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Abstract

We discuss a definition of robust dominant eigenvector of a family of stochastic matrices. Our focus is on
application to ranking problems, where the proposed approach can be seen as a robust alternative to the standard
PageRank technique. The robust eigenvector computation is reduced to a convex optimization problem. We also
propose a simple algorithm for robust eigenvector approximation which can be viewed as a regularized power
method with a special stopping rule.

1 Introduction

There are numerous problems which can be reformulated as finding a dominant eigenvector of a stochas-
tic matrix — computing invariant probabilities in Markov chains, various problems in econometrics,
sociometry, bibliometrics, sport etc., see an excellent survey on history of such applications [3]. Recently,
ranking in the Web (PageRank) attracted a lot of attention [4, 5].

Let us briefly remind this approach and discuss some problems which arise in relation to it. There
are n pages (nodes of a graph) connected with outgoing and incoming links. Then xi — score of i-th
page of the Web, i = 1, ..., n is defined as follows: xi =

∑
j∈Li

xj/nj, where nj is the number of outgoing
links of page j and Li is the set of pages linked to page i. Thus the score vector x satisfies the equation

Px = x (1)

with Pij = 1/nj if page j cites page i and Pij = 0 otherwise. I.e. x is an eigenvector corresponding to
eigenvalue 1 of the (column) stochastic matrix P of size n× n.

In the example below n = 7, outgoing links are denoted by arrows. The corresponding matrix P and

Fig. 1: Test example

its dominant (or principal) eigenvector x̄ are
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P =



0 0 1/3 0 0 0 0
1/2 0 0 0 0 0 0
1/2 1 0 1/2 0 0 0
0 0 0 0 1 0 0
0 0 1/3 1/2 0 0 0
0 0 0 0 0 0 1
0 0 1/3 0 0 1 0


,

x̄ = (0, 0, 0, 0, 0, 0.5, 0.5)T .

We see that the scores of pages 6 and 7 equal 0.5 while all other pages have zero scores. Of course it
contradicts common sense and our intuition about “true scores”. There are several problems related to
the above definition:

1. We have assumed that nj 6= 0 for all j. Yet, in applications, there are nodes with no outgoing
links — dangling nodes (e.g. pdf files). One can easily tackle this problem by taking nj = n for
all dangling nodes. However more complicated problem of “traps” (absorbing nodes 6 and 7 in the
above example) remains open.

2. In the case of disconnected subgraphs (typical for real-life problems) x̄ is not unique.

3. Small changes in P may result in dramatic perturbations of x̄ — the computed scores are non-
robust.

4. Power method with iterations xk+1 = Pxk do not converge for cyclic matrices; for acyclic ones it
may converge slowly due to the small gap 1− |λ2| (here λ2 is the second eigenvalue of P ).

PageRank medicine for these problems goes back to the pioneering paper [4]: allow the i-the page to
receive a part of its score “for free” – replace the dominant eigenvector x̄ of P with the (unique) solution
to the equation

xα = αPxα + (1− α)e, ei = 1/n, i = 1, ..., n.

In other words, the “true” adjacency matrix P is replaced with

M = αP + (1− α)E, Eij = 1/n, i, j = 1, ..., n, (2)

so that xα = Mxα is the unique dominant eigenvector of stochastic matrix M . Unlike a dominant
eigenvector of P , xα is robust to variations in links, with fast convergence of power iterations (as αk). As
a justification the model of surfer in the Web is proposed in [4]: a surfer follows links with probability
α and jumps to an arbitrary page with probability 1− α. Then xαi is the (asymptotically) average time
share he spends on page i.

Here we propose a different modification of the original score definition (1). Note that in most
of applications nominal matrices are known approximately and they are subject to perturbations, so
robustness issues become important. Our goal is to provide a robust counterpart to standard techniques
in the spirit of Robust Optimization framework [7]. In the hindsight, it shares many common features
with with Robust Least Squares [6]. To the best of our knowledge this approach to ranking problems is
new.

