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Abstract—We announce a new construction of a stabilizing other applications where Brockett's necessary condition is

feedback law for nonlinear globally asymptotically controllable  not satisfied, and which therefore cannot be stabilized by
(GAC) systems. Given a control affine GAC system, our feed- continuous state feedbacks (cf. [2], [17]).

back renders the closed loop system input to state stable with .
respect to actuator errors and small observation noise. We Our results alsastrengthen[3], which constructed feed-

also announce a variant of our result for fully nonlinear GAC ~ backs for GAC systems which render the systems globally
systems. asymptotically stable. Our main tool will be the recent
constructions of semiconcave control Lyapunov functions
(CLF's) for GAC systems from [11], [12], [13]. Our con-
I. INTRODUCTION struction also applies in the more general situation where
The theory of input to state stable (ISS) systems formsieasurement noise may occur. In particular, our feediback
the basis for much current research in mathematical contrbas the additional feature that tperturbedsystem
theory (cf. [6], [7], [17]). The ISS property was introduced )
in [15]. In the past decade, there has been a great deal of &= f(x) + G@)K(z +e) + G(x)u @)
research done t(_) find ISS stabilizing control Ifa.ws (cf [5lis 1ss (with respect to the actuator erra) when the
[6], [7], [9]_). In this note, we study the ISS stabilizability of ypservation errore - [0,00) — R" in the controller is
control affine systems of the form sufficiently smalicf. the definitions below). In this context,
i = f(z) + G(z)u 1) _the prec_ise value oé(t) is unknown to the con_troller, but
information about upper bounds on the magnitudec@
where f and G are locally Lipschitz vector fields oiR”, can be used to design the feedback. The following theorem
f(0) = 0, and the controk is valued inR™ (but see also is shown in [8]:
§V for extensions for fully nonlinear systems). We assume Theorem 1:1f (1) is GAC, then there exists a feedbask
throughout this note that the system (1) is globally asymgor which (3) is ISS for Euler solutions.
totically controllable (GAC), and we construct a feedback Theorem 1 characterizes the uniform limits of sampling
K :R"™ — R™ for which solutions of (3) (cf.§ll for the definitions of Euler and
. sampling solutions). From a computational standpoint, it is
= f@) + G@)K(x) + Glz)u (2) also desirable to know how frequently to sample in order
is ISS (cf.§ll for the relevant definitions). As pointed out in to achieve ISS for sampling solutions. This information is
[2], [17], a continuous(time-invariant) stabilizing feedback provided by the following theorem:
K fails to exist in general. Theorem 2:If (1) is GAC, then there exists a feedbagk
This fact forces us to considatiscontinuousfeedbacks for which (3) is ISS for sampling solutions.
K, so our solutions will be interpreted in the more general This note is organized as follows. Ifll, we review
sense of sampling and Euler solutions for dynamics whicthe relevant background on CLF's, GAC and ISS systems,
are discontinuous in the state (cf. [3], [17]). By an Eulenonsmooth analysis, and discontinuous feedbacks;llin
solution, we mean a uniform limit of sampling solutions,we sketch the proofs of the above theorems (cf. [8] for their
taken as the frequency of sampling becomes infinite (cfletailed proofs). This is followed iflV by a comparison
§ll for precise definitions). Our construction extends [15]0f our feedback construction with the known feedback con-
[16], which show how to maké&°-stabilizable systems ISS structions forC°-stabilizable systems, and an application of
to actuator errors. In particular, our feedback applies to theur results to the nonholonomic integrator. We close\Vh
nonholonomic integrator (cf. [2], [12], anglV below) and by announcing an extension of our results for fully nonlinear

systems.
1 This author was supported in part by Louisiana Board of Regents
Support Fund Contract LEQSF(2002-2004)-ENH-TR-26 as part of the
project “Interdisciplinary Education, Outreach, and Research in Control Il. DEFINITIONS AND MAIN LEMMAS
Theory at LSU". This author last revised this paper on August 27, 2003. . .
2 This author was supported in part by US Air Force Grant F49620-01- We let K, denote the set of all continuous functions

