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Privacy and Customer Segmentation in the Smart Grid

Lillian J. Ratliff, Roy Dong, Henrik Ohlsson, Alvaro A. Gdenas and S. Shankar Sastry

Abstract—In the electricity grid, networked sensors which consumers can select the quality of the service contrabt wit
record and transmit increasingly high-granularity data are the utility company. Essentially, electricity service ieved
being deployed. In such a setting, privacy concemns are anatal 55 5 nproduct line differentiated according to privacy where
consideration. We present an attack model for privacy breahes, lect the | | of ori that fits thei d
and, using results from estimation theory, derive theoretal consumers can selec _e evel o pr_lvacy atmis their see
results ensuring that an adversary will fail to infer private and wallet. The screening process is a way to do customer
information with a certain probability, independent of the = segmentation the result of which can lead to targeting.
algorithm used. We show utility companies would benefit from |n particular, using knowledge of consumer preferences,
less noisy, higher frequency data, as it would improve varios — yhq \tility company could then incentivize consumers based

smart grid operations such as load prediction. We provide . - . .
a method to quantify how smart grid operations improve O their preferences to choose a low privacy setting which

as a function of higher frequency data. In order to obtain helps increase the granularity of data for use by the utility
the consumer’s valuation of privacy, we design a screening company for programs like demand response, direct load

mechanism consisting of a menu of contracts to the energy control, etc. In addition, third-party insurance compardan
consumer with varying guarantees of privacy. The screening yegign insurance contracts. Insurance allows the constamer

process is a means to segment customers. Finally, we design ) . . . .
insurance contracts using the probability of a privacy breah protect himself in the event of a privacy breach, i.e. shé wil

to be offered by third-party insurance companies. be compensated for any experienced loss.
The paper is organized as follows. In Secfidn Il we review
. INTRODUCTION the problem of non-intrusive load monitoring (NILM) and
Increasingly advanced metering infrastructure (AMI) isshow how NILM leads to our novel privacy metric. We
replacing older technology in the electricity grid. Smarkhow in an example that the probability of an adversary
meters send detailed information about consumer elegtricisuccessfully implementing a privacy breach decreasesawith
usage over a network every half-hour, quarter-hour, or idecrease in sampling rate. We discuss the impact of sampling
some cases, every five minutes. This high-granularity datate on smart grid operations in Sectiod Ill. In Section IV
is needed to support energy efficiency efforts as well age use the privacy metric to design a screening mechanism
demand-side management. However, improper handling tifat consists of privacy contracts between the consumer
this information could also lead to unprecedented invasiorand the utility company. Similarly, in Sectidn] V we use
of consumer privacy [1], [2]. the privacy metric to design insurance contracts. Finally,
Given that smart grid operations inherently have privacin Section[V] we summarize the results and discuss future
and security risks [2], it would benefit the utility company,research directions.
to know the answer to the following questions: How do con-
sumers in the population value privacy? How can we quantify Il. PRIVACY GUARANTEES
privacy? How do privacy-aware policies impact smart grid In this section, we discuss our metric for privacy, and
operations? In this paper we address these questions as wglhrantees of privacy under this metric. For this paper, we
as expose new directions for future research on privacy améstrict the scope of our analysis to data collection pedici
customer segmentation in the smart grid. Another important aspect of privacy is how data retention
Using our results on the fundamental limits of non-ypolicies can alter privacy and smart grid performance. Such
intrusive load monitoring [3], we are able to come upa topic is reserved for future research.
with probabilities for the success of an attack by an ad-
versarial agent independent of the algorithm. Then usiny- Nonintrusive Load Monitoring
these probabilities we can design a screening mechanismOur formulation of privacy builds on recent research
consisting of a menu of contracts to be offered to consumetigto nonintrusive load monitoring (NILM) algorithms, first
One set of contracts to be offered by the utility companyroposed by Hart [4]. The goal of NILM is to use the aggre-
assess how the consumer values privacy thereby reveating bate power consumption signal, which can be measured by
preferences. Based on their valuation of privacy as a googhetering infrastructures without the placement of addaio
_ _ sensors inside the home, and make inferences on the load
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of Electrical Engineering and Computer Sciences, Unitersif Cali- profile. For example, the problem of energy disaggregation
fornia, Berkeley, Berkeley, CA, 94707, USfrat1iffl, roydong, IS t0 recover the power consumption signals of individual
ohlsson, sastry}@eecs.berkeley.edu devices [5]. Another example would be to detect when
A A Cardenas IS with - the Department of CompUterdevices switch on and off, which is often referred to as event
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There are many approaches to the design of NILM alggrivacy not with differential privacy but with equivocatio
rithms, including but not limited to hidden Markov modelsmetrics [14].
(HMMs) [7], [8], [9], sparse coding methods [10], and We also assume a powerful adversary that knows the
dynamical systems approaches [11]. These methods varyprobability distribution of the energy consumption of didi
the prior information required; some are completely unsupesignals, and their prior probability for being active in ag a
vised and nonparametric, while others require a large amouwgregated signal. As an observation, we assume the adversary
of disaggregated data to build a dictionary. However, in ounias access to the aggregate power consumption signal, but
recent work, we provided a unifying framework for modelingnot the device-level signals, for a building.
all of these algorithms [3]. More formally, suppose there are two inpuisandus,. For