2 Problem formulation

We say that matrix P ∈ Rn×n is stochastic (column-stochastic) if Pij ≥ 0 ∀i, j,
∑
i Pij = 1 ∀j. The

set of all stochastic matrices is denoted S. The celebrated Perron-Frobenius theorem states that there
exist a dominant eigenvector x̄ ∈ Σ (here Σ =

{
u ∈ Rn|

∑
i ui = 1, ui ≥ 0

}
being the standard simplex

of Rn) of the “nominal” matrix P :
Px̄ = x̄.

We are looking for a robust extension of the dominant eigenvector. Let P ⊂ S stand for the set of
perturbed stochastic matrices F = P + ξ, where ξ is a perturbation. The function maxF∈P ‖Fx − x‖,
where ‖ · ‖ is some norm, can be seen as a measure of “goodness” of a vector x as common dominant
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eigenvector of the family P. We say that the vector x̂ is a robust solution of the eigenvector problem on
P if

x̂ ∈ Argmin
x∈Σ

{
max
F∈P
‖Fx− x‖

}
. (3)

Let us consider some choices of the parameters of the above definition – uncertainty set P and the norm
‖ · ‖ – for the PageRank problem. Recall that our motivation is to “immunize” the score x̂ against small
perturbations of the adjacency matrix P . We may consider, that the uncertainty of the j-th column
of P , in terms of the `1-norm of elements, is bounded by εj . In other words, if [ξ]j is the j-th column
of the perturbation matrix, then ‖[ξ]j‖1 ≤ εj , j = 1, ..., n. From now on we assume that εj > 0,
j = 1, ..., n. Further, we may fix the “total uncertainty budget” ε ≥ ‖ξ‖1, where with some notational
abuse, ‖ξ‖1 =

∑
ij |ξij |. With a “natural choice” of the norm ‖ · ‖ = ‖ · ‖1, the definition (3) now reads

x̂(1) ∈ Argmin
x∈Σ

{
max
ξ
‖(P + ξ)x− x‖1

∣∣∣
eT [ξ]j = 0, ‖[ξ]j‖1 ≤ εj , ‖ξ‖1 ≤ ε

}
(4)

(here ei = n−1, i = 1, ..., n). Let nj be the number of outgoing links on page j. If we set εj ≤ 1
nj

, then

F = P + ξ is a stochastic matrix.
A different robust eigenvector may be obtained if, instead of fixing a bound for the `1-norm of the

perturbation, we bound its Frobenius norm: ‖ξ‖F ≤ ε. When combining it with the choice of the norm
‖ · ‖ = ‖ · ‖2 in (3), we come to the definition

x̂(2) ∈ Argmin
x∈Σ

{
max
ξ
‖(P + ξ)x− x‖2

∣∣∣
eT [ξ]j = 0, ‖[ξ]j‖1 ≤ εj , ‖ξ‖F ≤ ε

}
. (5)

An interesting simple version of the problem (5) may be obtained when substituting the “column-wise
constraints” on ξ with the requirement that P + ξ is stochastic:

x̂(F ) ∈ Argmin
x∈Σ

{
max
ξ
‖(P + ξ)x− x‖2

∣∣∣
F + ξ is stochastic, ‖ξ‖F ≤ ε}. (6)

Obviously, there is a vast choice of uncertainty sets and norms, which will result in different definitions
of robust eigenvector. Three definitions above may be viewed as a starting point for this study.

3 Theoretical analysis

Observe that the min-max problems involved in the definitions (4) – (6) of the robust eigenvector are
not convex-concave. Indeed, if Ξ is the corresponding set of perturbation matrices, the function

φΞ(x) = max
ξ∈Ξ
‖(P + ξ)x− x‖

cannot be computed efficiently. However, one can easily upper bound the optimal values of these problems
by those of simple convex problems as follows.