1-0063, and by NSF Grant CCR-0206789. p : [0,00) — [0,00) for which (i) p(0) = 0 and (ii) p is



strictly increasing and unbounded. LILC denote the set of we allow discontinuous feedbacks. The arguments, and

all continuousp : [0,00) x [0,00) — [0,00) for which (1) win F represent the state, feedback value, and actuator error,
B(-,t) € K for eacht > 0, (2) 5(s,-) is nonincreasing for respectively.

eachs > 0, and (3)3(s,t) — 0 ast — +oo for eachs > 0. Given a feedbacks : R® — R™, x, € R", a partition

For eachk € N andr > 0, we use the control sets
m = {to,t1,t2,...} € Par,
ME = {measurable u : [0,00) — R* : |u|o, < 00}
ME = {u e MF: ju)o < 7Y, e € O, andu € M™, the sampling solutiorfor the initial
) ) value problem
where|-|« is the essential supremum. We |et(s)||; denote

the essential supremum of the restriction of a functioto i(t) = F(z(t), K(z(t) +e(t)) ut)) 4)
an intervall. Let | - | denote the Euclidean norm, and z(0) = =, (5)

By = {x e R* : [z] <r} is the continuous function(-) defined by recursively solving
for eachk € N andr > 0. The closure ofB;, is denoted by i(t) = F(x(t), K(z(t) + e(t)), u(t))

rBy, andbd(-) denotes the boundary operator. We set

from the initial time¢ = ¢; up until the maximal time
O :={e:[0,00) = R"}, sup(e):=sup{le(t)|:t >0} P

071 = {e cO: sup(e) S 77} S; = ti V Sup{S S [ti,t“_l] : JS‘() is defined on [ti, S)},
for all e € O andn > 0. For any compact sef C R" and  where 2(0) = x,. (The t;v term in the formula fors; is
e > 0, we define the compact set used to allow the possibility that(-) is not defined at all
Foim {z € R" :min{|z —p|: p € F} < &), on [t;, t;+1], in which case the supremum in the definition of

s; is by definition—o0.) In this case, the sampling solution
i.e., the t-enlargement ofF”. Given a continuous function of (4)-(5) is defined from time zero up to the maximal time
h: R" x R™ — R™ : (z,u) — h(z,u) which is locally ¢ = inf{s; : s; < t;11}. We denote this sampling solution
Lipschitz inz uniformly on compact subsets &* xR™, we by ¢ — x.(t; z,,u, €) to exhibit its dependence ane Par,
let ¢n (-, z,, u) denote the trajectory of = h(x,u) starting z, € R*, v € M™, ande € O, or simply byz, where the
atz, € R™ for eachu € M™. In this case¢,(-,z,,u) dependence is clear. In particularsif= t;,, for all 4, then
is defined on some maximal intervd,t), with ¢t > 0 = +o0, so in that casey, is defined on0, oo).
depending on: andz,. When we say that a function defined We also define thepper diameteandlower diameterof
on R" is C° (resp.,C'), we mean that it is continuous 7 = {t,,t;,t,...} € Par by
(resp., continuously differentiable). We say that a function  _— )
a : R¥ — [0,00) is proper (a.k.a.radially unbounde} d(r) = ?gg(tiﬂ —ti), d(m):= gg(tm —t)
provideda(x) — +o0 as|z| — +oo. We say that a function -
a : RF — [0,00) is positive definiteprovideda(z) = 0 iff
z = 0. We use the following controllability notion: Par(d) := {r € Par: d(r) < §}

Definition 2.1: A control systemi = h(z,u) is called

globally asymptotically controllable (GACprovided there for eachd > 0. We say that a functiony : [0,00) — R”
exist a nondecreasing’ : [0, ) — [0,00) and a function is an Euler solution (robust to small observation errors}
B € KL satisfying the following: For eact, € R, there (4)-(5) foru € M™ provided there are sequencesec Par

respectively. We let

existsu € M™ such that ande, € O such that

@) |on(t, 20, u)| < B(|z,l,t) for all £ > 0; and (@ d(m) — 0;  (b) sup(e,)/d(m) — 0; and

