting offered to the consumer. This screening process can
be thought of as customer segmentation since it will extract
each consumer’s type after which the consumers can be
grouped according to their type.

We consider a model in which there are only two types
and we utilize standard results from the theory of screening
(see, e.g., [21]) to develop a framework for designing privacy
contracts. We remark that as a result of the screening process
the utility company will know how each consumer values
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Fig. 1. TheH∞ norm for the equidistant sampling scheme as a function
of the sampling intervalN. A higher sampling intervalN corresponds to a
lower sampling frequency, i.e. the utility company receives less data.

privacy and can leverage that in the design of incentives
aimed at inducing the consumer to select a privacy setting
more desirable from the perspective of the utility company.

A. Two Types: High-Privacy and Low-Privacy Settings

We model privacy-settings on smart meters as a good.
The quality of the good is either a high-privacy setting
qH or a low-privacy settingqL. The consumer can choose
either a high privacy setting or a low privacy setting, i.e. the
consumer selectsq∈ Q= {qH ,qL} ⊂ R whereqL ≤ qH and
−∞ < qL < qH < ∞. The consumer’s valuation of privacy
is his type which takes valuesθ ∈ {θ ,θ} ⊂ R where θ
represents how much the consumer values high-privacy over
low-privacy andθ < θ . We assume that typeθ is distinct
from the private information itself; by this we mean that
how much the consumer values privacy is not also private
information. We note here that these types implicitly make
use of the probabilities presented in Section II.

The consumers typeθ is related to his willingness to pay
in the following way: if the utility company announces a
price t for choosingq, the type-dependent consumer’s utility
is equal to zero if he does not select a privacy settingq, and
it is

U(q,θ )− t ≥ 0 (3)

if he does select a privacy setting. The case in which the
consumer does not select a privacy setting is considered
the opt-out case in which consumer exercises his right to
not participate. The inequality in (3) is often called the
individual rationality constraint and in the design of the
privacy contracts we will enforce it in order to make sure
that all consumers will opt-in. The functionU : R×Θ → R

is assumed to be strictly increasing in(q,θ ), concave inq,
and represents the consumer’s preferences.

Since we have only two types, the contracts offered will
be indexed by the privacy settingsqL and qH . Further, as
we mentioned the consumer can opt-out by not selecting
a privacy option at all. Hence, we need to constrain the



mechanism design problem by enforcing the inequality given
in Equation (3) for each value ofθ ∈ {θ ,θ}. In addition, we
need to enforceincentive-compatibilityconstraints

U(qH ,θ )− tH ≥U(qL,θ )− tL (4)

and
U(qL,θ )− tL ≥U(qH ,θ )− tH (5)

where the first inequality says that given the pricetH a
consumer of typeθ should prefer the high-privacy setting
qH and the second inequality says that given the pricetL a
consumer of typeθ should prefer the low-privacy settingqL.

The utility company has unit utility

v(q, t) =−g(q)+ t (6)

where we assume that the functiong :Q→R is the unit cost
to the utility company for the privacy settingq. We assume
that it is a strictly increasing, continuous function whichis
reasonable because, as we have mentioned in Section III,
a low-privacy settingqL provides the utility company with
the high-granularity data it needs to efficiently operate and
maintain the smart grid. For example, recall Section III-A in
which we show that the performance of DLC degrades with
decreases in sampling rate.

The screening problem is to design the contracts, i.e.
{(tL,qL),(tH ,qH)} wheretL, tH ∈R, so that the utility compa-
nies expected profit is maximized where the expected profit
is

Π(tL,qL, tH ,qH) = (1− p)v(qL, tL)+ pv(qH, tH) (7)

where p = P(θ = θ) = 1− P(θ = θ ) ∈ (0,1) where P(·)
denotes probability.

To find the optimal pair of contracts, we solve the follow-
ing optimization problem:

max
{(tL,qL),(tH ,qH)}

Π(tL,qL, tH ,qH) (P-1)

s.t. U(qH ,θ )− tH ≥U(qL,θ )− tL (IC-1)

U(qL,θ )− tL ≥U(qH ,θ )− tH (IC-2)

U(qL,θ )− tL ≥ 0 (IR-1)

U(qH ,θ )− tH ≥ 0 (IR-2)

qL ≤ qH

Depending on the form ofU(q,θ ) andg(q) problem (P-1)
can be difficult to solve. So, we examine the constraints and
try to eliminate as many as we can.