To the best of our knowledge, every approach to energach input, the aggregate power consumption signal follows
disaggregation gives devices a certain kind of model, be distributionsF; andF,, respectively. In this paper, we assume
an HMM, dictionary, or dynamical system. Most of thesehese distributions to be Gaussian; however, we consiger th
approaches have an input space: for HMMs, the input is general case in [3].
sequence of latent state transitions; for the sparse agipgsa  Suppose the distributions have megms and u,, and
it is a sparse vector corresponding to the most represeatatboth distributions have the same covariancd. Let a =
elements in the dictionary, and in dynamical systems, it ie—2(u— 1) and b = 2%2 (12l = [l p2l|3). Suppose the
an input signal to the systems. adversary uses any estimatoarid suppose the evenfa =

In all these approaches, a fixed input yields a probability;} and {u= up} are equally likely. Then, the probability
distribution on the device’s power consumption; this distr  of our adversary successfully distinguishing two inputs is
tion is often assumed to be Gaussian. Finally, note thatlin dlounded by
the mentioned frameworks, recovering the input is almast th — 1 (@ po+b)
same as recovering the device’s power consumption signal. P(l=u) < (1 f< llall2 )) 1)

Other NILM formulations also can fall into this frame- 202
work. For example, in event-based NILM, if the task is tQyhere erf is the Gauss error function. More details can be
determine whether or not the air conditioner is in use, we ¢agnd in 3].
consider the probability distribution across aggregateqro
consumption signals when the air conditioner is on and when I1l. SMART GRID OPERATIONS

the air conditioner is off. In this case, whether or not the ai . . . .
In Sectior1l, we developed a metric for privacy. If privacy

conditioner is on serves as an input. is the only thing of concern, a trivial solution is to record
In our framework, NILM algorithms are abstracted as y thing ' Vi uton |

) . nothing transmit nothing. However, the utility company has
measurable functions operating on the aggregate power cal; L . . : .
. . . other objectives than just preserving the privacy of its-con
sumption signal, and we ask whether or not the algorithms . ; . .
P . sumers. Hence, privacy issues arise because the sensitive d
can successfully distinguish between inputs. For a more . SN X
: : . has other uses. Such polices as noise injection or varyig th
comprehensive treatment of this topic, we refer the reader : . i
0 [3] Sampling ratg can be er_nployed t.o. protect against privacy
’ breaches while still allowing the utility company to operat
In advanced metering infrastructures, the data is used to
improve the performance of smart grid operations. How
Now, we are ready to introduce our metric of privacy. Smart grid operations degrade under different metering pol
One of the common theoretical definitions for a privacyies is an active topic of research; for preliminary invgsi
metric is the notion of differential privacy [12], [13]. Wi  tions, see [15], [16]. Intuitively, the performance willgtade
differential privacy has many attractive properties, itisst ~ as fewer samples are collected or more noise is added. We
useful when we want to share data via a trusted third pargiftempt to quantify this degradation. In this section, we
aggregator, or by injecting noise in the original messageigévebp gn direct _Ioad control example to demonstrgte how
sent to a third party; however, for many practical, reguigto smart_grld operations performance is affected by different
dispute resolution, performance, or business reasonse théampling rates.
will always be several cases where we need to get access to
the raw data, and in these cases differential privacy will nd": Direct Load Control
help us identify a good security mechanism to prevent raw The problem of direct load control has recently been stud-
data from being compromised. ied as viable option to improve smart grid operations [17],
In contrast, we fix a definition of a privacy breach wherg18].
the user has a set of possible inputs, and he wishes to keefsenerator output is generally determined by two pro-
the true input private. For example, the definition of privac cesses: unit commitment and economic dispaltihit com-
breach might be whether or not an adversary knows if th@itmentis done in advance, and sets the generator ramping
user is doing dishes in the dishwasher, watching TV, aschemesEconomic dispatclis done online, and determines
exercising on a treadmill in the evening. This notion of &qui the output levels of generators that are already online tetme
ocation is related to recent work in privacy who measure®tal demand.