(b) |u(t)| < N(|z,|) for a.e.t > 0. (€) t zrx, (t;20,u, e;) converges uniformly tg

We call AV the GAC modulusof h. asr — +oo. In this note, we design feedbacks which make

In this note, we allow discontinuous feedbacks, so the dfsAC systems ISS with respect to actuator errors in the
namics are discontinuous in the state variable. This productlowing generalized sense:
the technical problem of precisely defining what is meant by Definition 2.2: We say that (4) idSS for sampling solu-
a solution, since the standard existence theorems for solutidi@ns provided there exis € KL andy € K satisfying:
would not apply. We will resolve this problem by forming For eache, M, N > 0 with 0 < e < M, there exist positive
our trajectories through sampling solutions and their unifor = d(e, M, N) and k = r(e, M, N) such that for each

limits, as follows.

We say thatr = {t,,t1,t2,...} C [0,00) is a partition
providedt, = 0, ¢t; < t;4; for all > 0, andt; — 40
asi — +o0o. We denote the set of all partitions ar.

7 € Par(8), x, € MB,, u € M%, ande € O for which
sup(e) < kd(7),

|27 (t; 0, u, €)| < B(M,t) +v(N) +¢ (6)

Let FF : R®" x R™ x R™ — R" : (x,p,u) — F(z,p,u) forallt>0.

be a continuous function which is locally Lipschitz in Roughly speaking, condition (6) says that the system is
uniformly on compact subsets & x R™ x R™. A (state) ISS, modulo small overflows, if the sampling is done ‘quickly
feedback (for F) is defined to be any locally boundedenough’ (but not ‘too quickly’). On the other hand, our results
function K : R™ — R™ for which K(0) = 0. In particular, are new, even for the particular case where the observation



errore = 0. Moreover, if we restrict to the case where= 0, Lemma 2.7:Let V : Q@ — R be semiconcave. TheW is
then the condition ord(7) in Definition 2.2 is no longer locally Lipschitz, and) # 9.V (x) C 07V (z) for all z € Q.
needed. Notice that the bounds erare in the supremum, Moreover, for each compact s@tcC (2, there exist constants
not the essential supremum. We also use the following analegy. > 0 such that
of Definition 2.2 for Euler solutions: 9
Definition 2.3: We say that (4) i4SS for Euler solutions V(y) = V(@) —oly —al" < Gy — )
provided there exisfp € KL andy € K. satisfying: If for all y € = 4+ uBB,, all x € Q, and all¢ € 97V (x).
u € M™ andz, € R", and ift — z(t) is an Euler solution ~ Remark 2.8:In [13], the control variables takes all its
of (4)-(5), then values in a given compact metric spalde The version of
the CLF existence theorem in [13] is the same as Lemma
()] < B(Jwo],t) +¥(Julo) (") 2.6 above except that the minimum in (9) is replaced by
for all £ > 0. the minimum over allu € U. Lemma 2.6 follows from a
Our main tools in this note will be nonsmooth analysigninor modification of the arguments of [12], [13], using the

and nonsmooth Lyapunov functions. We use the followin§?AC modulus (see Definition 2.1). The existence theory [12]
definitions (cf. [4], [17]), in whichQ is an arbitrary open for semiconcave CLF's strengthens the proof that continuous

subset ofR™. CLF's exist for any GAC system (see [14]).
Definition 2.4: Let g :  — R be a continuous function
on €; it is said to besemiconcaveon Q provided for any [ll. DISCUSSION OF PROOFS OF THEOREMS
point z, € ©, there existp, C > 0 such that In this section, we sketch the proofs of our theorems. Due
z4y to space restrictions, we only sketch the proof of Theorem
g(x) + g(y) — 2¢ (2) < Cllz —yl|? 2 for the special case where the observation eeree 0.
For complete proofs of our theorems, see [8]. We begin by
for all z,y € =, + pB,. outlining the proof of Theorem 2.