Proposition 1: Let
Ξ1 = {ξ ∈ Rn×n

∣∣ eT [ξ]j = 0, ‖[ξ]j‖1 ≤ εj , ‖ξ‖1 ≤ ε},
and let ‖ · ‖ = ‖ · ‖1. Then

φΞ1
(x) ≤ ϕ1(x), ϕ1(x) = ‖Px− x‖1 + εg1(x),

where the convex function g1 is defined as

g1(x) = min
x=u+v

{
‖u‖∞ +

∑
j

εj
ε
|v|j
}
.
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The proofs of the statements of this section are postponed till the appendix.
Note that g1 is a norm. Further, when ε1 = ... = εn and s = ε

ε1
is integer, g1(x) is simply the sum of

s largest in magnitude elements of x. It is worth to mention that computing g1(x) requires O(n) (up to
a logarithmic factor in n) arithmetic operations.

We have an analogous bound for function φΞ(x), involved in the definition (5):

Proposition 2: Let
Ξ2 = {ξ ∈ Rn×n

∣∣ eT [ξ]j = 0, ‖[ξ]j‖1 ≤ εj , ‖ξ‖F ≤ ε},

and let ‖ · ‖ = ‖ · ‖2. Then

φΞ2(x) ≤ ϕ2(x), ϕ2(x) = ‖Px− x‖2 + εg2(x),

where the convex function g2 satisfies

g2(x) = min
x=u+v

{
‖u‖2 +

∑
j

εj
ε
|v|j
}
.

What was said about the numerical cost of computing g1(x) may be repeated here: computing g2(x)
requires O(n) (up to “logarithmic factors”) arithmetic operations.

We have a particularly simple and intuitive bound for (6):

Proposition 3: Let
ΞF = {P + ξ is stochastic, ‖ξ‖F ≤ ε}.

Then
φΞF

(x) ≤ ϕF (x), ϕF (x) = ‖Px− x‖2 + ε‖x‖2.

Note that the upper bound ϕF (x) for φΞF
is not very conservative. Indeed, the corresponding worst-case

perturbation is

ξ∗ =
ε(Px− x)xT

‖Px− x‖‖x‖
,

and for F = P + ξ∗ we have
∑
i Fij = 1, however the condition Fij ≥ 0 (required for F to be stochastic)

may be violated.
The results above can be summarized as follows:

let ‖ · ‖(1) and ‖ · ‖(2) be some norms (in the above examples we have ‖ · ‖(1) set to `1- or `2-norm, and
‖ · ‖(2) = g1, g2 or ‖ · ‖2). With certain abuse of terminology, we refer to the vector

x̂ ∈ Argmin
x∈Σ

{
ϕ(x) = ‖Px− x‖(1) + ε‖x‖(2)

}
(7)

as (computable) robust dominant eigenvector of the corresponding family of matrices.
Let us discuss some properties of the robust eigenvector.

1. x̂ coincides with x̄ if P is regular and ε is small enough. Recall that stochastic matrix P is called
regular, if its largest eigenvalue λ1 = 1 is simple, while all other eigenvalues lay inside the unit
circle 1 − |λi| ≥ µ > 0, i = 2, ..., n. For instance, matrices with all positive entries are regular.
Thus dominant eigenvector of a regular matrix is robust with respect to small perturbations. This
is the case of matrix M in (2).

2. In the case ‖x‖(2) = ‖ · ‖2 vector x̂ is unique due to the strict convexity of ‖x‖2 on Σ.

3. For large ε vector x̂ is close to e ∈ Σ, ei = n−1, i = 1, ..., n.
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4 Solving optimization problem (7)

For irregular matrices or for matrices with small gap µ > 0 the robust dominant vector x̂ can not be
found in explicit form. To compute it one should minimize the function ϕ(x) over standard simplex
Σ. In the above examples these are well structured convex optimization problems, and as such they
can be efficiently solved using available optimization software. For instance, medium-size problems (say,
when n ≤ 1.e3− 1.e4) may be solved using interior-point methods. For large-scale problems one can use
methods of mirror-descent family [8, 9, 11] and solve a saddle-point reformulation of (7), as well as various
randomized algorithms (see [10, 11] and references therein). Finally, for huge-dimensional problems Yu.
Nesterov [12] proposed recently special randomized algorithms which can work with sparse matrices and
n = 1.e6− 1.e9. We do not discuss these methods here. Instead, we propose a “fast and dirty” method
for minimization of (7), which happens to be a close relative of the PageRank technique.