B. Privacy Metric



When the demand exceeds the output capacity of all online
generators, economic dispatch schemes will use generators
with quick ramp-up times to ensure stability of the power
grid. These generators are very inefficient. One goal ottlire
load control (DLC) as an economic dispatch scheme is to
reduce the deviation of actual demand from the forecasted
demand.

Consider the direct load control model:

Xiet1 = X + Uk + Hic+ O 2

Here,x € R represents the power consumption of a unit at
timek, where a unit can be a household, an HVAC system for
a building, or a sector of the power gridy € R represents
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the direct load control signal at timle p € R represents
the affine term which generates our nominal demands at
time k; if ux =0 anddy =0, thenpy creates our forecasted Fig. 1.  TheJ{., norm for the equidistant sampling scheme as a function
demand. Finallydk represents the disturbance at tiken of the sampling intervaN. A higher sampling intervaN corresponds to a
. . . . lower sampling frequency, i.e. the utility company receiless data.
this model, disturbances from the nominal demand persist,

and DLC policies must be employed to return the power

consumption to the nominal demand. _ privacy and can leverage that in the design of incentives
Now, consider different sampling rates. That is, we SUpjimed at inducing the consumer to select a privacy setting

pose our controller is only able to receive measuremenfsore desirable from the perspective of the utility company.
everyN time steps. However, it is still able to issue control

commands at every time step. We wish to design a controllé. Two Types: High-Privacy and Low-Privacy Settings
that makes use of the available measurements to optimally\ye model privacy-settings on smart meters as a good.
issue control commands to a sector of the power grid.  The quality of the good is either a high-privacy setting

The subsampled system can be modeled in a Markqy, or a low-privacy settingy.. The consumer can choose
jump linear system (MJLS) framework. To define optimalitygjiner a high privacy setting or a low privacy setting, ile t
we consider the}, norm of MJILSs, as defined in [19], onsumer selectg€ Q = {g4,q.} C R whereq, < g4 and
[20]. In our application, thel, norm represents a worst _, - gL < gu < ®. The consumer’s valuation of privacy
case estimate of how much the true power consumptiqg pig type which takes valuesd € {6,6} c R where 0
will deviate from the power consumption used for unitepresents how much the consumer values high-privacy over
commitment. This worst case estimate is a function of th%w-privacy and@ < 8. We assume that typ# is distinct
uncertainty in the load forecast. from the private information itself; by this we mean that

Recent results in the analysis of MJLS gives us the optim@low much the consumer values privacy is not also private
Ho controller for subsampled scalar systems [16]. Thuspformation. We note here that these types implicitly make
we can analyze how the performance of direct load controlse of the probabilities presented in Secfidn I1.
is affected by different sampling schemes. For example, The consumers typé@ is related to his willingness to pay
Figure[1 gives us the performance for eqwdlstant sampling, the following way: if the utility company announces a
Thus, the formulation allows us to quantify the value of &yjcet for choosingg, the type-dependent consumer’s utility
higher sampling rate to the utility company. is equal to zero if he does not select a privacy settjingnd