The proximal superdifferentialresp., proximal subdiffer- Let M, N > 0 be given, and be a CLF satisfying the
ential) of a functionV : Q@ — R atz € Q, which is denoted requirements of Lemma 2.6 for the dynamics
by 0V (x) (resp.,0pV (x)), is defined to be the set of all

¢ € R™ for which there exist, 7 > 0 such that h(z,u) = f(z) + G(@)u. (10)
Viy) - V(z) —oly —z2 < (C,y — ) Define the functiongy, @ € K, by
(resp., V(y) — V(z) —oly — 2> > ((,y — z)) a(s) := min{s, min{|z| : V(z) > s}} and (11)
for all y € x + nB,. The limiting subdifferential of a a(s) := max{|z| : V(z) < s}
continuous functior’ : @ — R atx € Q (cf. [10]) is Let  — ((z) be any selection ofl,V (z) on R™ \ {0} and
8oV (&) = { g € R™ : there exist 7, —  and } ¢(0) € R™ be arbitrary. It follows that
v "~ | @ € 9pV(zy) such that g, — q. Ve e R?, o(V(x) < |z| and a(V(z)) > |z|. (12)

Assumeh : R" xR™ — R™ : (x,u) — h(z,u) is continuous For eachz € R™, we can choose = u, € «(|z|)B,, that

and locally Lipschitz inz uniformly on compact subsets of satisfies the inequality in (9) for (10) and= ¢(x). Define

R™xR™, andh(0,0) = 0. The next definition was introduced the feedbacki; : R* — R™ by

in [14] and reformulated in proximal terms in [17]:
Definition 2.5: A control-Lyapunov function (CLFor

& = h(z,u) (8)

Kq(z) := uy
for all z # 0 and K (0) := 0. We use the functions
= (((z), f(z) + G(z) Ky (2))

. . , . . a(x)
is defined to be any continuous, positive definite, proper ;. — _ for i — 1.2 13
function V : R® — R for which there exist a continuous, j(@) = (C(@),g;() for j=1,2,...,m (13)

Ko(x) :=—V b b (2) )T
positive definite functio? : R® — R, and a nondecreasing 2(e) (@)(sgn{ba()}, - sen{bm (@)})

function a : [0, 00) — [0, 00), satisfying whereg; is the jth column ofG and
i 1, s>0
V(¢ € 0pV(x), inf Jhz,u)) < —W(x )
CeopVia) | I G h(@w) (@) sgn{s} == { 1, s<0
for all x € R™. 0, s=0

Recall the following lemmas (cf. [13]): Therefore, K := K; + K5 : R® — R™ is a feedback for the
Lemma 2.6:If (8) is GAC, then there exists a CLF for  dynamics
(8) which is semiconcave oR™ \ {0}, and a nondecreasing
function o : [0, 00) — [0, 00), that satisfy

lul<a(]z|

Fz,p,u) = f(z) + G(2)(p+ u). (14)

We claim thatK satisfies the requirements of the theorem.
To see why this is the case, first choose

for all z € R™. S:={zeR":V(z)<a '(N)}



ande € (0,min{1, M}) for which (2¢)5,, C S. Set

Q:={[@aca ™ (N+M)+1]B,}\ B,

Ao =min{V(p):p€ QE/2} ,

Ay =max{V(p):p € Q°}.
It follows from the estimates (12) th&t C Q<. We can then
choosez € (0, ¢) for which

@ <p + £4€§> <a(p) + % Vp € [0, ' (N)+Ay] (15)

where £. > 1 is the Lipschitz constant fol/ on Q¢/?
guaranteed by Lemma 2.7. By again applying Lemma 2.
we can also findr, © > 0 such that

V(y) = V(x) < (((2),y —2) +oly—z>  (16)
for all y € x + uB, andz € Q/%. We can then choose

) (17)
A

G tz‘)} (18)

g
5=d(e,M,N)e (0,— =
(e, M, )e(’16+>\++16>\+

such that

|m7'r(t7 Lo, U, 0) - '%'7,|

3

< mi _
< min < pu, TREYAE

(wherez; = x,(t;; x0,u,0)) and
[¢(@s) - (F (i, K(2:),u(s)) — fzx(s))
—G(zx(s))[u(s) + K(zy)]) | A

[titiva] S 5
for all u € MR, ¢ € [t;,tit1], ™ € Par(d), and alli such
that z; € Q°/2. Defining J(t) := 16/(16 + t), and defining
[ e KL andy € K, by

B(s,t) =@ (gfl(s)J(t)) , Y(s) :=aoa(s),

(19)

(20)

we can then use the estimates (12) and (18)-(19) to conclude

that the sampling ISS estimate (6) holds forallc M3,
u € M7, m € Par(d), ande = 0. This gives the conclusion
of Theorem 2 for the case of zero observation errors.