First, we show that (IR-1) is active. Indeed, suppose not.
Then, U(qL,θ )− tL > 0 so that, from the first incentive
compatibility constraint (IC-1), we have

U(qH ,θ )− tH ≥U(qL,θ )− tL ≥U(qL,θ )− tL > 0 (8)

where the second to last inequality holds sinceU(q,θ )
is increasing inθ by assumption. As a consequence, the
utility company could increase the price for both types since
neither incentive compatibility constraint would be active.
This would lead to an increase in the utility company’s pay-
off, i.e. a contradiction. Now, sinceU(qL,θ ) = tL, the last

inequality in (8) is equal to zero. This implies that (IR-2) is
redundant. Further, this argument implies that the constraint
(IC-1) is active. Indeed, again suppose not. Then,

U(qH ,θ )− tH >U(qL,θ )− tL ≥U(qL,θ )− tL = 0 (9)

so that it would be possible for the utility company to
decrease the incentivetH without violating (IR-2).

Now, let us assume that the marginal gain from raising
the value of the privacy settingq is greater for typeθ , i.e.
U(q,θ)−U(q,θ ) is increasing inq. Then, since (IC-1) is
active, we have

tH − tL =U(qH ,θ )−U(qL,θ )≥U(qH ,θ )−U(qL,θ ). (10)

This inequality implies that we can ignore (IC-2). Further,
sinceU is increasing in(q,θ ) and we have assumed thatθ >
θ , we can remove the constraintqL ≤ qH . We have reduced
the constraint set to

tH − tL =U(qH ,θ )−U(qL,θ ) (11)

tL =U(qL,θ ) (12)

Thus, the optimization problem becomes

max
(qL,qH)

ß

p(U(qH ,θ )−g(qH)−U(qL,θ )+U(qL,θ )) (P-2)

(1− p)(U(qL,θ )−g(qL))

™

This reduces further to two independent optimization prob-
lems:

max
qH

{U(qH ,θ )−g(qH)} (P-3a)

max
qL

{−p(U(qL,θ )−U(qL,θ ))+ (P-3b)

(1− p)(U(qL,θ )−g(qL))}

B. Direct Load Control Example

Recall that the unit gain the utility company gets out of
the privacy settingq is a functiong : Q→R. In this section,
we discuss a particular example in whichg is a metric
for how access to high-granularity data affects direct load
control. In Section III-A, Figure 1 shows how that as you
decrease the sampling rate (increase the sampling interval)
the performance degrades, i.e. theH∞ norm increases, and
it degrades in a linear way. Hence, this motivates a choice
for g such thatg(qL)> g(qH) and decreases in a linear way.
Hence, for this example, let

g(q) = ζq (13)

where 0< ζ < ∞. Note that a decreased sampling rate
corresponds to a higher privacy setting. The functiong as
defined is increasing inq so thatg(qL)> g(qH).

Assume that the consumer’s utility is given by

U(q,θ ) =
1
2
(q̄2− (q− q̄)2)θ (14)

whereq∈ [0, q̄] so that it is proportional to how close they are
to the maximum privacy setting ¯q, and their typeθ . Suppose



that θ ∈ {θ ,θ} where 0< θ < θ . Note that atθ the utility
is 1

2q̄2 and atθ the utility is zero.U satisfies the assumption
that it is increasing. Letp = P(θ = θ). Then, the optimal
solutions to the screening problem are

(q∗H ,q
∗
L) =

Ç

q̄− ζ
θ
,

ñ

q̄+
(1− p)ζ
(pθ −θ)

ô

+

å

(15)

where q∗L = 0 when the probabilityp is greater than the
critical point p∗ = θ/θ . The optimal pricest∗H , t

∗
L can be

found by plugging(q∗H ,q
∗
L) into (11) and (12). If the utility

company knew the types, then the optimal solution would be

(q†
H ,q

†
L) =

Å

q̄− ζ
θ
, q̄− ζ

θ

ã

(16)