IV. PRIVACY CONTRACTS itis

In this section, we discuss how the utility company can 3)
design a screening mechanism in order to assess the cinhe does select a privacy setting. The case in which the
sumer’s unknown type. This is a mechanism design probleaonsumer does not select a privacy setting is considered
with asymmetric information. The utility company designs ghe opt-out case in which consumer exercises his right to
screening mechanism whose contracting device is the privanot participate. The inequality if](3) is often called the
setting offered to the consumer. This screening process cendividual rationality constraint and in the design of the
be thought of as customer segmentation since it will extragrivacy contracts we will enforce it in order to make sure
each consumer’s type after which the consumers can lieat all consumers will opt-in. The functids : R x © — R
grouped according to their type. is assumed to be strictly increasing (ig, 6), concave inq,

We consider a model in which there are only two typeand represents the consumer’s preferences.
and we utilize standard results from the theory of screening Since we have only two types, the contracts offered will
(see, e.g., [21]) to develop a framework for designing myva be indexed by the privacy settingg and qq. Further, as
contracts. We remark that as a result of the screening pgsocege mentioned the consumer can opt-out by not selecting
the utility company will know how each consumer valuesa privacy option at all. Hence, we need to constrain the



mechanism design problem by enforcing the inequality giveimequality in [8) is equal to zero. This implies thAt (IR-8) i
in Equation [(B) for each value & € {8, 6}. In addition, we redundant. Further, this argument implies that the coimétra

need to enforcéncentive-compatibilityconstraints (IC-1) is active. Indeed, again suppose not. Then,
U(a,0) —tw > U(a, 0) -t 4) U(gH,8) —tu >U(q,0) —tt >U(q,8) -t =0 (9)

and so that it would be possible for the utility company to
U(qe,8)—tL >U(gn,8) —t (5) decrease the incentitg without violating [TR=2).

Lo . . Now, let us assume that the marginal gain from raising
where the first inequality says that given the prige a ' . . — .
9 y say g prige the value of the privacy setting is greater for typed, i.e.

consumer of typed should prefer the high-privacy setting — S 3 ; .
gy and the second inequality says that given the ptica U(,6) —U(q,8) is increasing ing. Then, since[{IC1) is

consumer of typ@ should prefer the low-privacy settinyg . active, we have
The utility company has unit utility ty —t. =U(g4,0) - U(qL,0) >U(gn,8) —U(qL,8). (10)

v(q,t) = —g(q) +t (6)  This inequality implies that we can ignore (IC-2). Further,
sinceU is increasing inq, ) and we have assumed théat>

where we assume that the funct_|gnQ —>R_ is the unit cost 6, we can remove the constraigt < gn. We have reduced
to the utility company for the privacy settingg We assume

o ) : . : . . the constraint set to
that it is a strictly increasing, continuous function whih
reasonable because, as we have mentioned in Sdcflon II, ty —t. =U(qu,0) —U(qL, 0) (11)
a low-privacy settingg. provides the utility company with t. =U(q.,0) (12)
the high-granularity data it needs to efficiently operatd an o
maintain the smart grid. For example, recall SecfionJilrA i Thus, the optimization problem becomes

which we show that the performance of DLC degrades with _ _
decreases in sampling rate. ((Tg,:(){p(u (aH,0) —g(an) —U(aL,6) +U(aL,8)) (P-2)
The screening problem is to design the contracts, i.e.
{(tL,q), (tn,qn) } wheret,,ty € R, so that the utility compa- 1-p)(U(q,B)— g(qL))}
nies expected profit is maximized where the expected profit
is This reduces further to two independent optimization prob-
M(t, 00, th,Gn) = (1— p)V(aL,tL) + pv(au,tu)  (7)  lems:
where p=P(6 = 0) =1—-P(6 = 0) € (0,1) where R.) rggx{u(qHﬁ) —g(an)} (P-3a)
denotes probability. _
To find the optimal pair of contracts, we solve the follow- n’é?x{—p(u (0, 8) —U(a, 8))+ (P-3b)
ing optimization problem: (1-p)(U(qL,8) —g(aL))}
{(tqu{n)lft‘lqu)}n(tLvQLatHqu) (P-1) B. Direct Load Control Example
s.t. U(gH,0) —ty >U(qL,0) —t. (IC-1) Recall that the unit gain the utility company gets out of
U(qL,8) -t >U(gn,8) —ty (Ic-2) the privacy settingj is a functiong: Q — R. In this section,
n N we discuss a particular example in whichis a metric
—t > -
U(qL’Q_) =0 (IR-1) for how access to high-granularity data affects direct load
U(gn,8) -ty >0 (IR-2) " control. In Sectior TI=A, Figuré1l shows how that as you
aL < OH decrease the sampling rate (increase the sampling interval