We turn next to Theorem 1. We need to show the ISS

property (7) for all Euler solutiong(t) of (4)-(5) with the
choice (14). To this end, choose € M™ andz, € R".
Using the conclusion of Theorem 2 that (4) is ISS fo
sampling solutions, we can let

1 1
8, :=10 <, |Zol, U|oo) and Ky =k <, |zl “|oo>
r r

be the constants from Definition 2.2 for largec N. Let
z(t) be an Euler solution of (4)-(5), and let ande,. satisfy

IV. ISS STABILIZATION OF THE
NONHOLONOMIC INTEGRATOR

In this section, we apply the feedback construction from
&lll to Brockett’s nonholonomic integrator control system (cf.
[2], [12], [17]). The nonholonomic integrator was introduced
in [2], as an example of a system which cannot be stabilized
using continuous state feedback. It is well-known that if the
state space of a system contains topological obstacles (e.g., if
the state space &?\ (-1, +1)?), then the system cannot be
stabilized by a continuous state feedback; this follows from

theorem of Milnor (cf. [17]). Brockett's example illustrates
ﬁow there may still be obstacles to continuous stabilization,
even if the state space is all Bf*. In Brockett's example, the
system is ‘nonholonomic’ in the sense that it is impossible to
moveinstantlyin some directions, even though it is possible
to moveeventuallyin every direction.

The underlying physical model for Brockett’s example is
as follows. Consider a three-wheeled shopping cart whose
front wheel acts as a castor. The state variable iszz, 0)7,
where(z;,72)T is the midpoint of the rear axle of the cart,
andd is the cart’s orientation. The front wheel, which is a cas-
tor, is free to rotate, but there is a “non-slipping” constraint
that (41, 42)7 must always be parallel técos(6), sin(9))7.

The following figure from [17] illustrates the model:

y L2

\Y

%

Z1

The equations for the model are therefore

fl = U1 COS(@), j?g = U1 sin(@), 9 = U3 (22)

where u; is interpreted as a “drive” command ang is
a steering command. Using a feedback transformation (cf.
117]) brings the equations (22) into the form

(23)

which is called the nonholonomic integrator system.

One can show that (23) is a GAC system. However,
since Brockett's necessary condition is not satisfied for (23)
(cf. [2], [17]), the system has no continuous state feedback

T1 =1u1, T2 =uUz, T3 = T1U — ToU]

the requirements of the Euler solution definition. It followsgiapilizer. While there does not existd CLF for (23), itis

from the definition that there is a subsequelieg,e, ) of

(mr, €) such that
d(m) <6y, sup(en) < rpd(m)

for all r,7’. It follows from estimate (6) that

1
|@x,, (& o, us )] < Bllzo], ) +(Juloe) + - (21)

for all t > 0 andr,r’ € N, where3 and~ are in (20). The
ISS condition (7) now follows by passing to the limit in (21)
asr’,r — oo. This gives the conclusion of Theorem 1.

now well-known that every GAC system admits a continuous
CLF (cf. [14]). In fact, it was shown in [11] that (23) has
the nonsmooth CLF

V(a:)zmax{ x%+x%,|x3|—\/xf+x§}. (24)

For the case of the dynamics (23) and CLF (24), the feedback
K = K| + K, we constructed irglll is as follows.
We use the radius

r(z) = /2}+23 Vo= (1,72,23)7 € R®.