In Figure 2, we show that as the probability of the high-

p0 p0 1

q†
L

q∗L

q∗H = q†
H

q

q̄− ζ
θ

q̄− ζ
θ

Fig. 2. Comparison between full information and asymmetricinformation
solutions as a function ofp the probability of the high-type in the population.

type being drawn from the population increases,q∗L decreases
away from the optimal full information solutionq†

L. This
occurs untilp= p0 = θ/θ which is the critical probability.
After p0, q∗L = 0 and remains there untilp= 1.

The social welfare is defined to be sum of the pay-off to
the utility company and to the consumer. The social welfare
is given by

Ψ∗(p) = Π(t∗L,q
∗
L, t

∗
H ,q

∗
H)+ p(U(q∗H,θ )− t∗H). (17)

Let

ϕ = (1− p)

(
1
2

Ç

q̄2−
Å

(1− p)ζ
pθ −θ

ã2å

θ

− ζ
Å

q̄− (1− p)ζ
pθ −θ

ã

)
. (18)

Then,

Ψ∗(p) =−pζ
Å

q̄− ζ
θ

ã

+





ϕ , p≤ p0

p
Å

1
2

Å

q̄2−
(
(1−p)ζ
pθ−θ

)2
ã

(θ −θ)
ã

, p> p0

(19)

The social welfare reaches a critical point atp0 beyond
which the utility company will exclude the low-type from
the market and only provide privacy contracts to the high-
type. This is called theshutdown solution. It is reasonable

that as soon as the probability of the utility company facing
a consumer of high-type reaches a critical point, they will
focus all their efforts on this type of consumer since a
high-type desires a higher privacy setting which results in
a degradation of the DLC scheme.

We remark that people who value high privacy more need
to be compensated more to participate in the smart grid. If
there are two contracts, then even consumers who do not
value privacy much will have an incentive to lie. Through
the screening mechanism, the consumer will report his type
truthfully.

V. PRIVACY INSURANCE CONTRACTS

In this section, we will design an insurance contract,
to be offered by a third-party company to the consumer,
that uses the probabilityη that an adversary will fail to
infer private information about the consumer. In the previous
section we designed contracts to get consumers to allow for
lower privacy settings; in this section we design insurance
contracts that allow consumers to purchase protection against
attacks given they know the probability of a successful
attack occurring. The analysis that follows is well known
in the economics literature (see, e.g., [22], [23], [24]). Using
the theory of insurance contracts when there is asymmetric
information and the probability that an adversary can gain
access to consumers’ private information, we analyze both
the consumer’s choice on how much insurance to invest in as
well as the insurer’s decision about which contracts to offer
to a population with both high- and low-risk consumers.

A. Analysis of Consumer’s Decision

Let us start by analyzing the decision the consumer
would make about selecting an amount of insurance given
knowledge of η . Let the consumer’s utility function be
denoted byŨ :R→R and assume that̃U is increasing, twice
differentiable and strictly concave. Let us suppose that the
consumer isrisk-aversewhich means that the consumer, who
makes a decision under uncertainty, will try to minimize the
impact of the uncertainty on her decision.

In addition, suppose the consumer has initial wealthy, runs
the risk of lossℓ with probability 1−η . In the context of
our problem, wealth representsprivate informationthat can
be gained through analysis of consumer energy consumption
data and loss represents exposure of this private information.
Recall that 1−η is the probability with which an adversarial
agent could gain access to private information about a
consumer through access to their consumption data.

The consumer must decide how much insurance to buy.
Let the cost of one unit of insurance bec and suppose that the
insurer pays the consumerβ in the event that an adversary
attacks them resulting in an exposure of private information
where β is the amount of insurance the consumer agrees
to buy. Then the consumer wants to solve the following
optimization problem:

max
β≥0

{ηŨ(y−βc)+ (1−η)Ũ(y+(1− c)β − ℓ)} (P-4)



Suppose thatβ ∗ is a local optimum, then there exists a
Lagrange multiplierλ such that




0=−λ −ηcŨ ′(y−β ∗c)
+(1−η)(1− c)Ũ ′(y+(1− c)β ∗− ℓ)

0= λ β ∗

0≥ β ∗

0≥ λ

(20)

These conditions are the Karush-Khun-Tucker (KKT) neces-
sary conditions. Combining the first and the last condition,
we get

0≥−ηcŨ ′(y−β ∗c)+ (1−η)(1− c)Ũ ′(y+(1− c)β ∗− ℓ)
(21)

We analyze the consumer’s decision by considering two
cases and we present the results in the following propositions.