, the performance degrades, i.e. thg, norm increases, and
Depending on the form df (q, ) andg(q) problem[P-1)  yegrades in a linear way. Hence, this motivates a choice

can be difficult to solve. So, we examine the constraints aqgr g such thatg(qL) > g(qu) and decreases in a linear way.
try to eliminate as many as we can. Hence, for this example, let

First, we show thaf{IR11) is active. Indeed, suppose not.
Then, U(q.,8) —t. > 0 so that, from the first incentive g(a)=<q (13)

compatibility constraint(ICi1), we have where 0< { < . Note that a decreased sampling rate

U(gn,0) -ty >U(qL,0)—t. >U(qL,8) -t >0 (8) corresponds to a higher privacy setting. The functipas
defined is increasing ig so thatg(q.) > g(gn).

where the second to last inequality holds sirdéqg, ) Assume that the consumer's utility is given by

is increasing in@ by assumption. As a consequence, the
utility company could increase the price for both types sinc U(q,0) = }(q—Z —(q- @2)9 (14)
neither incentive compatibility constraint would be aetiv 2

This would lead to an increase in the utility company’s paywhereq € [0, q] so that it is proportional to how close they are
off, i.e. a contradiction. Now, since(q.,0) =t., the last to the maximum privacy setting, and their type. Suppose



that 0 € {6,0} where 0< 8 < 6. Note that atf the utility that as soon as the probability of the utility company facing
is %dz and at@ the utility is zero.U satisfies the assumption a consumer of high-type reaches a critical point, they will
that it is increasing. Lep = P(6 = 0). Then, the optimal focus all their efforts on this type of consumer since a

solutions to the screening problem are high-type desires a higher privacy setting which results in
z (1-p)¢ a degradation of the DLC scheme.

ay,q9;) = (q_— =, {q_-y _7} ) (15) We remark that people who value high privacy more need

6 (P6—-8)], to be compensated more to participate in the smart grid. If

where g; = 0 when the probabilityp is greater than the there are two contracts, then even consumers who do not
critical point p* = /6. The optimal prices;,t7 can be value privqcy much wi.II have an incentive to lie. Thr_ough
found by plugging(q;,,q;) into (Id) and [IR). If the utility the screening mechanism, the consumer will report his type
company knew the types, then the optimal solution would bguthfully.

(QLQD _ (q_— ¢ q— Z) (16) V. PRIVACY INSURANCE CONTRACTS

0 9 In this section, we will design an insurance contract,

In Figure[2, we show that as the probability of the highiy pe offered by a third-party company to the consumer,
that uses the probability) that an adversary will fail to

q infer private information about the consumer. In the prasio
section we designed contracts to get consumers to allow for
lower privacy settings; in this section we design insurance
contracts that allow consumers to purchase protectiomagai
attacks given they know the probability of a successful
attack occurring. The analysis that follows is well known
in the economics literature (see, e.g., [22], [23], [24]3ing
the theory of insurance contracts when there is asymmetric
information and the probability that an adversary can gain
access to consumers’ private information, we analyze both
Fig. 2. Comparison between full information and asymmaetrformation the consumer’s choice on how much insurance to invest in as
solutions as a function qf the probability of the high-type in the population. well as the insurer’s decision about which contracts toroffe
to a population with both high- and low-risk consumers.
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type being drawn from the population increasgsdecreases
away from the optimal full information solutioq[. This A, Analysis of Consumer’s Decision

occurs untilp = po = /6 which is the critical probability.
P=Po—6/ P y Let us start by analyzing the decision the consumer

After po, gf =0 and remains there untd = 1. ) i :
The social welfare is defined to be sum of the pay-off t ould make about selecting an amount of insurance given
r nowledge ofn. Let the consumer’s utility function be

the utility company and to the consumer. The social welfa ~ N . .
enoted byJ : R — R and assume thét is increasing, twice

's given by differentiable and strictly concave. Let us suppose that th

W*(p) = N, a4, 05) + pU (a5, 0) —t). (17)  consumer isisk-aversewhich means that the consumer, who
makes a decision under uncertainty, will try to minimize the
impact of the uncertainty on her decision.