The method starts the minimization process from the point x1, which is the minimizer of ‖x‖(2) over
Σ. Then we apply the power method with averaging to minimize the first term in ϕ(x):

xk =
x1 + Px1 + ...+ P k−1x1

k

(note that power method without averaging may be non convergent, for instance for a cyclic P ). We
have

‖Pxk − xk‖(1) =
‖P kx1 − x1‖(1)

k
≤ c

k
,

that is ‖Pxk − xk‖(1) = O(1/k).
To fix the ideas, let us consider the case of Proposition 3, where the norms ‖ · ‖(1) and ‖ · ‖(2) are the

Euclidean norms. We have x1 = e, and when writing the method in recurrent form we get

xk+1 =

(
1− 1

k + 1

)
Pxk +

1

k + 1
e. (8)

When denotingMk =
(

1− 1
k+1

)
P+ 1

k+1E, Eij = 1/n, the iterative method reads xk+1 = Mkxk, x1 =

e. We apply the method until ϕk = ϕ(xk) starts to arise. Thus we arrive to
Algorithm 1
begin: x1 = e
k-th iteration: xk+1 = Mkxk,

Mk = (1− 1

k + 1
)P +

1

k + 1
E

stop: ϕk+1 > ϕk, x̄ = xk
and x̄ is the approximate solution. Note that the numerical complexity of one iteration is dominated
with that of multiplication Px (and, of course, we should not write Mk in dense form for sparse P ).

If we compare Algorithm 1 with PageRank algorithm:

xk+1 = Mxk, M = αP + (1− α)E, α = const,

we conclude that our algorithm is PageRank with varying α, equipped with special stopping rule. The
proposed method is also closely related to the the regularized algorithm of [13]. However, unlike the
method of [13], Algorithm 1 the stopping rule is related to the uncertainty level.
Choice of ε is an important issue for the described approach. One may consider the following heuristics
for Web ranking problems: we may assume that the number nj of outgoing links of the j-th page is
known with accuracy ±1 for qn pages, for some q < 1. Keeping in mind that the average nj = m = 20
for the whole Web, and taking q = 0.5 we get for uncertainty in P , measured in Frobenius norm,
ε ' √qn/m ' 0.03

√
n = 30 for n = 106. In small problems (like the examples in this paper) the choice

ε ' 1 appears to be convenient.
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5 Numerical results

5.1 Simulated graphs

To illustrate an application of the robust eigenvector, proposed above, let us go back to the example in
the introduction. We present of Figure 2 the scores computed for this example using three algorithms:
1) PageRank algorithm with α = 0.85, 2) exact minimization of ϕF with ε = 1, 3) Algorithm 1 with
ε = 1.

Fig. 2: Results for test example

We observe that the scores for all three methods are close and differ dramatically from the dominant
eigenvector of the nominal matrix. The robust approach generates the scores which are acceptable from
the “common sense” point of view. It is worth to mentioning that Algorithm 1 requires only 4 iterations
(ϕ4 > ϕ3, x̄ = x3).

We applied the proposed approach to the simulated examples proposed in [13]. The corresponding
graphs may be constructed in arbitrary dimensions (from modest to huge ones), with the dominant
eigenvectors of matrices P and M which can be computed explicitly. Furthermore, the corresponding
matrix-vector product Px can be computed very efficiently without storing the matrix P itself.

Consider the graph (Model 1) of Figure 3. The nodes are shown in circles, the references are denoted
by arrows. To get rid of (n, n) as a dangling node we assume the ability of equally possible jump from
this node to any other. There are N = n2 nodes in the model. We are interested in finding the vector
x = (xij) of scores.

Taking arbitrary value of x11, say x11 = 1, we get the system of equations equivalent to (1):
xi1 = x1i = 1

2xi−1,1 + 1, i = 2, ..., n, x11 = 1,
xij = 1

2xi−1,j + 1
2xi,j−1 + 1, j, i = 2, ..., n− 1,

xnj = xjn = xn,j−1 + 1
2xn−1,j + 1, j = 2, ..., n− 1,

xnn = xn−1,n + xn,n−1 + 1.