Proposition 1: Suppose that the consumer is offered pri-
vacy insurance at the ratec = 1−η , i.e. at a rate equal to
the probability of a successful attack. Then the consumer
will choose to purchase an amount of insurance equal to the
loss, i.e.β ∗ = ℓ.

Proof: Sincec= 1−η , (21) reduces to

0≥ η(1−η)
(
Ũ ′(y+ηβ ∗− ℓ)−Ũ ′(y−β ∗(1−η))

)
(22)

and since(1−η)η ≥ 0 this again reduces to

0≥ Ũ ′(y+ηβ ∗− ℓ)−Ũ ′(y−β ∗(1−η)) (23)

Recall that we assumed̃U to a be a concave function and
that a function is strictly concave if and only if its derivative
Ũ ′ is decreasing. Hence,

Ũ ′(z)< Ũ ′(z− ℓ) (24)

sinceℓ > 0. This fact along with (23) implies thatβ ∗ > 0.
Now, we claim thatβ ∗ = ℓ. Indeed, suppose that 0< β ∗ < ℓ,
then from (23) we have

Ũ ′(ỹ− ℓ)≤ Ũ ′(ỹ−β ∗) (25)

where ỹ = y+ ηβ ∗. This inequality violates (24). On the
other hand, suppose that 0≤ ℓ≤ β ∗, then from (24) we have

Ũ ′(ỹ−β ∗)> Ũ ′(ỹ− ℓ) (26)

but this violates the KKT inequality (23). Hence,β ∗ = ℓ
which is to say that the consumer will purchase an amount
of insurance equal to the loss of privacy she would endure
under an attack.

Proposition 2: Suppose that the consumer is offered in-
surance at the ratec > 1−η , i.e. at a rate higher than the
probability of a successful attack. Then the consumer will
not purchase the full insurance, i.e.β ∗ < ℓ.

Proof: Suppose that the consumer is offered privacy
insurance at a ratec > 1−η and that the optimal choice
for the consumer isβ ∗ = ℓ≥ 0. Then, first-order optimality
conditions imply that

−ηŨ ′(y− ℓc)c+(1−η)Ũ ′(y− ℓc)(1− c) = 0 (27)

However, sincec> 1−η andŨ is increasing, from (21) we
have

(−ηc+(1−η)(1− c))Ũ ′(y− ℓc)< 0 (28)

so that, in fact, the optimalβ has to be less than the loss
experienced, i.e.β ∗ < ℓ.

B. Analysis of the Insurer’s Decision

Let us now consider the case of a third-party insurance
company offering offering privacy insurance to the consumer
which protects them against losses due to attacks. In a way,
insurance allows the consumer tohedge their betagainst
selecting a contract with a low-privacy setting.

We consider a similar setup as before: the consumer’s
utility function Ũ is strictly concave, increasing and twice
differentiable and for the sake of analysis we assume that
Ũ(0) = 0. We consider a scenario in which the insurer faces
two types: high-risk consumerθh and low-risk consumerθl .
That is to say we are assuming that there is a portion of
the population that is more likely to be attacked, i.e. the
risky consumers, possibly because they engage in high-risk
behavior or due to the fact that they selected a low-privacy
setting contract with the utility company. The consumer again
has an initial amount of private information with valuey
and with probability 1−η j some of her private information
is exposed resulting in a lossℓ where j = h, l indicates the
consumer’s type. We assume that 1−ηl < 1−ηh.

We will assume that the insurer has a prior over the
distribution of types. In particular, we assume that the risky
type θh occurs in the population with probabilityp and that
p> 0.