1/ 1- 2 In addition, suppose the consumer has initial weglttuns
¢:(1_p)<§<q2_<( Ly )e pp 9

Let

= the risk of loss¢ with probability 1— n. In the context of
) our problem, wealth represengsivate informationthat can

(18) be gained through analysis of consumer energy consumption
data and loss represents exposure of this private infoomati
Recall that 1- n is the probability with which an adversarial
agent could gain access to private information about a
W (p) = —pg (—_ i) consumer through access to their consumption data.
] The consumer must decide how much insurance to buy.
, P < po Let the cost of one unit of insurance band suppose that the
+ p(l (q2_ ((l:_p)i)z) @ 6)) 0> po insurer pays the cqnsqmﬁrin the event tha_t an gdversar_y
po—8 =)’ attacks them resulting in an exposure of private infornmtio
(19) where 8 is the amount of insurance the consumer agrees
to buy. Then the consumer wants to solve the following

The social welfare reaches a critical point pg beyond A
optimization problem:

which the utility company will exclude the low-type from

the market and only provide privacy contracts to the high- max{nU(y—Bc)+(1—n)0(y+ (1—-c)B—¢)}  (P-4)
type. This is called theshutdown solutionlt is reasonable B=0



Suppose tha3* is a local optimum, then there exists aHowever, since > 1—n andU is increasing, from{21) we

Lagrange multiplieA such that have 5
0=—A —nod/(y—B*c) (—nc+(1-n)(1—-c)U'(y—tc) <0 (28)
+(1-n)(L-cV'(y+(1-c)B*—1) so that, in fact, the optimgB has to be less than the loss
0=Ap" (20)  experienced, i.e8* < . m
0>pB*
0>A

These conditions are the Karush-Khun-Tucker (KKT) neces-
sary conditions. Combining the first and the last conditior‘3 Analysis of the Insurer’s Decision
we get '

N/ * ~/ *
0> —ncU'(y—B*c)+(1—n)(1—-cU'(y+(1-c)B" ) Let us now consider the case of a third-party insurance

(21) . T he case
We analyze the consumer's decision by considering weompany offering offering privacy insurance to the consume

. . ... which protects them against losses due to attacks. In a way,
cases and we present the results in the following propositio . . )
insurance allows the consumer hedge their betagainst

selecting a contract with a low-privacy setting.
Proposition 1: Suppose that the consumer is offered pri-

vacy insurance at the rate=1—n, i.e. at a rate equal to
the probability of a successful attack. Then the consumé
will choose to purchase an amount of insurance equal to t
loss, i.e.* = /.

We consider a similar setup as before: the consumer’s
}ility function U is strictly concave, increasing and twice
ifferentiable and for the sake of analysis we assume that
(0) =0. We consider a scenario in which the insurer faces
two types: high-risk consumed, and low-risk consume#, .
Proof: Sincec=1-n, (21) reduces to That is to say we are assuming that there is a portion of
_ 5 i R*(1 the population that is more likely to be attacked, i.e. the
0=n(1 r])(U y+np =6 -Uly=p(1 ’7))) (22) risky consumers, possibly because they engage in high-risk
and since(1—n)n > 0 this again reduces to behavior or due to the fact that they selected a low-privacy
~ ‘ ~y ‘ setting contract with the utility company. The consumeiiga
0=Uly+np =) -Uly-B"(1-n)) (23)  has an initial amount of private information with valye
Recall that we assumed to a be a concave function andand with probability - n; some of her private information
that a function is strictly concave if and only if its derivet iS exposed resulting in a logswhere j = h,| indicates the
U’ is decreasing. Hence, consumer’s type. We assume that ) < 1—np,.