The sets
S, ={r eR3: 23 #0, r(z) =0},
Sy ={zxeR3: 23 > 4?(x) > 0},
S_:={reR3®: 22 <4r?(x)}

form a partition ofR? \ {0}. Note thatV (z) = r(x) on S_
andV(z) = |z3| — r(z) onR?\ S_. To find our selection

¢(z) € 9LV (z), we choose (0) = 0, and we set
¢(x) = (0,~1,sgn{zs})"

forallz € S,. Usingb(z) = (b1 (), b2(z))” and the notation

of (13), this gives

(T Zni)), s
bx) = e (w1, 22)7, zeS.
(0, —1)T, r €S,
and
Ki(z) = Mfgffﬂ;j;%ii?- 5621/{“(;)) ) ’ i i ?r
(0, |zs)" . zes,

with (0) = K1(0) = 0, where

_ () — |z
p(x) : W

In this case, we have taken
Ky (x) = =b(z)V (x)/|b(x)[?

which is semiconcave oR?®\ {0}. The fact that/’ is a CLF

for the system follows from a slight variant of the change
of coordinate arguments used to show that (24) is a CLF.
To check thatV is semiconcave ofR? \ {0}, it suffices to
verify this semiconcavity forS(x) = —r(x)|zs|, which in
turn follows from the semiconcavity of

(r,s) — —|rs| = min{xrs}

(cf. [9] for details). Therefore, if we usg to form our feed-
backs for (23), instead of the CLF (24), then our theorems
apply directly, without any state restrictions on the sampling
solutions.

Remark 4.2:Notice that our choice ofK, in (13) is
continuous at the origin. On the other hand, the nonsmooth
analog

K(z) == —((2)G(x)

of the usual Lie derivative ISS stabilizing feedback (where
¢(z) € 9LV (z) for all z # 0 and¢(0) = 0) for the dynamics

(23) and the CLF (24) is easily shown to be discontinuous
at the origin. This can be seen by comparing the values of

K ((6,2,0)7) = - (1/V2,1/V2)

K ((5,5, 3\/§S)T) = (1/\/5, 1/\/§)T +e(1,-1)T
for smalle > 0.

V. ISS FOR FULLY NONLINEAR GAC SYSTEMS
We conclude with an extension of our results that can be

for x # 0, and K is continuous at the origin. On the otherapplied tofully nonlinear GAC systems

hand, our feedback’, from (13) becomes
po (21, —T2, )
, es
< po (2,21, ) > v *
r(x) (SgIl{{L‘l}7 Sgl’l{l'g} , T € S_
|lz3] (0, —1)7, z € Sp

with K5(0) = 0, where

KQ(Z‘) = — )T

uo(a,b,z) = (x| —r(z))sgn{br(z)sgn{zs} —a}.
Since V is semiconcave o2 := R3 \ bd(S_), the argu-

T = f(z,u). (25)

We assume for simplicity throughout this section that all
observation errors in the controller are zero, and that

R XR™ - R": (z,u) — f(z,u)

is continuous and locally Lipschitz im uniformly on com-
pact subsets dR™ x R™ and f(0,0) = 0. It is natural to ask
whether these hypotheses are sufficient for the existence of
a state feedback((z) for which

ment from §lll applies to sampling solutions that satisfy
the additional requirement that the corresponding perturbed
solution z. (cf. [8], [17]) remains in€. It follows that the

&= f(2,K(2) +u)

nonholonomic integrator system (23) can be stabilized fdf ISS for Euler solutions. However, one can easily construct
actuator errors and small observation errors (for this restricté¥amples for which such feedbacks cannot exist. Here is an
set of sampling solutions), using the combined feedbadkkample of a GAC system from [16] where this situation

K =K, + Ks.

Remark 4.1:In this example, we used the CLF (24)
because it has been explicitly proven in [11] to be a CLF
for the control system (23). The example illustrates how to
apply our feedback construction to more general CLF’s th
may not be semiconcave di* \ {0}. On the other hand,

one can show that (23) also has the CLF

2
7 (e) = (\/mf Ty |x3|) e

occCurs:
Example 5.1:Consider the system

&= —z+ u22?