Suppose we are given an insurance contract(αa,αn)
where αa is the compensation to the consumer given that
a successful attack occurred andαn is the neutral case
(no attack). LetX be a random variable representing the
consumer’s wealth such that with probability 1−ηi it takes
valuey−ℓ+αa and with probabilityηi it takes valuey−αn.
Then, the consumers expected utility is

E[Ũ(X)] = (1−ηi)Ũ(y− ℓ+αa)+ηiŨ(y−αn) (29)

Note that in the previous subsection we analyzed the con-
sumer’s decision given a insurance contract of the form

αa = (1− c)β , αn = βc (30)

The insurer is a monopolist whose expected cost is

Π(αh
a ,α

h
n ,α

l
a,α

l
n) =p

Ä

−(1−ηh)αh
a +ηhαh

n

ä

+(1− p)
Ä

−(1−ηl)α l
a+ηlα l

n

ä

(31)

In the case of asymmetric information, i.e. the insurer does
not know the consumer’s type, the optimization problem he



must solve is

max
{(α j

a,α
j
n)} j=h,l

Π(αh
a ,α

h
n ,α

l
a,α

l
n) (P-5)

s.t. (1−ηi)Ũ(y− ℓ+α i
a)+ηiŨ(y−α i

n)

≥ (1−ηi)Ũ(y− ℓ+α j
a)+ηiŨ(y−α j

n),

i, j ∈ {h, l}, i 6= j (IC)

(1−ηi)Ũ(y− ℓ+α i
a)+ηiŨ(y−α i

n)

≥ (1−ηi)Ũ(y− ℓ)+ηiŨ(y), i ∈ {h, l} (IR)

Constraints labeled (IC) are the incentive compatibility con-
straints and constraints (IR) are the individual rationality
constraints. Both are similar to those presented in Section
IV-A. Incentive compatibility ensures that the consumer will
report their type truthfully and the individual rationality
constraint ensures that the consumer will participate.

Following a similar reasoning as in Section IV-A, we can
reduce the optimization problem (P-5) by reasoning about
the constraint set defined by (IC) and (IR). In particular,
we argued that the high-privacy type’s incentive compati-
bility constraint was active and that the low-privacy type’s
individual rationality constraint was active. In addition, we
showed the other two constraints (IC-2) and (IR-1) could be
removed. Now, in the insurance case, since 1−ηl < 1−ηh,
the incentive compatibility constraint for the risk type is
active and the individual rationality constraint for the safe
type is active, i.e. the constraint set for (P-5) becomes

(1−ηh)Ũ(y− ℓ+αh
a)+ηhŨ(y−αh

n)

= (1−ηh)Ũ(y− ℓ+α l
a)+ηhŨ(y−α l

n) (IC-h)

(1−ηl)Ũ(y− ℓ+α l
a)+ηlŨ(y−α l

n)

= (1−ηl)Ũ(y− ℓ)+ηlŨ(y) (IR-l)

Let us try to restate the problem in a way which allows us to
characterize the solutions. Since we have assumed thatŨ is
strictly concave, increasing and twice differentiable, wecan
defineW be its inverse, whereW′ > 0 andW′′ > 0. Further,
define

Ũ i
a = Ũ(y− ℓ+α i

a) and Ũ i
n = Ũ(y−α i

n). (32)

The transformed utility is

Π̃(Ũh
a ,Ũ

h
n ,Ũ

l
a,Ũ

l
n) = p

(
−ηhW(Ũh

n )− (1−ηh)W(Ũh
a )

+ x− (1−ηh)ℓ
)
+(1− p)

(
−ηlW(Ũ l

n)

− (1−ηl)W(Ũ l
a)+ x− (1−ηl)ℓ

)
(33)

Then problem (P-5) becomes

max
{(Ũ i

a,Ũ
i
n)}i=h,l

Π̃(Ũh
a ,Ũ

h
n ,Ũ

l
a,Ũ

l
n) (P-6)

s.t. (1−ηh)Ũ
h
a +ηhŨ

h
n = (1−ηh)Ũ

l
a+ηhŨ

l
n

(1−ηl)Ũ
l
a+ηlŨ

l
n = (1−ηl)Ũ(y− ℓ)+ηlŨ(y)

The Lagrangian of the optimization problem is

L(Ũh
a ,Ũ

h
n ,Ũ

l
a,Ũ

l
n,λ1,λ2) = Π̃(Ũh

a ,Ũ
h
n ,Ũ

l
a,Ũ

l
n)

+λ1((1−ηh)Ũ
h
a +ηhŨ

h
n − (1−ηh)Ũ

l
a−ηhŨ

l
n)

+λ2((1−ηl)Ũ
l
a+ηlŨ

l
n− (1−ηl)Ũ(y− ℓ)). (34)

Proposition 3: Given the probabilities 1−η j , j = h, l that
the consumer of typej will experience a privacy breach, if
the insurer solves the optimization problem (P-6), then the
high-risk consumer will be fully insured and the low-risk
consumer will not be fully insured.