U'(2) < U'(z—0) (24) ~ We will assume that the insurer has a prior over the
distribution of types. In particular, we assume that th&yris

since/ > 0. This fact along with[(23) implies thg#* > 0.  type 6, occurs in the population with probability and that
Now, we claim tha{3* = /. Indeed, suppose that0f* </, p> 0.

then from we have . .
(28) Suppose we are given an insurance contragt, o)

U'(y—¢) <U’(y-B%) (25) where a, is the compensation to the consumer given that

a successful attack occurred amg, is the neutral case

(no attack). LetX be a random variable representing the

consumer’s wealth such that with probability-1y; it takes

U’(y—p*) > U’ (§—¢) (26) valuey—/+ ay and with probabilityn; it takes valuey — ap.
Then, the consumers expected utility is

where y'= y+ nB*. This inequality violates[{24). On the
other hand, suppose thak¢ < 8*, then from [[24) we have

but this violates the KKT inequality (23). Hencg’ = /¢ . . .
which is to say that the consumer will purchase an amount E[U(X)] = (1-n)U(y—{¢+aa)+nU(y—an)  (29)
of insurance equal to the loss of privacy she would endu

'Rote that in the previous subsection we analyzed the con-
under an attack.

sumer’s decision given a insurance contract of the form
Proposition 2: Suppose that the consumer is offered in-
surance at the rate> 1—n, i.e. at a rate higher than the da=(1-¢)B, an=pc (30)

probability of a successful attack. Then the consumer Wiltthe insurer is a monopolist whose expected cost is

not purchase the full insurance, i@% < /. b

h —n(_(1_ h h
Proof: Suppose that the consumer is offered privacy M(aa, an, da, o) —p( (1 nh)aa+nha”>
insurance at a rate > 1—n and that the optimal choice +(1-p) (—(1—n|)ag+ n aﬁ,)
for the consumer ig* = ¢ > 0. Then, first-order optimality (31)

conditions imply that . L .
Py In the case of asymmetric information, i.e. the insurer does

—nU’(y—tc)c+(1—n)0'(y—tc)(1—c)=0 (27) not know the consumer’s type, the optimization problem he



must solve is The Lagrangian of the optimization problem is
max  M(ag, ag, o, ap) (P-5) L(UZ, U8, U4, Op, A1, 42) = N(UE, U1, 4, Gy)
I gy ~ ~ ~ ~
Heaan}ioni +A1((1— nn)Ug + nn0R — (21— nn) 03 — nn0y)

st. (1-m)Uy-¢+ay+nU(y—ap) e
> (1m0 — £+ al) 4 n0 (Y al) +A2((1=n)Ua+mUp— (L-=n)U(y—¢)).  (34)

. JF {hl}, i fé J . : (1) Proposition 3: Given the probabilities + nj, j =h,| that
(1—n)u (y—t+ Og) + mu(y— On) the consumer of typé will experience a privacy breach, if
>A-n)U(y—0)+nU(y), ie{hl} (IR) the insurer solves the optimization problem{P-6), then the

Constraints labeled{IC) are the incentive compatibiliy-c high-risk consumer will be fully insured and the low-risk

. : S . . consumer will not be fully insured.
straints and constraint§ (IR) are the individual ratiayali y

traints. Both imilar to th ted in Sect Proof: We first show that the risky type will be fully
constraints. both are simiiar 1o those presented In Secligny,, .oy Taking the derivative of the Lagrangian with respe

IV-A] Inceqtlve compatibility ensures that_the consu_meii Wi 4o Gh andUh we get the following two equations:
report their type truthfully and the individual rationalit 3
constraint ensures that the consumer will participate. 0= —p(1— W (U +A1(1—np) (35)

0=—pnuW' (G) + A1 (36)

Solving for A1 in the first equation and plugging it into
the second, we gdiif! = U so that¢ — afl = af, i.e. the
) o , ) . amount the high-risk type pays for insurance is equal to the
Following a similar reasoning as in Section IV-A, we can;ompensation minus the loss in the event of a privacy breach.
reduce the optimization problerh_(P-5) by reasoning abo, ;s the high-risk type will be fully insured.
the constraint set defined by {IC) and(IR). In particular, Now, we show that the low-risk type will not be fully

we argued that the high-privacy type’s incentive compatipygred. Taking the derivative of the Lagrangian with respe
bility constraint was active and that the low-privacy type’ i |j ! and g ! we get

individual rationality constraint was active. In additiome N

showed the other two constrainfs (IC-2) aRd (IR-1) could be 0= —(1—m)(1— p)W (U2) — Az(1— nn) +Az(1— ;)
removed. Now, in the insurance case, sincert < 1— N, (37)
the incentive compatibility constraint for the risk type is 0= —(1— p)nW'(U}) — Arn -+ Aamy (38)
active and the individual rationality constraint for thefesa

type is active, i.e. the constraint set for (P-5) becomes ~ From [35), we solved foh; = pW'(U2). By plugging inA
. h . h into (37), solving forA, and plugging bott; and A, into
(I=nnU(y—£+ag) +nU(y—ap) (@9), we get the following expression:

= (1-nU(y—t+a)+nUy—ap)  (IC-h) . 1-n
1—n)0(y—£+ay) +nUy—ap) 0=wW (Ug)p(_n“”' - n?>
=(1=n)U(y—0)+nU(y) (IR-1) +m(1-p)(W' (U} —W'(Uy)) (39)

Let us try to restate the problem in a way which allows us t&incen, > n, andW' is increasing by assumption, the above
characterize the solutions. Since we have assumedlthst equation implies that
strictly concave, increasing and twice differentiable, vem
defineW be its inverse, wheré/ > 0 andwW” > 0. Further,
define and hence the low-risk type does not fully insure. ®
~i T i ~i T i The above proposition tells us that in order to keep the high-
Ua=U(y—£+a) and Up=U(y—an). (32) risk type from masking as a low-risk type, the insurer must
The transformed utility is make the contract for the low-risk type unappealing to the

© o e el ~ ~ high-risk type.
M(05,09.04,05) = p(— naW(U]) — (1— nn)W(U])
)

Ul-al>o0 (40)

(1-n . We remark that the analysis in this section can be applied
+Xx—(1—nn é) +(1-p) ( — mW(Ur']) to the case where the utility company is purchasing insw@anc
—(A-nW@U) +x—(1- my¢) (33) as well. In particular, if the utlity company has not invebte

in a lot of security or tjeu are not following the best praetic

Then problem[(Pi5) becomes recommendations, e.g. NIST-IR 7628 [25], then they are
max ﬁ(uh gh (! UI) (P-6) engaging inrisky behavior. The insurance company will not
(0 e know a propri whether or not the utility company is high-risk

st (1—nngh Gh— (1— 0! 3! type. Through the design of insurance contracts the inseran
( nh)~| at nbl n = ’h:) at ~ company can asses the utility’s type while offering cortsac
(L=m)Ua+mUn=(1=n)U{y—=0+mU(y)  that maximize their own utilty.



VI. CONCLUSION [8]

Utilizing our results on the fundamental limits of non-
intrusive load monitoring, we provide a novel upper bound!(®l
on the probability of a successful privacy breach. Under the
privacy metering policy in which sampling rate variation is[10]
used, we study how the performance of direct load control
degrades using thH&, norm. This provided us with a metric [11]
for understanding how sampling rate affects the quality of
direct load control. Using this metric along with the upper
bound on the probability for a successful privacy breach, wig,
design a screening mechanism for the problem of obtaining
the consumer’s type when there is asymmetric information.
Further, we design insurance contracts using the pl’Obﬁb“i[lS]
of successful privacy breach given that in the population gf4]
consumers there is both high-risk and low-risk consumers.

This work opens up a number of questions in the aregs;
of privacy metrics as well as customer segmentation and
targeting. We considered only two-type models in both the
design of contracts. We are currently looking at the theory
for a continuum of types. The screening problem with 16]
continuum of types results in a problem that resemble[%]
a partial differential equation constrained optimal cohtr
problem. We are developing numerical techniques to solve
this problem. We also assumed that the utility company arlé€!
private insurer knew the distribution of types in the popu-
lation. We are currently developing algorithms for leagnin [19]
these probabilities using data-drive techniques. In amdit
we considered that the utility would offer a contract solely,
based on privacy settings whereas in reality the contract
would normally contain additional items such as maximunf?l]
power consumption, rate, etc. Consumers in the populatigsy,
may value these goods differently. In this setting, theestre
ing problem would be come multi-dimensional [26]. We
are exploring this in the context of privacy-aware inceativ
design for behavior modification.

[23]
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