QnR.If K(z) is any feedback for which

&= —x+ (K(z) + u)’z? (26)
is ISS for sampling solutions, then

|K (z)| < 2~ 1/?



for sufficiently largex > 0. It follows that each Euler [4] F.H. Clarke, Yu.S. Ledyaev, R. Stern, and P. Wolen-

solution of ski, Nonsmooth Analysis and Control ThepGraduate
i =—x+ (K(z)+1)%2? Texts in Mathematics No. 178, Springer-Verlag, New
York, 1998.
starting atz(0) = 4 is unbounded. Therefore, there does not[5] M. Krsti¢, |. Kanellakopoulos, and P. KokotdyiNon-
exist a feedbacl« for which (26) is ISS for Euler solutions. linear and Adaptive Control DesigiWiley, New York,
On the other hand, oneanfind a (possibly discontinuous) 1995.

feedback that makes (25) ISS, in an appropriate weake[g] M. Krsti¢, and Z. Li, Inverse optimal design of input-
sense. We use the following weaker sense of ISS for fully  to-state stabilizing nonlinear controllertliEE Trans.

nonlinear systems that was introduced in [16]: Automat. Contrqlvol. 43, 1998, pp. 336-350.
Definition 5.2: We say that (25) isinput to state sta- [7] D. Liberzon, E. Sontag, and Y. Wang, Universal con-

bilizable (ISSable) in the weak senpeovided there exist struction of feedback laws achieving ISS and integral-

a feedbackK, and anm x m matrix G of continuously ISS disturbance attenuatioB8ystems and Control Let-

differentiable functions which is invertible at each point, ters vol. 46, 2002, pp. 111-127.
such thaté = F(z, K(x),u) is ISS for sampling and Euler [8] M. Malisoff, L. Rifford, and E. Sontag, Global asymp-

solutions, whereF'(z, p,u) = f(z,p + G(z)u). totic controllability implies input to state stabilization,

The following result is shown in [8]: LSU Mathematics Electronic Preprint Series No. 2003-
Proposition 5.3:If (25) is GAC, then (25) is also ISSable 6, andSIAM J. Control Optim.to appear?

in the weak sense. [9] M. Malisoff, and E. Sontag, Asymptotic controllability

The preceding proposition allows us to characterize GAC ~ and input-to-state stabilization: The effect of actuator
for fully nonlinear systems in terms of feedback equivalence,  errors, in Optimal Control, Stabilization, and Nons-

as follows. Recall that two systems mooth AnalysisM. de Queiroz, M. Malisoff, and P.
. . Wolenski, Eds., Lecture Notes in Control and Infor-
&= f(z,u), ="h(z,u) mation Sciences, Springer-Verlag, Heidelberg, 2004,

submitted.?

[10] B. Mordukhovich, Maximum principle in problems of
time optimal control with nonsmooth constraint$,
Appl. Math. Mech.vol. 40, 1976, pp. 960-969.

evolving onR™ xR™ are calledeedback equivaleqtrovided
there exist a feedback : R* — R™ and an everywhere
invertible functionG : R™ — R™>™ for which

h(z,u) = f(z, K(2) + G(z)u) Vo € R",u € R™; [11] L. Rifford, Problemes de stabilisation en é&brie du
contrdle, These, Universé Claude Bernard Lyon I,
in this case, we also say that= f(x, u) is feedback equiva- 2000.4
lent to (4) withe = 0 and F'(z,p,u) := f(z,p+G(z)u) (cf. [12] L. Rifford, Existence of Lipschitz and semiconcave
gll). The following elegant statement follows directly from control-Lyapunov functionsSIAM J. Control Optim.
Theorem 1 in [3] and Proposition 5.3: vol. 39, 2000, pp. 1043-1064.

Corollary 5.4: The fully nonlinear control system (25) is [13] L. Rifford, Semiconcave control Lyapunov functions
GAC if and only if it is feedback equivalent to a system and stabilizing feedback§IAM J. Control Optim.vol.
which is ISS for sampling and Euler solutions. 41, 2002, pp. 659-681.

[14] E. Sontag, A Lyapunov-like characterization of asymp-
totic controllability, SIAM J. Control Optim.vol. 21,
1983, pp. 462-471.
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