Proof: We first show that the risky type will be fully
insured. Taking the derivative of the Lagrangian with respect
to Ũh

a andŨh
n we get the following two equations:

0=−p(1−ηh)W
′(Ũh

a )+λ1(1−ηh) (35)

0=−pηhW
′(Ũh

n )+λ1ηh (36)

Solving for λ1 in the first equation and plugging it into
the second, we get̃Uh

a = Ũh
n so thatℓ−αh

a = αh
n , i.e. the

amount the high-risk type pays for insurance is equal to the
compensation minus the loss in the event of a privacy breach.
Thus, the high-risk type will be fully insured.

Now, we show that the low-risk type will not be fully
insured. Taking the derivative of the Lagrangian with respect
to Ũ l

a andŨ l
n, we get

0=−(1−ηl)(1− p)W′(Ũ l
a)−λ1(1−ηh)+λ2(1−ηl)

(37)

0=−(1− p)ηlW
′(Ũ l

n)−λ1ηh+λ2ηl (38)

From (35), we solved forλ1 = pW′(Ũh
a ). By plugging inλ1

into (37), solving forλ2 and plugging bothλ1 and λ2 into
(38), we get the following expression:

0=W′(Ũh
a )p
Å

−ηh+ηl
1−ηh

1−ηl

ã

+ηl (1− p)(W′(Ũ l
a)−W′(Ũ l

n)) (39)

Sinceηl > ηh andW′ is increasing by assumption, the above
equation implies that

Ũ l
n−Ũ l

a > 0 (40)

and hence the low-risk type does not fully insure.
The above proposition tells us that in order to keep the high-
risk type from masking as a low-risk type, the insurer must
make the contract for the low-risk type unappealing to the
high-risk type.

We remark that the analysis in this section can be applied
to the case where the utility company is purchasing insurance
as well. In particular, if the utlity company has not invested
in a lot of security or tjeu are not following the best practices
recommendations, e.g. NIST-IR 7628 [25], then they are
engaging inrisky behavior. The insurance company will not
know a propri whether or not the utility company is high-risk
type. Through the design of insurance contracts the insurance
company can asses the utility’s type while offering contracts
that maximize their own utilty.



VI. CONCLUSION

Utilizing our results on the fundamental limits of non-
intrusive load monitoring, we provide a novel upper bound
on the probability of a successful privacy breach. Under the
privacy metering policy in which sampling rate variation is
used, we study how the performance of direct load control
degrades using theH∞ norm. This provided us with a metric
for understanding how sampling rate affects the quality of
direct load control. Using this metric along with the upper
bound on the probability for a successful privacy breach, we
design a screening mechanism for the problem of obtaining
the consumer’s type when there is asymmetric information.
Further, we design insurance contracts using the probability
of successful privacy breach given that in the population of
consumers there is both high-risk and low-risk consumers.

This work opens up a number of questions in the area
of privacy metrics as well as customer segmentation and
targeting. We considered only two-type models in both the
design of contracts. We are currently looking at the theory
for a continuum of types. The screening problem with a
continuum of types results in a problem that resembles
a partial differential equation constrained optimal control
problem. We are developing numerical techniques to solve
this problem. We also assumed that the utility company and
private insurer knew the distribution of types in the popu-
lation. We are currently developing algorithms for learning
these probabilities using data-drive techniques. In addition,
we considered that the utility would offer a contract solely
based on privacy settings whereas in reality the contract
would normally contain additional items such as maximum
power consumption, rate, etc. Consumers in the population
may value these goods differently. In this setting, the screen-
ing problem would be come multi-dimensional [26]. We
are exploring this in the context of privacy-aware incentive
design for behavior modification.
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