These equations can be solved explicitly (from x11 we find x21 etc). Then we can proceed to standard
normalization and get the scores x∗ij =

xij∑
i,j xij

.

Similarly the scores for PageRank matrix M can be found from equations (it is convenient to take
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Fig. 3: Model 1

y11 = α, then ynn = Nα):
yi1 = y1i = α( 1

2yi−1,1 + 1), i = 2, ..., n,
yij = α( 1

2yi−1,j + 1
2yi,j−1 + 1), j, i = 2, ..., n− 1,

ynj = yjn = α(yn,j−1 + 1
2yn−1,j + 1), j = 2, ..., n− 1,

ynn = α(yn−1,n + yn,n−1 + 1)

and normalization y∗ij =
yij∑
i,j yij

.

Note that even very small perturbations may strongly corrupt the graph on Figure 3. Thus, taking
large penalty parameter ε, as it was suggested in the discussion at the end of Section 4 would lead to
complete “equalization” of the scores. That is why we choose small penalty coefficient in this example
(specifically, it was taken ε = 0.01).

Let us denote xα = y∗. We compare now the score vector x∗ for nominal P with the score xα by
PageRank and the results obtained by Algorithm 1. On Figure 4 we present the scores of diagonal
nodes, i.e. xi,i, i = 1, . . . , n for n = 200 (that is N = 40000) and α = 0.85. Figure 5 shows the scores
xni, i = 1, . . . , n of the last row. From the geometry of our graph (Figure 3) it is natural to expect the
“true” scores xij to increase with i, j and the highest scores should be achieved in south-east corner of the
square. The score vector, obtained as dominant eigenvector of P , possesses these properties. PageRank
solution and robust solution provide both strongly “equalized” ranks; the robust solution appears to
better fit the expected one.

Let us modify slightly the graph of Model 1: in the new Model 2 we link the node (n, n) only to the
node (1, 1). For this model the system of equations for which defines the nominal scores is similar to
the system for Model 1, and the dominant eigenvector of P and PageRank vector xα can be computed
explicitly. On the other hand, it is obvious that the power method would not converge for this model.
Indeed if x0

11 = 1, x0
ij = 0, {ij} 6= {11} then after 2n − 1 iterations we return at the same state, and

matrix P is cyclic.
The results for Model 2 with the same parameters (n = 200, ε = 0.01) are presented at Figures 6 and

7. In this example, same as for Model 1, the score vector obtained using PageRank is close to the robust
one. And may be robust scores are slightly closer to our expectations of “common sense” ranks.
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Fig. 4: Diagonal scores

5.2 “Real-life” data

We have tested the proposed techniques on the experimental datasets, used in experiments on link
analysis ranking algorithms described in [2]. We present here experimental results for adjacency matri-
ces from two refined datasets: Computational Complexity (CompCom) and Movies, downloaded from
http://www.cs.toronto.edu/t̃sap/experiments/. CompCom data represent 789 pages with totalize 1449
links (with average number of links per page is equal to 1.8365). Movies dataset has 4754 notes and
17198 (average number of links per page is 3.6176). We compare high accuracy solution to the problem
(7) (with the norms ‖·‖(1) and ‖·‖(2) are Euclidean norms) obtained using MOSEK optimization software
[1] with the scores by Algorithm 1 and those obtained by the PageRank algorithm. The same value of
penalization parameter ε = 1 in (7) is used in all experiments. On Figure 8 we present the 20 largest
elements of the score vectors for the CompCom data. In this experiment the optimal value of the problem
(7) is 0.0587. The corresponding value for solution supplied by Algorithm 1 (after 3 iterations) is 0.0756.
It should be noted that the high scores xα645 and xα654 by PageRank are pure artifacts – they correspond
to the pages which receive numerous links but only reference each other. The techniques proposed in
this paper seem better handle this sort of problem than the classical PageRank algorithm.

Figure 9 shows the 20 largest elements of the score vectors for the Movies data. In this case the best
scores computed by 3 competitors are quite close. The optimal value of the problem (7) is 0.0288; the
approximate solution supplied by Algorithm 1 (after 4 iterations) attains the value 0.0379.

6 Directions for future research

1. Structured perturbations. It is often natural to assume that the perturbation ξ of nominal matrix
P possesses some structure. For instance, we can consider ξ = M∆N , where ‖∆‖F ≤ ε, and M,N
are rectangular matrices of appropriate dimensions, or ξ =

∑
tiAi, where ‖t‖2 ≤ ε, with fixed

matrices Ai ∈ Rn×n.

2. Implicit uncertainty model. Family P can be defined implicitly. Suppose that we can sample
randomly from P, so that random realizations Fi ∈ P, i = 1, ..., N are available. One may try to
find x which is approximate dominant eigenvector for all of them. For instance, one can fix ε > 0

8
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Fig. 5: Last row scores

and look for solution of a system of convex inequalities

‖Fix− x‖ ≤ ε, i = 1, ...N, x ∈ Σ.

Such system can be solved iteratively using the mirror-descent algorithm. This approach is close
to [14, 15].

3. Computational research. The development of numerical methods tailored for optimization problem
(7) and their comparison is of great interest.

4. Real-life examples. We plan to test extensively the proposed approach on the large-scale Web rank
problems data available from different Internet databases.
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.1 Proof of Propositions 1 and 2

Note that

φΞ1
(x) = max

ξ∈Ξ1

‖(ξ + P − I)x‖1

= max
ξ∈Ξ1

max
u∈Rn,‖u‖∞≤1

uT (ξ + P − I)x.

Then z = ξTu satisfies

|zj | =

∣∣∣∣∣∑
i

ξijui

∣∣∣∣∣ ≤∑
i

|ξij | ≤ εj .

‖z‖1 =
∑
j

∣∣∣∣∣∑
i

ξijui

∣∣∣∣∣ ≤∑
j

∑
i

|ξij | ≤ ε.
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We conclude that

φΞ1(x) ≤ ϕ1(x) := max
u∈Rn,‖u‖∞≤1

uT (P − I)x+ εg1(x)

= ‖(P − I)x‖1 + εg1(x), (9)

where

g1(x) = ε−1 max
z∈Rn, ‖z‖∞≤ε, |z|j≤εj

zTx

= max
z∈Rn, ‖z‖∞≤1, |z|j≤εj/ε

zTx. (10)

Note that (10) is a strictly feasible conic optimization problem, when dualizing the constraints we come
to

g1(x) = min
u+v=x

{
‖u‖∞ +

∑
j

εj
ε
|vj |
}
.

Along with (9) this implies Proposition 1. 2

The proof of Proposition 2 is completely analogous.

.2 Proof of Proposition 3

We start with the following lemma, which is a modification of Theorem 3.1 in [6].

Lemma 1: For a ∈ Rn, b ∈ Rm, ξ ∈ Rn×m it holds

max
‖ξ‖F≤ε

‖a+ ξb‖2 = ‖a‖2 + ε‖b‖2.

Proof: Indeed, ‖a+ξb‖2 ≤ ‖a‖2 +ε‖b‖2, while for a 6= 0, ξ = ξ∗ = εabT

‖a‖2‖b‖2 equality holds and ‖ξ∗‖F = ε

(for a = 0 one can take ξ∗ = εcbT

‖b‖2 , ‖c‖2 = 1, c ∈ Rn arbitrary). 2

We can now bound

max
ξ∈ΞF

‖(P + ξ)x− x‖2 = max
P+ξ∈S, ||ξ‖F≤ε

‖(P + ξ)x− x‖

≤ max
‖ξ‖F≤ε

‖Px− x+ ξx‖2 = ‖Px− x‖2 + ε‖x‖2,

where the last equality is due to Lemma 1. 2
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Fig. 6: Diagonal scores for the second model.

Fig. 7: Last row scores for the second model.
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